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Abstract A Rayleigh–Taylor instability typically develops when a denser layer overlies a less dense one in the
gravity field. In that case, the initial base state density profile is a step function for which linear stability analysis
results are well known. We investigate here analytically the linear stability analysis of other classical diffusive density
profiles for porous media flows. We find that, for a species A initially distributed in the upper half of the domain with
an initial concentration profile of (−X)m for 0 < m < 1 where X is the vertical coordinate, and absent from the
bottom half of the domain, for large times the eigenfunctions grow like exp

(
ω0T (m+1)/2 + ω1 ln(T )

)
where ω0 and

ω1 are constants and T is time. Thus, the growth rate defined by (1/A)(dA/dT ) decays like c1T (m−1)/2+c2T (m−2)/3

whilst the maximum growing wavenumber scales with T (m−2)/6. These results are compared to the growth rates
obtained using numerical linear stability analysis. Our analytical predictions provide a set of generalised results
that pave the way to the analysis of Rayleigh–Taylor instabilities of nontrivial density profiles.

Keywords Buoyancy · Darcy’s law · Linear stability · Porous media · Self similar

PACS 47.20.Bp · 47.56.+r · 52.35.Py

1 Introduction

A Rayleigh–Taylor (RT) instability can occur whenever a denser fluid overlies a less dense miscible fluid in a
gravity field. The resulting instability deforms a flat interface into fingers [1–4]. RT instabilities are present in many
situations including inside the Earth’s mantle [5], the oceans [6], and the atmosphere [7], they can be on smaller
scales in reactive porous media fluids [8] or on larger scales within stars [9].
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The onset condition for an RT instability in a finite domain in the presence of linear density profiles was obtained
in [10,11]. When the initial vertical density profile between two infinite homogeneous layers in a porous medium is
a step function, the dispersion relation giving the growth rate of the instability as a function of the wavenumber has
been derived analytically for t = 0 [12] and numerically at later times [13] using the quasi steady state approximation
(QSSA), where the base state profiles were assumed frozen in time. In the case of Hele–Shaw cells (two glass plates
separated by a thin gap), for various fluid flow models, Martin et al. [14] provided analytical dispersion relations
for the particular cases of either a linear or a step function profile. The influence of the width of the diffusive mixing
zone on the wavelength of the instability at the onset of instability has been discussed in [15].

The first experimental studies of the RT destabilisation of a stratification of a sugar or salt aqueous solution above
water in a Hele–Shaw cell were carried out by Hill [16] and Wooding [17]. A comparison between the experimental
and linear stability analysis of the RT instability in a Hele–Shaw cell starting from a step profile of a denser solution
on top of a less dense one was performed by Fernandez et al. [18]. Experiments analysing the RT instability of
stable linear profiles of concentration around a step profile [19] or a variety of initial density profiles [20,21] have
also been performed for turbulent flows.

Recently, there has been growing interest to understand the stability of more complicated initial diffusive profiles
in porous media flows. Indeed, differential diffusion [22] or chemical reactions [23,24] for instance have been
shown experimentally in Hele–Shaw cells and numerically to be able to trigger rapidly non-monotonic density
profiles in which extrema in the density profile develop as soon as the two layers are in contact. For buoyancy-
driven instabilities, [13] found that the time when the product of the maximum instantaneous growth rate and time
reached unity was a useful time to compare the linear stability analysis with nonlinear simulations as the system is
then still in the early stages of the instability. In the case of an initial step function profile [25], the linear stability
analysis predicted, in dimensionless units that the product of the maximum instantaneous growth rate and time
reached unity around time 100, and even at time 400, the nonlinear simulations still showed a very weak instability.
It is, thus, possible to put in contact two zones and let it evolve towards the self-similar diffusion solution before a
buoyancy-driven RT instability starts to grow.

Using the QSSA [26], Gandhi et al. [27] analytically obtained the onset condition for a RT instability at time
t = 0 for several different piecewise constant density profiles. Even though the QSSA has been shown to fail at small
times, Kim [28] found that it shows good agreement with spectral analysis methods at larger times. In the same spirit,
Cowell et al. [25] employed the QSSA to numerically examine the stability of several different evolving density
profiles in a porous medium in an infinite domain. For an initial step function density profile, they numerically
found that for large times, the growth rate scaled with time to the power of −(1/2), which agreed with the work by
Ben et al. [29] which used the spectral analysis method for viscous fingering. Cowell et al. [25] also numerically
examined the stability of a finite layer density profile and numerically found that, for large times, the instantaneous
growth rate was inversely proportional to time, which means that the system does not grow exponentially in time but
instead grows algebraically in time. Biferale et al. [21] investigated the generic case of an initially unstable vertical
temperature distribution with general power-law singular initial conditions, providing insight into situations when
the RT mixing develops with a nonuniform background like in a thermally stratified atmosphere.

These works that have examined the RT instability for nontrivial density profiles, have all been performed either
experimentally or numerically. Hence, the ability to examine the stability of simple classical diffusive profiles
to obtain analytical predictions to which to compare the numerical analysis is of interest. In this context, we
analytically examine the time scalings for a RT instability of various diffusive density profiles in an infinite domain.
The analytical stability analysis allows one to verify the numerical analysis which has taken place previously. In
this study, we consider the case when a species is initially only located in the upper half of the domain and its
concentration is proportional to the vertical height to the power of m where m is a constant between 0 and 1.
Physically this corresponds to a nonlinear concentration profile which increases more slowly than a linear profile.
Such initial profiles evolve by diffusion to self-similar profiles, as illustrated in Fig. 1.

We assume that the instability is weak so that the concentration profile is diffusing in time before the RT instability
sets in. This can be obtained experimentally in a horizontal set-up (for instance in Hele–Shaw cells) flipped by a
tiny angle with regard to the horizontal.
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Fig. 1 Sketch of concentration profiles: a complementary error function, b a semi-linear profile. Increasing x is downwards

In Sect. 2, the governing equations are given, non-dimensionalised and presented in terms of the stream function.
In Sect. 3, the base state solution is presented. In Sect. 4, nonlinear simulations are included to demonstrate the time
scale before the onset of the instability. In Sect. 5, a large time asymptotic linear stability analysis is developed.
In Sect. 6, a numerical linear stability analysis is used to compare with the scalings predicted by the large time
asymptotic linear stability analysis. Finally, we draw our conclusions in Sect. 7.

2 Model

Suppose that a species A is dissolved in a fluid contained inside a two-dimensional homogeneous porous medium.
We assume that the permeability K of the porous medium is constant. The fluid flow is assumed to satisfy Darcy’s
law and the concentration, a, of species A satisfies the mass transport equation, see [30]. For Darcy’s law to be valid
for flow in a porous medium, it is required that the flow length scales are larger than the typical pore size, so we
require that the wavelengths of any instabilities are much larger than the pore size. We assume that the dispersion
coefficient D of species A is a constant.

The fluid density ρ is assumed to be a linear function of the concentration of species A. The concentration of the
species is assumed sufficiently small that the Boussinesq approximation is valid and so the flow can be considered
incompressible, in addition to the dynamic viscosity μ being constant. The vertical coordinate x is chosen to increase
in the downwards direction. This problem is modelled by the following equations:

∇ · u = 0, (1)

∇ p = − μ

K
u + ρgi, (2)

∂a

∂t
+ u · ∇a = D∇2a, (3)

ρ = ρ0(1 + αa) (4)

where p is the fluid’s pressure, t is time, g is the magnitude of the acceleration due to gravity, and i is the unit
downwards pointing vector along the x axis. Here ρ0 is the density of the solvent and α is the solutal expansion
coefficient defined by α = (1/ρ0)(dρ/da). We assume that species A increases the fluids density, i.e. α > 0.

For convenience, we assume that the domain is sufficiently large to be assumed infinite. We assume that initially
the fluid is at rest and that the concentration of the species is given by

a(x, y, 0) = a0 (−x)m H(−x), (5)

where y is the horizontal coordinate, a0 is a constant, H is the Heaviside step function and 0 < m < 1. Note that,
for m = 0, we recover the initial step function shown in Fig. 1a. The far-field conditions are

u → 0 as x → ±∞, (6)
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a → 0 as x → ∞, (7)

a → a0 (−x)m as x → −∞. (8)

2.1 Non-dimensionalisation

We non-dimensionalise the system by rescaling the variables as follows:

u = D

L
U , p = ρ0gLX + μD

K
P, a = a0L

m A,

x = LX, y = LY, t = L2

D
T where L =

(
μD

αρ0a0gK

)1/(m+1)

,

where L is the characteristic length scale of the problem. We introduce a stream function ψ such that the velocity
is given by U = (ψY ,−ψX ). Taking the curl of Darcy’s law eliminates the pressure and the resulting system of
equations is

∇2ψ = AY , (9)

AT + ψY AX − ψX AY = ∇2A. (10)

The dimensionless initial profile is

A(X,Y, 0) = (−X)m H(−X). (11)

The far-field conditions are non-dimensionalised to become

ψ → 0 as X → ±∞, (12)

A → 0 as X → ∞, (13)

A → (−X)m as X → −∞. (14)

3 Diffusive base state solutions

We assume the fluid is initially at rest and the base state concentration Ã is one dimensional and so satisfies the
diffusion equation

ÃT = ÃX X . (15)

We find that the base state solution is given by

Ã = Tm/2Gm(s) where s = X√
T

(16)

where Gm satisfies 2Gm
ss + sGm

s − mGm = 0. Two linearly independent solutions of this equation are Ω1 and Ω2

given by

[Ω1(s),Ω2(s)] =
√

2e−s2/8

√
πs

[
M

(
−1 + 2m

4
,

1

4
,
s2

4

)
,W

(
−1 + 2m

4
,

1

4
,
s2

4

)]
,

where M and W are the Whittaker M(γ, ν, ζ ) and W(γ, ν, ζ ) functions which satisfy 4ζ 2Ψζζ

−
(
ζ 2 − 4γ ζ + 4ν2 − 1

)
Ψ = 0, as given by equation (13.1.31) in Abramowitz and Stegun [31].

The general solution is constructed using a linear combination of Ω1 and Ω2. For the function to be real and
continuous at s = 0, we choose the form:

Gm(s) = c1Ω1(−s)H(−s) + c2Ω2(|s|). (17)
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Table 1 Some values of λm and −Gm
s (λm) for different values of m

m λm −Gm
s (λm)

0 0 (4π)−1/2 = 0.282095

0.25 −0.482902 0.330557

0.5 −1.081804 0.429335

0.75 −1.929683 0.614720

1 −∞ 1

In order for Eq. (16) to satisfy the far-field condition (14), we require that c1 = 2m+1Γ (1 + (m/2)) using
Appendix A, where Γ is the Gamma function see Eq. (6.1.1) in Abramowitz and Stegun [31], defined by
Γ (v) = ∫ ∞

0 tv−1e−tdt . Further, for the first derivative of Gm to be continuous at s = 0 we require that
c2 = 2m−1Γ (1 + (m/2)) Γ ((1 + m)/2) /

√
π . Thus,

Gm(s) = 2m−1Γ
(

1 + m

2

) (
4H(−s)Ω1(−s) + Γ

(
1 + m

2

)
Ω2(|s|)√

π

)
. (18)

Three interesting limits of Eq. (18) are

G0(s) = 1

2
erfc

( s
2

)
,

G1(s) = 1√
π

e−s2/4 − s

2
erfc

( s
2

)
,

G
1
2 (s) = |s|3/2

4
√

2π
e−s2/8

(
K

(
3

4
,
s2

8

)
− K

(
1

4
,
s2

8

))
(2H(s) − 1)

+ |s|3/2√π

4
e−s2/8

(
I

(
1

4
,
s2

8

)
+ I

(
−3

4
,
s2

8

))
H(−s),

where I (ν, ζ ) and K (ν, ζ ) are the modified Bessel functions of the first and second kinds that satisfy ζ 2Ψ ′′ +ζΨ ′ −
(ζ 2 + ν2)Ψ = 0.

In this study, we are going to be interested in the region where Gm
s is most negative, as this corresponds to where

the gradient of the concentration profile is most negative and where the system is most unstable. Hence, we define
λm to be the solution to Gm

ss(λm) = 0 so that λm is the value of s at the inflection point where the gradient of Gm is
most negative. In Table 1, we include some illustrative values of λm and −Gm

s (λm) for different values of m. One
notes that to a good approximation

Gm
s (λm) ≈ −(4π)(1+0.7272m)(m−1)/2,

which has a maximum absolute error of about 0.0074 around m = 0.5.

4 Nonlinear simulations

Simulations were obtained by numerically solving Eqs. (9) and (10). To ensure the system was perturbed, small-
scale random noise of amplitude 10−4 was added to the initial concentration A. The stream function ψ was obtained
from Eq. (9) using a multi-grid method [32]. Using the Lin–Rood method [33] with a third-order finite-difference
operator [34], the concentration A was obtained from Eq. (10) by solving it in conservative form.

In Fig. 2, we illustrate the evolution of the instability when m = 0 at various times T . At time T = 1000, Fig. 2
shows that the instability is still very weak and essentially the system is in a purely diffusive regime. However,
by time T = 2000, the early stages of the instability are now visible, and at time T = 3000, the system is in the
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Fig. 2 Nonlinear simulations illustrating the evolution of the instability when m = 0 in a domain −500 < y < 500 at times T = 1000,
2000, and 3000
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very nonlinear regime. Hence, when m = 0, one would expect a linear stability analysis to still be valid up to time
T = 1000.

In Fig. 3, we illustrate the evolution of the instability when m = 1/2 at various times T . We see that here, the
instability starts to develop already by T = 125. At T = 100, the profiles are barely modulated, so we expect the
linear stability analysis to still be valid up to time T = 100.

5 Large time asymptotic linear stability

Supposing that a diffusive base state solution exists in the system and that this stratification is put in the gravity
field, we aim now to analyse analytically its stability with regard to a RT instability. To do so, we consider a small
perturbation to the base state solutions of the form

ψ = εψ̂(X,Y, T ) and A = Ã(X, T ) + ε Â(X,Y, T ),

where ε is a small constant and Ã = Tm/2Gm(s). Substituting these expressions into Eqs. (9) and (10), then
linearising in ε gives

ψ̂XX + ψ̂YY = ÂY , (19)

ÂT + ÃX ψ̂Y = ÂX X + ÂYY (20)

where ÃX = T (m−1)/2Gm
s (s), along with the far-field boundary conditions

Â, ψ̂ → 0 as X → ±∞. (21)

As the instability can be very weak at small times, we are going to seek a large time asymptotic solution to allow
us to approximate the stability of the system for large times, whilst still being in the early stages of the instability.
Hence, we introduce the new variables

ψ̂(X,Y, T ) = τ q f (η, θ, τ ), Â(X,Y, T ) = a(η, θ, τ ), (22)

X = λm
√

τ + ητ b, Y = τ rθ and T = τ, (23)

where b, q, and r are constants to be determined. Notice we are supposing that the position of the instability is
located around a moving coordinate centred around X = λm

√
τ , i.e. where the gradient of Gm(s) is most negative.

Subbing the new variables into Eq. (19) yields

τ q−2b fηη + τ q−2r fθθ = τ−r aθ .

In order to balance all of these terms, we require that

q = r = b,

then the equation becomes

fηη + fθθ = aθ . (24)

Subbing the new variables into Eq. (20) yields

aτ −
[

λm

2τ
1
2 +q

+ qη

τ

]
aη − qθ

τ
aθ + fθ

τ (1−m)/2
Gm

s

(
λm + η

τ
1
2 −q

)
= aηη + aθθ

τ 2q .

To balance the diffusion terms on the right-hand side with the last term on the left-hand side, we require that

q = 1 − m

4
. (25)

Subbing in q and multiplying the equation by τ (1−m)/2 yields

aτ τ
(1−m)/2 −

[
λm

2τ (1+m)/4
+ qη

τ (1+m)/2

]
aη − qθ

τ (1+m)/2
aθ
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Fig. 3 Nonlinear simulations illustrating the evolution of the instability whenm = 1/2 in a domain −160 < y < 160 at times T = 100,
125 and 150
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+ fθG
m
s

(
λm + η

τ (1+m)/4

)
= aηη + aθθ .

We can expand the Gm
s term in the large τ limit to obtain

Gm
s

(
λm + η

τ (1+m)/4

)
= Gm

s (λm) + ηGm
ss (λm)

τ (1+m)/4
+ η2Gm

sss (λm)

2τ (1+m)/2
+ η3Gm

ssss (λm)

6τ 3(1+m)/4
+ η4Gm

sssss (λm)

24τ 1+m
+ · · ·

As Gm
s is most negative at s = λm this means that Gm

ss(λm) = 0. We shall supress the writing of (λm) as all of the
derivatives of Gm are evaluated at s = λm . Introducing

φ = 1 + m

4
(26)

and subbing the expansion into Eq. (26) yields

aτ τ
1−2φ −

[
λm

2τφ
+ qη

τ 2φ

]
aη − qθ

τ 2φ
aθ

+ fθ

[
Gm

s + η2Gm
sss

2τ 2φ
+ η3Gm

ssss

6τ 3φ
+ η4Gm

sssss

24τ 4φ
+ · · ·

]
= aηη + aθθ . (27)

To balance this equation, we introduce

a(η, θ, τ ) = â J (τ ) + c.c. and f (η, θ, τ ) = f̂ J (τ ) + c.c., (28)

where c.c. denotes the complex conjugate parts and

â = a0 + a1

τφ
+ a2

τ 2φ
+ a3

τ 3φ
+ a4

τ 4φ
+ · · · , (29)

f̂ = f 0 + f 1

τφ
+ f 2

τ 2φ
+ f 3

τ 3φ
+ f 4

τ 4φ
+ · · · , (30)

J (τ ) = exp

(
β0

2φ
τ 2φ + β1

φ
τφ + β2 ln(τ ) − β3

φ
τ−φ − β4

2φ
τ−2φ

)
, (31)

where a j and f j are functions of η and θ whilst β j are constants to be determined. Subbing these expressions into
Eq. (24) and collecting terms with like powers of τ yields

f j
ηη + f j

θθ = a j
θ for 0 ≤ j ≤ 4. (32)

Subbing these expressions into Eq. (27) and retaining powers of τ down to and including −4φ yields
(
a0 + a1

τφ
+ a2

τ 2φ
+ a3

τ 3φ
+ a4

τ 4φ
+ · · ·

) (
β0 + β1

τφ
+ β2

τ 2φ
+ β3

τ 3φ
+ β4

τ 4φ

)
− φa1

τ 3φ

−2φa2

τ 4φ
−

[
λm

2τφ
+ qη

τ 2φ

] (

a0
η + a1

η

τφ
+ a2

η

τ 2φ
+ a3

η

τ 3φ

)

− qθ

τ 2φ

(

a0
θ + a1

θ

τφ
+ a2

θ

τ 2φ

)

+
(

f 0
θ + f 1

θ

τφ
+ f 2

θ

τ 2φ
+ f 3

θ

τ 3φ
+ f 4

θ

τ 4φ

) [
Gm

s + η2Gm
sss

2τ 2φ
+ η3Gm

ssss

6τ 3φ
+ η4Gm

sssss

24τ 4φ

]

= a0
ηη + a0

θθ + a1
ηη + a1

θθ

τφ
+ a2

ηη + a2
θθ

τ 2φ
+ a3

ηη + a3
θθ

τ 3φ
+ a4

ηη + a4
θθ

τ 4φ
+ · · ·

Collecting terms with like powers of τ yields

β0a
0 + Gm

s f 0
θ = a0

ηη + a0
θθ , (33)

β0a
1 + β1a

0 − λm

2
a0
η + Gm

s f 1
θ = a1

ηη + a1
θθ , (34)

β0a
2 + β1a

1 + β2a
0 − λm

2
a1
η − qηa0

η
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− qθa0
θ + Gm

s f 2
θ + η2

2
Gm

sss f
0
θ = a2

ηη + a2
θθ , (35)

β0a
3 + β1a

2 + β2a
1 + β3a

0 − φa1 − λm

2
a2
η − qηa1

η

− qθa1
θ + Gm

s f 3
θ + η2

2
Gm

sss f
1
θ + η3

6
Gm

ssss f
0
θ = a3

ηη + a3
θθ , (36)

β0a
4 + β1a

3 + β2a
2 + β3a

1 + β4a
0 − 2φa2

− λm

2
a3
η − qηa2

η − qθa2
θ + Gm

s f 4
θ

+ η2

2
Gm

sss f
2
θ + η3

6
Gm

ssss f
1
θ + η4

24
Gm

sssss f
0
θ = a4

ηη + a4
θθ . (37)

First, we notice in Eqs. (32), (33), and (34) that the coefficients are independent of η and θ so we can seek a normal
form solution given by

[ f 0, f 1, a0, a1] = [i f0, i f1, a0, a1]eilη+iκθ (38)

where κ and l are the wavenumbers in the θ and η directions and ai and fi are constants. Then Eq. (32) for j = 1
and (33) become

−N f0 = κa0 and β0a0 − κ f0G
m
s = −a0N , where N = κ2 + l2.

Hence, we obtain

β0 = −κ2Gm
s

N − N . (39)

Second, Eq. (32) for j = 1 and (34) become

−N f1 = κa1 and β0a1 + β1a0 − λm

2
ila0 − κGm

s f1 = −a1N .

Hence, we obtain

β1 = ilλm
2

. (40)

Next we examine Eq. (32) for j = 2 and (35). Although the coefficients of the terms involving a2 and f 2 are
independent of η and θ , there are terms including η and θ in Eq. (35). Hence, to obtain a particular solution to this
problem, we seek a solution of the form:

f 2 = i( f2η + f3η
2 + f4η

3 + f5θ
2)eilη+iκθ , (41)

a2 = (a2 + a3η + a4η
2 + a5η

3 + a6θ + a7θ
2)eilη+iκθ (42)

where f j and a j are constants. Subbing these expressions into Eq. (32) for j = 2 and equating coefficients of
powers of η and θ , we obtain

a2 = 2il f2 + 2 f3
κ

+ 2l2 f5
κ3 , a3 = 4il f3 + 6 f4 − N f2

κ
,

a4 = 6il f4 − N f3
κ

, a5 = −N f4
κ

, a6 = 2i(κ2 − l2) f5
κ2 , a7 = −N f5

κ
.

Using Eq. (35) and equating coefficients of powers of η and θ , we obtain

f3
f0

= κ2NGm
sss

8l2R + κ2N 2Gm
sss

2R2 − qN 2

4R ,
f4
f0

= − iκ2NGm
sss

12lR ,
f5
f0

= −qN 2

4S ,

β2 = 4κ2l2NGm
sss

R2 + Gm
sss

4l2
− Gm

sss

4N − 2qκ2N
S − 2ql2N

R + 2il f2
f0

(
1 − κ2Gm

s

N 2

)
,
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where

R = N 2 − Gm
s κ2 and S = N 2 + Gm

s l
2.

Notice we have 1 free unknown f2. However, the expression for β2 is singular when l = 0 and S = 0. We can
remove the singularities at l = 0 and S = 0 in β2 by choosing

f2
f0

= iGm
sssN 2

8l3R − iqlκ2

S − iqκ4

lR
to obtain

β2 = 4κ2l2NGm
sss

R2 − Gm
sss

4N − 2ql2N
R . (43)

Next we examine Eq. (32) for j = 3 and (36). Although the coefficients of the terms involving a3 and f 3 are
independent of η and θ , there are terms including η and θ in Eq. (36). Hence, to obtain a particular solution to this
problem, we choose f1 = 0 and seek a solution of the form

f 3 = i( f6η + f7η
2 + f8η

3 + f9η
4)eilη+iκθ , (44)

a3 = (a8 + a9η + a10η
2 + a11η

3 + a12η
4)eilη+iκθ , (45)

where f j and a j are constants. Subbing these expressions into Eq. (32) for j = 3 and equating coefficients of
powers of η, we obtain

a8 = 2il f6 + 2 f7
κ

, a9 = 4il f7 + 6 f8 − N f6
κ

,

a10 = 6il f8 + 12 f9 − N f7
κ

, a11 = 8il f9 − N f8
κ

, a12 = −N f9
κ

.

Using Eq. (35) and equating coefficients of powers of η, we obtain

f7
f0

= iκ2NGm
ssss

16l3R + ilκ2N 3Gm
ssss

R3 − iqλmN 4

16lR2

+ iλmκ2N 4Gm
sss

4lR3 + iλmκ2(κ2 − l2)N 2Gm
sss

16l3R2 ,

f8
f0

= κ2NGm
ssss

24l2R + κ2N 2Gm
ssss

6R2 + λmκ2N 3Gm
sss

48l2R2 ,
f9
f0

= − iκ2NGm
ssss

48lR ,

β3 = 2il f6
f0

(
1 − κ2Gm

s

N 2

)
+ iκ2

(
8l3N 2

R3 − 2lN
R2 + 1

8l3N
)
Gm

ssss

+ iλm

(
2lκ2N 3

R3 − κ2N (3l2 − κ2)

2lR2 + 3κ4 + l4

16l3R
)
Gm

sss

+ iλmq

(
3l4 + 2l2κ2 − 5κ4

8lR − lκ2

2S − lN 3

2R2

)
.

Notice that β3 is singular at l = 0 and S = 0. We can use partial fractions in the variable l to identify the singular
terms at l = 0 and S = 0 and then remove these singularities in β3 by choosing

f6
f0

= (κ2 + Gm
s )Gm

ssss

16l2I2 − κ2Gm
ssss

16l4I − 3λmκ4Gm
sss

32l4I2 + λmκ2Gm
sss(3G

m
s − κ2)

16l2I3

− (N (Gm
s )2 − (6κ2 + 4l2)κ2Gm

s + (5κ2 + 3l2)κ4)Gm
s G

m
ssss

16κ2I3R
− λmκ2(3Gm

s + 5κ2 + 4l2)Gm
s G

m
sss

32I3R − qλmκ2N
4Gm

s S
+ 5qλmκ4

16l2I2
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+ λmqκ4((6κ2 + l2)(Gm
s )3 + (2κ2 + 7l2)κ2(Gm

s )2 − 12κ4NGm
s + 4κ6N )

16κ2Gm
s I3R ,

where I = κ2 − Gm
s , to yield

β3 = − iλmqlκ2NGm
s

2R2 + iλmql(4κ2 + Gm
s )(2κ2 + l2)

8RI + 8il3κ4Gm
s G

m
ssss

R3

+ 2ilκ2(3l2 − κ2)Gm
ssss

R2 + ilGm
ssss

8κ2N − ilλmκ2Gm
s (l2 + 2κ2)Gm

sss

2IR2

+ 2ilλmκ4NGm
s G

m
sss

R3 − iλml(6κ4 + 2l2κ2 − κ2Gm
s − (Gm

s )2)Gm
sss

16I2R . (46)

Finally, we solve Eqs. (32) for j = 4 and (37). To obtain a particular solution to this problem, we seek a solution
of the form:

f 4 = i[ f10η + f11η
3 + f12η

4 + f13η
5 + f14η

6 + θ( f15η + f16η
2 + f17η

3)]eilη+iκθ

+ i[θ2( f18η + f19η
2 + f20η

3) + f21θ
3 + f22θ

4]eilη+iκθ , (47)

a4 = [a13 + a14η + a15η
2 + a16η

3 + a17η
4 + a18η

5 + a19η
6]eilη+iκθ

+[θ(a20 + a21η + a22η
2 + a23η

3) + θ2(a24 + a25η + a26η
2 + a27η

3)]eilη+iκθ

+[a28θ
3 + a29θ

4]eilη+iκθ , (48)

where f j and a j are constants. We find that β4 has singularities at l = 0 and S = 0, which can be removed by
choosing f10 appropriately. We expect the system to be most unstable when l = 0, and in this limit, we find that

β0 = −Gm
s − κ2, β1 = β3 = 0, and β2 = −Gm

sss

4κ2 , (49)

and

β4 = (32κ10 − 120κ8Gm
s + 160κ6(Gm

s )2 − 83κ4(Gm
s )3)Gm

sssss

2I4(Gm
s )3

+ (58κ10Gm
s + 27κ8(Gm

s )2 + 2κ4(Gm
s )4 − 2κ2(Gm

s )5 + 3(Gm
s )6)Gm

sssss

16κ8I4

+ λm(192κ10 − 688Gm
s κ8 + 868(Gm

s )2κ6 − 413κ4(Gm
s )3)Gm

ssss

32I4(Gm
s )3

+ λm(42κ8Gm
s + 24κ6(Gm

s )2 − 11κ4(Gm
s )3 − 5κ2(Gm

s )4 − 9(Gm
s )5)Gm

ssss

32κ6I4

+ (1024κ12 − 3824κ10Gm
s + 5092κ8(Gm

s )2 − 2609κ6(Gm
s )3)(Gm

sss)
2

4I4(Gm
s )5

+ (2196κ6 + 1558κ4Gm
s + 10κ2(Gm

s )2 − 687(Gm
s )3)(Gm

sss)
2

64κ2I4Gm
s

+ (−872(Gm
s )3κ6 − 716(Gm

s )4κ4 − 246(Gm
s )5κ2 − 171(Gm

s )6)(Gm
sss)

2

64κ10I4

+ q(−480κ12 + 1644κ10Gm
s − 1824κ8(Gm

s )2 + 436κ6(Gm
s )3)Gm

sss

I4(Gm
s )4

+ q(12630κ6 − 4875κ4Gm
s − 780κ2(Gm

s )2 + 346(Gm
s )3)Gm

sss

32κ2I4

+ q(126κ2(Gm
s )4 + 105(Gm

s )5)Gm
sss

32κ6I4 + (4κ10 − 14κ8Gm
s + 17κ6(Gm

s )2)Gm
sss

I4(Gm
s )3

+ (−238κ8 + 23κ6Gm
s + 20κ4(Gm

s )2 − 14κ2(Gm
s )3 − 6(Gm

s )4)Gm
sss

32κ4I4
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− 9(Gm
s )5Gm

sss

32κ6I4 + λ2
m(−32κ8 + 108κ6Gm

s − 115κ4(Gm
s )2)Gm

sss

64I4(Gm
s )2

+ λ2
m(−κ6Gm

s + 31κ4(Gm
s )2 + 16κ2(Gm

s )3 + 9(Gm
s )4)Gm

sss

64κ4I4

+ q(2κ8 − 5κ6Gm
s + 5κ4(Gm

s )2 − 3κ2(Gm
s )3 + (Gm

s )4)

4κ2I4

+ qλ2
m((Gm

s )3 + κ2(Gm
s )2 − 11κ4Gm

s + 3κ6)

32κ2I3

+ q2(384κ10 − 1520κ8Gm
s + 2192κ6(Gm

s )2 − 1297κ4(Gm
s )3)

16I4(Gm
s )2

+ q2(168κ6(Gm
s )2 + 130κ4(Gm

s )3 − 56κ2(Gm
s )4 − (Gm

s )5)

16κ4I4 .

Here, we shall use (1/ Â)(d Â/dτ) as the definition of the growth rate. We recall that

Â = a = â J + â J ,

where bars are used to denote the complex conjugate. Now as β0 to β4 are real, J = J and so

Â = (â + â)J.

Thus,

1

Â

d Â

dτ
= 1

(â + â)J

(

(â + â)
dJ

dτ
+ d(â + â)

dτ
J

)

= 1

J

dJ

dτ
+ 1

â + â

d(â + â)

dτ

= β0τ
2φ−1 + β1τ

φ−1 + β2τ
−1 + β3τ

−φ−1 + β4τ
−2φ−1 + · · ·

− 1

a0 + a0 + (a1 + a1)τ−φ + (a2 + a2)τ−2φ + (a3 + a3)τ−3φ + · · ·

× φ

τ

[
a1 + a1

τφ
+ 2(a2 + a2)

τ 2φ
+ 3(a3 + a3)

τ 3φ
+ 4(a4 + a4)

τ 4φ
+ · · ·

]

.

Including terms up to τ−2φ−1 reduces this to

1

Â

d Â

dτ
= β0τ

2φ−1 + β1τ
φ−1 + β2τ

−1 + β3τ
−φ−1 + β4τ

−2φ−1

−φτ−1

[

a0 + a0 + a1 + a1

τφ

]−1 [
a1 + a1

τφ
+ 2a2 + 2a2

τ 2φ

]

= β0τ
2φ−1 + β1τ

φ−1 + β2τ
−1 + β3τ

−φ−1 + β4τ
−2φ−1

−φτ−1(a0 + a0)−1

[

1 − a1 + a1

(a0 + a0)τφ

] [
a1 + a1

τφ
+ 2a2 + 2a2

τ 2φ

]

= β0τ
2φ−1 + β1τ

φ−1 + β2τ
−1 + β3τ

−φ−1 + β4τ
−2φ−1

−φτ−1

[
a1 + a1

(a0 + a0)τφ
+ 2a2 + 2a2

(a0 + a0)τ 2φ
− (a1 + a1)2

(a0 + a0)2τ 2φ

]

.

Notice here we have taken f1 = 0 and so a1 = 0, and β1 = β3 = 0. Subbing in φ = (m + 1)/4 yields

1

Â

d Â

dτ
= β0τ

(m−1)/2 + β2τ
−1 +

(

β4 − 2φ(a2 + a2)

a0 + a0

)

τ−(m+3)/2.
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For large times τ , we can expect long waves, i.e. as τ → ∞, κ → 0; hence, as κ → 0 we have β4 → βL
4 where

βL
4 = −171(Gm

s )2(Gm
sss)

2

64κ10 + 6Gm
sssss(G

m
s )2 − 465(Gm

sss)
2Gm

s

32κ8 − 601(Gm
sss)

2

4Gm
s κ4 − q2Gm

s

16κ4

+ 20Gm
sssssG

m
s − 9λmGm

ssssG
m
s + (105q − 9)Gm

sssG
m
s − 1705(Gm

sss)
2

32κ6

+ 96Gm
sssss − 82λmGm

ssss + (9λ2
m + 1092q − 84)Gm

sss

64κ4 + · · · (50)

As we are interested in the maximum growth rate around η = 0 and θ = 0, we substitute θ = η = 0 to obtain

a2 + a2

a0 + a0
= q

2κ2 − κ2NGm
sss

R2 + Gm
sss

4R − ql2Gm
s

2κ2S + qN (Gm
s − 4κ2)

2Gm
s

(
1

R − 1

S
)

.

Then, when l = 0, we have

a2 + a2

a0 + a0
= −Gm

sss(3κ2 + Gm
s ) + 6qκ2(κ2 − Gm

s )

4κ2(κ2 − Gm
s )2 .

Expanding this about κ = 0 we obtain

a2 + a2

a0 + a0
→ − Gm

sss

4Gm
s κ2 + 3q

2Gm
s

− 5Gm
sss

4(Gm
s )2 +

(
3q

2(Gm
s )2 − 9Gm

sss

4(Gm
s )3

)
κ2 + · · ·

As the above term is only order κ−2, whilst βL
4 has a term of order κ−10, the above term does not play a significant

role in the instability. Hence, by retaining the most dominant terms, we have obtained

1

Â

d Â

dτ
= −Gm

s − κ2

τ (1−m)/2
− Gm

sss

4κ2τ
+ βL

4 τ−(m+3)/2. (51)

To obtain the maximum growing wavenumber we set the derivative in κ of the growth rate in Eq. (51) equal to zero.
For large τ this yields the approximation

κmax = (855)
1

12
(−Gm

sssG
m
s

) 1
6

√
2τ (m+1)/12

+ 8Gm
s G

m
sssss + (

√
95 − 620)(Gm

sss)
2

12
√

6(95)
3
4
√−Gm

s (Gm
sss)

3/2τ (m+1)/4
+ · · · (52)

Subbing the maximum growing wavenumber from Eq. (52) into Eq. (51), we obtain the maximum growth rate:

max

[
1

Â

d Â

dτ

]

= − Gm
s

τ (1−m)/2
+ 34/3951/6[−Gm

sssG
m
s ]1/3

5τ (2−m)/3

− 2Gm
s G

m
sssss + (

√
95 − 155)(Gm

sss)
2

2(3)1/3(95)2/3(Gm
sss)

4/3(−Gm
s )1/3τ (5−m)/6

+ · · · (53)

In the next section, we shall attempt to numerically verify these scalings by performing a numerical linear stability
analysis. One notes that this is the maximum growing wavenumber in the θ coordinate, using Y = τ (1−m)/4θ ,
means that the maximum growing wavenumber in the Y coordinate is kmax = κmax/τ (1−m)/4, i.e.

kmax = (855)
1

12
(
Gm

sss |Gm
s |) 1

6

√
2τ (2−m)/6

+ 8Gm
s G

m
sssss + (

√
95 − 620)(Gm

sss)
2

12
√

6(95)
3
4
√−Gm

s (Gm
sss)

3/2
√

τ
+ · · · (54)

One notes that 2Gm
ss + sGm

s −mGm = 0 so 2Gm
sss + sGm

ss + (1 −m)Gm
s = 0, 2Gm

ssss + sGm
sss + (2 −m)Gm

ss = 0
and 2Gm

sssss + sGm
ssss + (3 − m)Gm

sss = 0. Hence, at s = λm we have Gm
ss = 0 so that

Gm
sss = m − 1

2
Gm

s , Gm
ssss = (1 − m)λm

4
Gm

s , Gm
sssss = m − 1

8
Gm

s (6 − 2m − λ2
m).
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6 Numerical linear stability

Using a scaling analysis for large times, we have found that asymptotically the perturbations of the instability do
not grow like eσT when m < 1. To determine the validity of these results we shall perform a numerical stability
analysis to examine how the perturbations grow in time by assuming normal form expansions in the Y -direction

[ψ, A] = [0, Ã(X, T )] + ε[ f (X, T ), Â(X, T )]eikY , (55)

where k is the wavenumber. Subbing these expressions into Eqs. (9) and (10) and linearising in ε, then collecting
terms in ε yields

ÃT = ÃX X , (56)

fX X − k2 f = Â, (57)

ÂT − k2 f ÃX = ÂX X − k2 Â. (58)

In order to obtain an instability, we introduce small pertubations in the initial conditions for Â and f , and so in this
section we use the following initial conditions:

Ã(X, 0) = (−X)m H(−X), (59)

Â(X, 0) = f (X, 0) = 0.0001 exp(−|X |/10). (60)

To carry out this numerical stability analysis, we truncate the infinite domain to the finite domain |X | < h where
h is chosen to be sufficiently large that it does not affect the solutions obtained. Thus, we impose the following
boundary conditions:

Ã = hm and f = Â = 0 on X = −h, (61)

Ã = f = Â = 0 on X = h. (62)

This coupled system of PDEs is numerically solved in time T for different values of the wavenumber k using the
built in function pdepe in Matlab. Typically 4000 non-uniformally distributed spatial points were used. To ensure
that the results were independent of the domain size h, typically h was chosen to be greater than 8π/k. For each
wavenumber investigated, we determine the growth rate of the perturbations using

1

Â

d Â

dT

at the spatial location where d Â/dT is greatest. To evaluate d Â/dT , we use finite differences at two time steps
separated in time by ΔT = 10−4. To determine the maximum value of (1/ Â)(d Â/dT ) at a given time T , we
examine different wavenumbers k.

In Fig. 4a, we present log–log plots of the maximum growth rate with time T for various values of m. In Fig. 4a,
we see that there is good agreement between the numerically obtained maximum growth rate, the solid lines, and the
large time asymptotic solution (53), the dashed curves. In Fig. 4b, we present log–log plots of T (1−m)/2 multiplied
by the difference between the maximum growth rate and the first term of the large time asymptotic growth rate in Eq.
(53), with time T for variousm. In Fig. 4b the dotted lines are straight lines fitted to the large time numerical solution.
In Table 2, we represent the large time numerically obtained trends for −(1/ Â)(d Â/dT ) − Gm

s (λm)T (m−1)/2 for
different values of m. Using Table 2, we can obtain the estimate

1

Â

d Â

dT
+ Gm

s (λm)

T (1−m)/2
∼ T 0.367m−0.658, (63)

which has similar powers to those predicted by the linear stability theory, namely T (m−2)/3.
In Fig. 5, we present log–log plots of the maximum growth rate with time T for various values of m. In Fig. 5,

we see that the agreement is not as good between the numerically obtained maximum growing wavenumber, the
solid lines, and the large time asymptotic solution (54), the dashed curves.
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Fig. 4 Log–log plots of a the maximum growth rate, (1/ Ã)(d Ã/dT ), and b T (1−m)/2 multiplying the difference between the maximum
growth rate and the first term of the large time asymptotic growth rate in Eq. (53), with time T for m = 0, 1/4, 1/2, 3/4 and m = 1.
In a the dashed curves are the large time asymptotic solution given by Eq. (53) and in b the dotted lines are straight lines fitted to the
large time numerical solution

Table 2 Large time numerical trends for −(1/ Â)(d Â/dT ) − Gm
s (λm)T (m−1)/2 for different values of m

m −(1/ Â)(d Â/dT ) − Gm
s (λm)T (m−1)/2

0 0.432T−0.658

0.25 0.428T−0.570

0.5 0.425T−0.478

0.75 0.400T−0.383

Fig. 5 Log–log plots of the
maximum growing
wavenumber, with time T
for m = 0, 1/4, 1/2, and
3/4. The dashed curves are
the large time asymptotic
solutions given by Eq. (54)

-2 0 2 4
-2.5

-2

-1.5

-1

-0.5

0
m=3/4
m=1/2
m=1/4
m=0

In Table 3, we represent the large time numerically obtained trends for kmax for different values of m. Using
Table 3, we can obtain the estimates

kmax ∼ T 0.167m−0.3, (64)

which has similar powers to those predicted by the linear stability theory, namely T (m−2)/6.
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Table 3 Large time numerical trends for kmax for different values of m

m kmax

0 0.251T−0.30

0.25 0.302T−0.27

0.5 0.302T−0.22

0.75 0.302T−0.175

7 Conclusions

In this study, we have examined the stability of classical diffusive profiles with regard to a Rayleigh–Taylor instability
in a two-dimensional vertically oriented porous medium, for a class of initial concentration profiles.

When a species is present in the upper half of the domain such that its far-field concentration vertically tends
to (−X)m where X is the vertical coordinate, and absent from the bottom half of the domain, then the base state
diffusive concentration profile has been obtained and we found that the eigenfunctions of the perturbations grow like
exp

(
ω0T (m+1)/2 + ω1 ln(T )

)
for large times T where ω0 and ω1 are constants. Further, the growth rate defined by

(1/A)(dA/dT ) decays like c1T (m−1)/2 + c2T (m−2)/3 which was found to be in reasonable agreement with results
obtained from a large time numerical linear stability analysis.

The large time linear stability analysis also predicted that the maximum growing wavenumber decays like
T (m−2)/6. The large time numerical linear stability analysis showed the same scalings although there was a difference
in the magnitudes. The biggest differences occurred near m = 0 and m = 1. One notes that the scalings for the
growth rates when m = 0 and m = 1 are in agreement with the numerical predictions by Cowell et al. [25]. These
analytical results should help to provide understanding for the stability of more complex density profiles.

Acknowledgements The authors would like to thank the editor and the referees for their comments which have improved this paper.

Appendix A: Useful limits

For large s, we have the series solutions

Ω1(s) = Γ (m + 1)

2m+1Γ (1 + m
2 )

∞∑

n=0

sm−2n

n! Γ (m + 1 − 2n)
(65)

and

Ω2(s) = 2m+1e−s2/4

√
πΓ (m + 1)

∞∑

n=0

(−1)nΓ (2n + m + 1)

n! s2n+m+1 (66)

where Γ is the gamma function, see Eq. (6.1.1) in Abramowitz and Stegun [31]. For small s, we have the series
solutions

Ω1(s) = Γ
(m+1

2

)

2
√

π

∞∑

n=0

s2n+1

(2n + 1)! Γ (m+1
2 − n

) and Ω2(s) =
∞∑

n=0

(−s)n

n! Γ (
1 + m−n

2

) . (67)
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