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ABSTRACT

Convective dissolution can occur in porous media when a given solute dissolves in a host layer from above and increases the density of the
host solution. Buoyancy-driven fingering can then develop, which increases the transfer flux of the solute. We investigate here numerically
the properties of this convective dissolution when the porous host layer is inclined by an angle θ relative to the horizontal direction. We
consider an incompressible flow in porous media governed by Darcy’s law, driven by density gradients associated with the concentration of
the dissolving solute. The model problem focuses on the case of a very long (infinite) tilted porous layer limited by two parallel impermeable
surfaces. A linear stability analysis and nonlinear simulations are performed using the Boussinesq approximation. A vorticity-stream function
formulation is adopted to solve the two-dimensional hydrodynamic field through the finite element method. We find that the inclination of
the interface decreases the growth rate of the instability and the range of unstable wavenumbers, delaying or even suppressing the onset of
the fingering instability. Moreover, it introduces a drift velocity on the perturbations, which is characterized here in both the linear stability
analysis and the nonlinear simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089326

In Carbon Capture and Sequestration (CCS) techniques, convec-
tive dissolution of CO2 in host saline aquifers favors its long-term
storage in those deep geological porous layers. We examine here
the mechanisms at play when the host porous layer is inclined at
an arbitrary angle with respect to the horizontal direction. We
study numerically the stability and nonlinear evolution of con-
vective dissolution in the case where a very long (infinite) inclined
layer of porous media is limited by two parallel impermeable sur-
faces. The linearized governing equations for the disturbances are
solved numerically by a Chebyshev spectral collocation method.
The nonlinear equations are solved by employing the finite ele-
ment method, providing further insight into the dynamics of the
nonlinear fingering instability in the vicinity of an inclined inter-
face. We found that increasing the slope of the interface decreases
the instability growth rate and the range of unstable wave num-
bers, delaying or even suppressing the onset of the fingering
instability.

I. INTRODUCTION

In the context of global warming, there is currently increased
interest to characterize the physico-chemical mechanisms at play
during carbon capture and sequestration. In this technique, carbon
dioxide is captured at the exhaust of power plants, steel, cement,
fertilizer, and other manufacturing units, potentially for hydrogen
production and also in combination with biofuels for energy (a
potential net negative emissions process). After being captured, CO2

is liquefied and transferred to sequestration sites where it is injected
into deep geologic strata.1 There, a two-layer stratification of super-
critical CO2 above the host phase is formed. When CO2 dissolves
in the lower partially miscible host layer, it increases its density.
This induces a buoyancy-driven instability creating CO2-rich fingers
sinking down convectively toward the bottom of the host phase.2

To quantify the amount of CO2 that can be stored for given spe-
cific geological conditions, numerous works have analyzed both
experimentally and theoretically the properties of this convective

Chaos 32, 113110 (2022); doi: 10.1063/5.0089326 32, 113110-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0089326
https://doi.org/10.1063/5.0089326
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0089326
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0089326&domain=pdf&date_stamp=2022-11-02
http://orcid.org/0000-0003-2089-7313
http://orcid.org/0000-0003-2055-6105
http://orcid.org/0000-0002-3231-0906
http://orcid.org/0000-0003-0687-8466
http://orcid.org/0000-0001-9555-9023
mailto:rachel.lucena@gmail.com
https://doi.org/10.1063/5.0089326


Chaos ARTICLE scitation.org/journal/cha

dissolution instability,3–22 considering a horizontal interface between
the upper CO2 layer and the lower host phase. In practice, how-
ever, this interface is not necessarily horizontal as local topologies of
the impermeable caprock imprisoning the CO2 pool can be inclined
with regard to the horizontal ones.

Similarly, a solid phase dissolving in a liquid layer can also trig-
ger convective dissolution, the properties of which will depend on
the angle of inclination of the solid block with regard to the vertical.23

Laboratory experiments and a theoretical model were devel-
oped by MacMinn and Juanes12 to study the effectiveness of con-
vective dissolution in inclined aquifers. They have demonstrated
that convective dissolution can arrest the upslope migration of a
buoyant current. They found that a small amount of slope is ben-
eficial to dissolution relative to a horizontal aquifer, leading to a
sharp decrease in the lifetime of a buoyant current with only a small
increase in the maximum migration distance, showing a good agree-
ment with Hesse et al.10 The results obtained by Hesse et al.10 suggest
that residual trapping is quite effective in sloping aquifers with small
mobility ratios and high residual CO2 saturation. Nevertheless, the
long migration distances of CO2 due to the formation of a gravity
tongue may limit the volume of CO2 that can be stored in slop-
ing regional aquifers. Larger slopes lead to much larger migration
distances with only a small decrease in the lifetime of the current,
but residual trapping provides a strong complement to convective
dissolution as the amount of slope increases.

Huppert and Woods24 have analyzed the situation in which
the gravity-driven flows in porous media propagate along a slop-
ing channel, in a layer of uniform permeability. A finite volume of
fluid propagates steadily along the slope under gravity and spreads
diffusively owing to the gravitational acceleration normal to the
boundary, as on a horizontal boundary. They concluded that, if the
porosity increases or decreases with distance from the boundary,
then, in the long-time asymptotic limit, a discrete release of fluid will
tend to generate a discontinuity at the nose or tail of the flow respec-
tively. Similarly, Vella and Huppert25 have considered the propaga-
tion of a gravity current in a porous medium below an impermeable
sloping boundary. Through laboratory and numerical experiments,
they observed that, shortly after its initiation, a constant-flux grav-
ity current begins to spread axisymmetrically. Nevertheless, at larger
times, the axisymmetry is lost and the gravity current propagates
predominantly downslope.

Meng and Jiang have performed numerical analyses of the sol-
ubility trapping of CO2 in geological formations using 2D and 3D
approaches.15 These authors have conducted a dimensional study
of the dissolution of CO2 into the brine, which leads to a finger-
ing instability, in a finite inclined aquifer (finite due to the boundary
conditions). They concluded that the number of fingers is reduced
and the interaction between them is weakened when the angle of
inclination is increased.

Guerrero et al.26 provide numerical results of the effect of
inclination on CO2 dissolution and thermo-solutal convection in
a porous enclosure heated from below. The effect of the inclina-
tion is found to be minor when compared to the Rayleigh number
and buoyancy ratio effects. Increasing the angle slightly decreases
the mixing length as a consequence of the formation of preferen-
tial flow paths associated with the inclination. These preferential
flow paths make mixing less efficient and give rise to zonation of

solute concentration. This effect may, in part, be associated to the
finite size of the enclosure and the imposition of the imperme-
able lateral walls boundary conditions. Different results are found
by Tsai et al.,27 where the density-driven convection is enhanced
by an inclined boundary. In this experimental study, the top inter-
face is maintained essentially horizontal by the gravity force, while
the lateral and the bottom boundaries of the cell are inclined, and
the fingers are observed to move toward the lateral walls. This
effect, and the observed beneficial effect on the dissolution, can be
attributed to a large-scale gravity current, set up by the lateral plume
movements, which is a double recirculating flow that emerges as
a consequence of the interaction of the fingers with the inclined
walls.

Very relevant to the subject of the present investigation, works
were performed regarding inclined porous media by Wen and
Chini28,29 for large and moderate Rayleigh numbers, addressing both
numerical simulations and linear stability analysis (LSA) of the
inclined problem, for a similar geometry, but considering a steady
state concentration base flow, with prescribed concentration (or
temperature) conditions at the top and bottom interfaces. Similarly
to the problem addressed in this work, they find a limiting angle of
inclination, beyond which no fingering instability is observed.

A comprehensive review of recent results on convection in
porous media is provided by Hewitt.30 In this review, the basic math-
ematical framework for convection in porous media governed by
Darcy’s law is outlined, and its validity and limitations discussed.
The review considers “two-sided” and “one-sided” systems, the for-
mer mimicking the classical Rayleigh–Bénard setup of a cell heated
from below and cooled from above, the latter involving convection
from one boundary only, which evolves in time through a series
of regimes. Both setups are reviewed, and studies that incorporate
additional physical effects are discussed.

To our knowledge, no linear stability analysis (LSA) of the
inclined interface problem has been performed up to now for tran-
sient “one-sided” systems. Most numerical simulations on inclined
domains performed in the literature only addressed finite domains
with impermeable lateral walls, where the accumulation of solute at
the lower side of the interface leads to the formation of strong grav-
ity currents or inclined “two-sided” systems. The case of inclined
“one-sided” systems, with no effect of lateral walls, for the transient
start-up problem with impermeable, zero flux, bottom boundary
condition, has not been addressed.

In this context, we study here numerically the stability and
nonlinear evolution of convective dissolution in the case where the
interface between the dissolving layer and the host phase is inclined
with an arbitrary angle with regard to the horizontal. Specifically, we
study the temporal evolution of small perturbations near an inclined
interface in a saturated porous medium with buoyancy effects due
to gradients of concentration of a soluble compound. In particular,
we analyze the model problem where a very long (infinite) tilted
layer of a porous medium is limited by two parallel impermeable
surfaces. Both the upper and the lower surfaces are impermeable
and non-deformable, which is an interesting theoretical simplifica-
tion. It must be remarked that neither simplification corresponds
to a CO2–water interface, which might in addition have a capillary
fringe. Therefore, we are solving for a simplified approximation of
the full problem.
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The current problem can be used to explain the behavior of
instability in regions where the interface is deformed since, as a first
approximation, when the wavelength of the deformation is very long
compared to the wavelength of the perturbation, the fact that the
interface is deformed can be taken into account by its inclination
with respect to the horizontal direction.

The present study is also relevant to the problem of CO2 in
the presence of background flow, as studied by Emami-Meybodi
et al.,31 where they find that a background flow may delay the onset
of free convection when considering a dispersion effect. We can
observe that, in the case of the presence of a steady and uniform
background flow, the interface at the top of an unconfined (free)
aquifer over a sloping boundary, will also be inclined and can be
analyzed, neglecting the background flow dispersion effect already
studied by Emami-Meybodi et al.,31 employing the results obtained
in this work.

The linearized governing equations for the disturbances yield
a fourth-order eigenvalue problem, which is solved numerically
by a spectral collocation technique with expansions in Chebyshev
polynomials. It is found that the inclination of the interface has a sta-
bilizing effect on the fluid flow while producing a lateral drift veloc-
ity on the perturbations. The nonlinear equations are then solved
employing a finite element method, providing further insight into
the dynamics of the nonlinear fingering instability in the vicinity of
an inclined interface.

This article is organized as follows: the governing equations of
the problem are first presented along with the base state solution.
A linear stability analysis (LSA) is performed and the effect of incli-
nation is studied on both semi-infinite and finite depth domains.
Finally, numerical simulations of fingering generation in a thick
porous layer are presented followed by the final remarks in the
conclusion section.

II. POSING THE PROBLEM AND GOVERNING
EQUATIONS

In a way similar to the analysis of the horizontal case,11,32 we
consider buoyancy-driven fingering generated in porous media by
the dissolution of a partially miscible solute in a host phase layer
below it. The interface separating the dissolving layer and the host
phase is inclined by an angle θ relative to the horizontal direction.
Our focus is on the lower layer where the convective dissolution
dynamics takes place. As the geometry of the interface is consid-
ered not to be altered by the dissolution process and the resulting
flow, the analysis applies to the general case of dissolution of a fluid33

as well as of a solid layer23 when neglecting porosity changes. This
model is relevant in geothermal settings as well as possible industrial
applications.

We use the Boussinesq approximation to account for buoy-
ancy effects introduced by the concentration dependent density.
The viscosity is assumed to be constant. The solution of the two-
dimensional velocity field is not formulated in terms of the primitive
variables. Instead, we adopt the vorticity-stream function formu-
lation to accurately solve the hydrodynamic field.33,34 The main
advantage of such a formulation is that pressure is eliminated, there-
fore no special numerical treatment is required to circumvent the
stability restrictions imposed by the coupling between velocity and

pressure. In this work, we will denote all dimensional variables with
an asterisk (∗), while the corresponding non-dimensional variables
will be denoted without an asterisk.

We consider a 2D incompressible flow in a layer of porous
medium described by Darcy’s law, and driven by density differences
associated to the (dimensional) concentration of a solute c∗, dissolv-
ing at the upper interface as can be seen in Fig. 1. The layer is inclined
with an angle θ with respect to the horizontal line, and the coordi-
nated system is conveniently rotated such that the x and y directions
coincide with the tangent and normal directions of the imperme-
able interfaces. The considered numerical domain is a rectangle with
width L∗

x and height L∗
y . The driving mechanism of the flow is the

body force (per unit volume) associated to gravity g∗ and to the den-
sity of the fluid as b∗ = g∗ρ∗, where g∗ = (g∗ sin θ , g∗ cos θ) is the
gravity vector [see Fig. 1(b)]. Considering the Boussinesq approxi-
mation, the dimensional flow velocity u∗ = (u∗, v∗) can be written
as follows:

u∗ = κ∗

µ∗
[

−∇∗p̂∗ + (ρ∗ − ρ∗
0 )g

∗ + ρ∗
0 g∗] , (1)

where ρ∗
0 is the reference bulk density usually taken as the bulk den-

sity of the host phase and p̂∗ is pressure. Considering an isotropic
medium and a pressure decomposition such as p̂∗ = p∗ + p∗

H with
components p∗ representing the reduced pressure, or pressure
deviation, and p∗

H as the hydrostatic pressure, one can define ∇∗

p∗
H = ρ∗

0 g∗, and, therefore, the velocity u∗ is given by

u∗ = κ∗

µ∗
(

−∇∗p∗ +1ρ∗g∗) , (2)

FIG. 1. Schematic diagram of the numerical domain�∗ with an interface inclined
by an angle θ with respect to the horizon. (a) A representative sketch of a pos-
sible physical large domain highlighting the unit cell employed in the numerical
approach. (b) Detail of a periodic unit cell tile. Boundary conditions are shown for
the velocity u∗ and concentration c∗ of the dissolving solute at the bottom 0∗

b and
top 0∗

t . Periodic boundary conditions are applied to the sidewalls 0
∗
p . Note that

gravity is inclined with respect to the chosen reference frame and the z axis is
pointing into the page, therefore positive vorticity is clockwise.
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where κ∗ is the permeability of the porous medium and 1ρ∗ = ρ∗

− ρ∗
0 = ρ∗

0α
∗
c c∗. The solutal expansion coefficient of the solute is

α∗
c = (1/ρ∗

0 )∂ρ
∗/∂c∗. Hence, the Darcy law takes the form

u∗ = κ∗

µ∗
(

−∇∗p∗ + ρ∗
0α

∗
c c∗g∗) . (3)

Considering the incompressibility condition and the concen-
tration transport equation, the dimensional equations can now be
written as follows:

∇∗ · u∗ = 0, (4)

∇∗p∗ = −µ
κ

u∗ + ρ∗
0α

∗
c c∗g∗, (5)

φ
∂∗c∗

∂t∗
+ (u∗ · ∇∗)c∗ = φD∗∇∗2c∗, (6)

where φ is the porosity of the porous medium and D∗ is the diffu-
sion coefficient of the solute. The dimensionless form of Eqs. (4)–(6)
can be found by choosing the pressure, hydrodynamic velocity, time,
and length scales according to Ref. 11 as given by

p∗
c = µ∗D∗φ

κ∗ , u∗
c = 1ρ∗

0 g∗κ∗

µ∗ , t∗c = φ2D∗

u∗2

c

, l∗c = φD∗

u∗
c

. (7)

The solubility c0 of the solute in the host phase is used
as the characteristic concentration, and 1ρ∗

0 = ρ∗
0α

∗
c c∗

0 . Defining
u = u∗/u∗

c , g = g∗/g∗, c = c∗/c∗
0 , y = y∗/l∗c , t = t∗/t∗c , and

ρ = (ρ∗ − ρ∗
0 )/1ρ

∗
0 , the dimensionless equations are finally written

using the definition of the material derivative Dc/Dt as

∇ · u = 0, (8)

u = −∇p + cg, (9)

Dc

Dt
= ∇2c. (10)

Considering a two-dimensional flow in the x − y plane, the
vorticity field ω = ∇ × u, in general, has a nonzero z-component,
ωz, a function of the concentration gradient and of the inclination
angle θ ,

ωz = ∂v

∂x
− ∂u

∂y
= cos θ

∂c

∂x
− sin θ

∂c

∂y
. (11)

The dimensionless equations describing the dynamics in the
flow field governing the evolution of the concentration field c close
to the inclined surface are complete with the definition of the Pois-
son equation for the stream function ψ and the transport of the
solute c as follows:

∇2ψ = −
(

cos θ
∂c

∂x
− sin θ

∂c

∂y

)

, (12)

Dc

Dt
= ∇2c, (13)

where ψ is the dimensionless stream function [u = (u, v)
= (∂ψ/∂y, −∂ψ/∂x)]. Equation (12) is the vorticity equation with

Darcy law and Boussinesq approximation, and Eq. (13) is the con-
centration transport equation.

The simplifications adopted in this work, such as two-
dimensional flow, isotropic, and homogeneous porous media, may
bear important consequences in the system dynamics, and the
present results may considerably vary if changes in these properties
of the medium are taken into account. For instance, the anisotropy
could change substantially the onset time and the dissolution rate at
the convective regime, as shown in Paoli et al.,35 for the horizontal
case θ = 0.

A. Boundary conditions

To complete the definition of the problem, appropriate bound-
ary and initial conditions need to be specified. The proposed math-
ematical problem is a model problem, where a very long (infinite)
tilted layer of a porous medium is limited by two parallel non-
deformable impermeable surfaces, as shown in Fig. 1(a). The parallel
impermeable surfaces are considered to be planar and very large
(infinite). We further simplify the problem considering a represen-
tative length in the downslope x-direction, Lx, and the analysis is
performed on this representative periodic (finite) domain. On the
edges of this representative domain, the Periodic Boundary Condi-
tions (PBCs) are applied. PBCs are often chosen to approximate a
large (infinite) domain by using a small part, or tile, called a unit
cell, in computer simulations and mathematical models of physical
problems in infinite domains, such as homogeneous turbulent and
porous media flows.36–39

Boundary conditions are analogous to the case of the flat and
horizontal interface, with null normal component of the velocity
(v) at the interface (0t : y = 0) and at the bottom (0b : y = Ly), and
periodic boundary conditions at the sides (0p : x = 0 and x = Lx).
For concentration, boundary conditions are c(x, y) = 1 | (x, y) ∈ 0t,
n · ∇c = 0 | (x, y) ∈ 0b, and periodic boundary conditions are used
at the sides (0p : x = 0 and x = Lx). The corresponding boundary
conditions for the stream function are ψ = 0 at the top (0t) and at
the bottom (0b) interfaces, and periodic boundary conditions at the
sides (0p). Thus, we are assuming null average flow rate. No explicit
boundary conditions for the vorticity are required.

The only two nondimensional parameters of the problem are
Lx and Ly. The parameter Ly can be properly identified as the
(concentration–diffusion) Rayleigh–Darcy number,

Ray = Ly =
L∗

yKg1ρ

µφD∗ , (14)

which can be interpreted as the ratio between the concentration
boundary layer thickness at unit time and the thickness of the porous
slab.

Analogously, the nondimensional width, Lx, can be defined as

Rax = Lx = L∗
xKg1ρ

µφD∗ . (15)

It can be noted that the problem may be described equivalently
by the Rayleigh number Ray and the aspect ratio ar,

ar = L∗
x

L∗
y

= Rax

Ray

. (16)
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As in the present analysis, the imposition of periodic bound-
ary conditions is, in effect, simulating a narrow porous slab which is
tilted at an angle to the vertical, the width Lx must be sufficiently long
to contain a number of fingers which allows for the computation
of meaningful average profiles. Appropriate initial conditions are
also required and are defined as u, v,ωz, c = 0 in� and c(x, y, t = 0)
= 1 + 2(ξ − 1/2)× 10−3 at the interface (0t), where ξ is a random
number in the range [0, 1].

III. BASE STATE SOLUTION

The base state of the problem, here denoted by c̄, ū, and v̄, is the
time dependent solution of Eqs. (12) and (13) of the hydrodynamic
and concentration fields, in the absence of perturbations and consid-
ering that the domain is infinite in the x-direction. This is equivalent
to a fully developed assumption for the base flow and base concentra-
tion field in the x-direction, which implies that the base state satisfies
∂ c̄/∂x = 0, ∂ ū/∂x = 0, and ∂ v̄/∂x = 0. This is consistent with an
infinite slab in the x-direction, thus reducing the base state to a one-
dimensional, transient problem. Hence, our analysis is restricted to
the case of a developed flow, “infinite domain,” or far from the edges
of a very long domain.

The base state satisfies the continuity equation, therefore,

∂ v̄

∂y
= −∂ ū

∂x
= 0. (17)

Hence, v̄ = v̄0 is a constant. Considering that the boundary condi-
tion at the upper surface is null normal component of the velocity,
the y-component of the velocity of the base state is null, v̄ = 0. The
convective terms in the concentration transport equation are

ū · ∇ c̄ = ū
∂ c̄

∂x
+ v̄

∂ c̄

∂y
. (18)

Considering that the base state velocity has no component in the
y-direction (v̄ = 0), as shown above, and that the base concentration
profile is not a function of x (∂ū/∂x = 0), as assumed by the infinite
slab hypothesis, therefore canceling the advection nonlinear terms,
the concentration must satisfy the equation

∂ c̄

∂t
= ∂2c̄

∂x2
+ ∂2c̄

∂y2
. (19)

Again, considering that ∂ c̄/∂x = 0, the first term on the right-
hand side of Eq. (19) vanishes, and the base state concentration field
must satisfy

∂ c̄

∂t
= ∂2c̄

∂y2
. (20)

A. Infinite Rayleigh number (Ray → ∞)

In the case of short times or very thick slabs, the domain can
be considered semi-infinite in the y direction, and the appropriate
boundary conditions are

c̄(y = 0, t) = 1, (21)

c̄(y → ∞, t) = 0, (22)

and initial conditions

c̄(y = 0, t = 0) = 1, (23)

c̄(y > 0, t = 0) = 0. (24)

The solution of Eq. (20), subject to boundary conditions
Eqs. (21) and (22) and initial conditions Eqs. (23) and (24), is
given by

c̄(y, t) = 1 − erf

(

y

2
√

t

)

. (25)

Thus, the diffusive transient base concentration profile c̄(y, t)
is not affected by the inclination of the slab and is identical to the
classical horizontal slab (θ = 0), regardless of the slab inclination
angle θ . The base velocity can be obtained from either Eq. (9) or
from the stream-function equation (12). Using this last approach,

∂2ψ̄

∂y2
= sin θ

∂ c̄

∂y
. (26)

Hence,

∂ψ̄

∂y
= ū(y, t) = sin θ c̄(y, t)+ f(x). (27)

Using the condition that ∂ ū/∂x = 0, f(x) = ū0, an arbitrary con-
stant. Therefore, the x-velocity component is given by

ū(y, t) = sin θ

[

1 − erf

(

y

2
√

t

)]

+ ū0. (28)

Without loss of generality, the constant ū0, corresponding to the
average flow across the slab, can be chosen as null or any arbitrarily
value, depending on the desired problem of interest. For instance, if
an average velocity ūA is specified,

ūA = 1

Ly

∫ Ly

0

(

sin θ

[

1 − erf

(

y

2
√

t

)]

+ ū0

)

dy; (29)

therefore,

ū0 = ūA − 1

Ly

∫ Ly

0

sin θ

[

1 − erf

(

y

2
√

t

)]

dy. (30)

In general, taking ū0 = 0 introduces a small average mass flux
across the slab that is negligible in the case of small diffusive times
or large values of Ly. Two different solutions, corresponding to dif-
ferent values of ūA, can be interpreted as the same solution viewed
from moving frames with different velocities. Choosing the solution
with ūA = 0 is consistent, for instance, with the case of a very long
slab with one or both of the (far away) edges closed by impermeable
walls, as viewed from an observer not moving with respect to the
slab.

On the other hand, choosing a constant average background
velocity in the layer as the solution with ūA = CA, where CA is
an arbitrary constant, is consistent with the same previous prob-
lem viewed by an observer with velocity ūobserver = −CA, or with
an observer with ūobserver = 0, but for a problem where there is a
net flow rate corresponding to an average velocity ūA = CA. Hence,
the same mathematical problem and its respective solution can be
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interpreted as different physical phenomena, just by applying a sim-
ple change of variables, and the corresponding change in average
pressure gradient. Indeed, adding or subtracting an arbitrary veloc-
ity represents different physical phenomena, that a linear Darcy’s
model may not be appropriate to describe.

For simplicity, in the linear stability analysis, for infinite Ray,
we will consider that Ly → ∞; hence, ū0 = 0.

There is thus a base drift velocity ū induced by the base concen-
tration profile that increases with the inclination angle θ . Therefore,
the x-velocity component is given by

ū(y, t) = sin θ

[

1 − erf

(

y

2
√

t

)]

. (31)

It can be observed that the base states c̄, ū, and v̄, here obtained
for a semi-infinite domain in the y direction, are consistent with
the boundary conditions of the periodic “tile” that were described
in Sec. II A. Furthermore, the base state solutions given by either
Eq. (28) or Eq. (31) imply that, for θ 6= 0, there is always a nonzero
base velocity, and the no-flow is an impossible condition.

B. Finite Rayleigh number (Ray � 4
√
t )

In case of longer times, or thin slabs, the domain cannot be
considered semi-infinite in the y direction, and the appropriate
boundary conditions are

c̄(y = 0, t) = 1, (32)

∂ c̄

∂y
(y = Ray, t) = 0, (33)

and initial conditions,

c̄(y = 0, t = 0) = 1, (34)

c̄(y > 0, t = 0) = 0. (35)

The solution of Eq. (20), subject to boundary conditions
Eqs. (32) and (33) and initial conditions Eqs. (34) and (35), is given
by17

c̄(y, t) = 1 +
∞

∑

n=1

4

(2n − 1)π
e−[(2n−1)π/(2Ray]2t sin

(

2n − 1

2Ray

πy

)

(36)
and

ū(y, t) = c̄ sin θ + ū0, (37)

where the same arguments regarding ū0 also apply. As mentioned
in Ref. 17, Eq. (25) is a good approximation of Eq. (36), as long as
Ray ≥ 4

√
t.

Once the cell is tilted, the critical porous Rayleigh number for
convection is zero, in the sense that there is always flow in the base
state, as shown in Eq. (37). Previous studies, for example, Weber,40

Sen et al.41 and Moya et al.,42 have addressed the base state flow for
tilted rectangular porous material. Moya et al.42 considered a rectan-
gular domain with isothermal boundary conditions on two opposite
sides and the other two are thermally insulated (a finite “two-sided”
system) and found that the earliest mode of convection is that of a

recirculating flow. For large aspect ratios, this takes the form of a
countercurrent exchange flow. In the present work, considering a
very large (infinite) aspect ratio and transient “one-sided” system, a
comparable base state is also found.

The base state may or may not be a stable solution with regard
to small perturbations, and, therefore, may not be always observable
in actual physical situations. The question of the base state stability
with regard to small perturbations will be addressed in Sec. IV.

IV. LINEAR STABILITY ANALYSIS OF THE BASE STATE

A. LSA formulation

The linear stability analysis (LSA) consists in adding perturba-
tions to the base state solution characterized by the concentration
and hydrodynamic profiles [Eqs. (25) and (31)] as

(

c
ψ

)

=
(

c̄

ψ̄

)

(y, t)+





c̃

iψ̃

k



 (y) exp(σ t + ikx), (38)

where i2 = −1, k is the wavenumber of the perturbation, and σ is
the growth rate. The current approximation considers a sequence of
quasi-steady states (as has been considered in numerous previous
examples) and is similar to the approach taken by Riaz et al.21 More
sophisticated approaches have recently been used, which perturb
the self-similar diffusive base state using the self-similar variables
(Slim and Ramakrishnan17 or Nijjer et al.38). The linearized evolu-

tion equations for the disturbances c̃ and ψ̃ , considering that the
base state evolution is much slower than the perturbation growth,
are, thus,

ψ̃yy − k2ψ̃ = −
(

k2 cos θ c̃ + ik sin θ c̃y

)

, (39)

σ c̃ + c̄yψ̃ + ikūc̃ = c̃yy − k2c̃. (40)

Boundary conditions for the concentration and stream-

function perturbations c̃ and ψ̃ are

y = 0 : c̃ = 0, ψ̃ = 0, (41)

y → ∞ : c̃ → 0, ψ̃ → 0 (42)

for semi-infinite domains or

y = 0 : c̃ = 0, ψ̃ = 0, (43)

y = Ly :
dc̃

dy
= 0, ψ̃ = 0 (44)

for finite domains.
Upon defining Dn = dn/dyn, we rewrite Eq. (39) as

(

D2 − k2
)

ψ̃ = −
(

k2 cos θ c̃ + ik sin θ Dc̃
)

, (45)

and inversely,

ψ̃ = −
(

D2 − k2
)−1 (

k2 cos θ c̃ + ik sin θ Dc̃
)

. (46)

Likewise, Eq. (40) is rewritten as

σ c̃ + c̄yψ̃ + ikūc̃ =
(

D2 − k2
)

c̃. (47)
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Upon replacing ψ̃ from Eq. (46) in Eq. (47) and rearranging
terms, we arrive at the equation

[

ikū − c̄y

(

D2 − k2
)−1 (

k2 cos θ + ik sin θD
)

−
(

D2 − k2
)]

c̃ = −σ c̃, (48)

or using Eq. (27),

{[

−ik sin θ c̄ + c̄y

(

D2 − k2
)−1 (

k2 cos θ + ik sin θD
)

]

+
(

D2 − k2
)}

c̃ = σ c̃. (49)

Equation (49) is an eigenvalue–eigenfunction problem to find
pairs (σ , c̃), for each value of θ , k and a given t, which defines c̄.
The most unstable mode corresponds to the eigenfunction with the
eigenvalue of greatest real part, σR. The phase velocity of the pertur-
bations is associated to the imaginary part of the eigenvalue, σI, by
vp = −σI/k. Hence, the angular frequency is −σI.

Considering the base state solution obtained from Eqs. (20)
and (27) for a given time, a LSA can be performed using Eq. (49)
to obtain dispersion curves giving the growth rate of the per-
turbations, as well as the drift velocity, as a function of the
wavenumber.

B. Discretization of the linearized equations

The eigenvalue problem in Eq. (49) is solved using the
Chebyshev spectral collocation method39,43,44 where the solution
of the differential equation and its boundary conditions are
expanded as a finite series in the Chebyshev polynomials of the
form

φ(ζ ) ≈ φN(ζj) =
N

∑

k=0

φ̂kTk(ζj), j = 0, 1, . . . , N, (50)

T0(ζ ) = 1, T1(ζ ) = ζ , Tk+1(ζ )− 2yTk(ζ )+ Tk−1(ζ ) = 0,
(51)

where φ̂k represents the unknown coefficients and ζj are the colloca-
tion points.45

For finite domains, we employ the Chebyshev–Gauss–Lobatto
(CGL) collocation points on the interval [−1, 1] defined by

ζj = cos(jπ/N), j = 0, 1, . . . , N. (52)

The CGL interpolation derivative w of a function h can be
represented in matrix form as

w = dv

dζ
= DNh. (53)

The entries (DN)ij can be computed by differentiating the char-
acteristic Lagrange polynomials Ll(ζ ) of degree N, which are 1 at ζl

and 0 at all the other collocation points, and are given by

(DN)00 = 2n2 + 1

6
, (54)

(DN)NN = −2n2 + 1

6
, (55)

(DN)jj = −ζj

2(1 − ζ 2
j )

, j = 1, . . . , N − 1, (56)

(DN)ij = ci

cj

(−1)i+j

ζi − ζj

, i 6= j, and i, j = 1, . . . , N, (57)

where

ci =
{

2, i = 0 or N,
1, otherwise.

(58)

The CGL collocation points are mapped to the required
domain using a smooth monotonic transformation map φM.46–48 For
infinite domains, the linear map φL is employed,

y = φL(ζ ) = Ly

2
(1 + ζ ), (59)

where Ly is the domain size in the y direction.
For semi-infinite domains, the Chebyshev–Gauss–Radau

(CGR) collocation points49 on the interval [−1, 1) are defined by

ζj = cos(2 jπ/(2N + 1)), j = 0, 1, . . . , N. (60)

The entries (DN)ij are given by

(DN)00 = (n + 1)n

3
, (61)

(DN)jj = − 1

2(1 − ζ 2
j )

, j = 1, . . . , N, (62)

(DN)ij = ci

cj

(−1)i+j

ζi − ζj

, i 6= j and i, j = 1, . . . , N, (63)

where

ci =







2, i = 0,
√

2

1 + ζi

, otherwise.
(64)

and the algebraic map onto a half-open interval φA : y ∈ [0, ∞)

→ ζ ∈ [−1, 1) is defined as

y = φA(ζ ) = LA

1 + ζ

1 − ζ
. (65)

The value of the constant LA = 1 × 105 is chosen such that the
mapping produces the smallest error over the range of interest.

Substituting Eq. (53) into Eq. (49), requiring that it be satisfied
at the N − 1 internal collocation points, and applying the appropri-
ate conditions at the two boundaries, we obtain (N + 1)× (N + 1)
algebraic equations that form the discrete eigenvalue problem,

Mc̃ = σ c̃. (66)

Here, M is the discrete analog of the left-hand side (LHS)
operator in Eq. (49). The eigenvalue σM, with largest real part,
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corresponds to the most unstable mode, which is the most rele-
vant one. The algorithm was implemented in Julia Programming
Language, which provides multithreading for computational per-
formance. We employed N + 1 = 1024 collocation points, and
three domain lengths: Ly → ∞ to represent a semi-infinite layer,
Ly = 12 000 to represent a deep slab, and the case of Ly = 3000
to illustrate the effect of a shallow slab at long times. Results are
presented in Sec. IV C.

C. LSA results

1. Infinite Ray

In the case of infinite Ray, Fig. 2 shows the dispersion curves of
normal mode perturbations of the base state, numerically obtained
for several times, in the case of an horizontal interface [θ = 0—see
Fig. 2(a), solid lines] compared to one inclined interface case
[θ = π/16—see Fig. 2(b), dashed lines]. The real part of σ
[Fig. 2(a)] shows the growth (σR > 0) or decay (σR < 0) rate of the
perturbations.

Figure 2(a) shows results for θ = 0 that reproduce previous
works.11 In this case, it can be seen that all perturbations are damped
for t < 55.59. A first perturbation becomes marginally stable
(σR = 0) with a wavenumber k = 0.0583, at t = 55.59 (solid green
curve). The characteristic time tc and the respective growth rate
σRc are defined as the smallest time and growth rate for which
σRctc > 1, such that the amplification factor exp(σRctc) of the per-
turbation at the characteristic tc is of order unity, as performed by
Trevelyan et al.50 and others.11 From this definition, we find the

following characteristic values: σRc = 3.96 × 10−3, tc = 252.86, and
k = 6.192 × 10−2.

For the case of the inclined interface, θ > 0, all curves
are displaced to the left and downward, showing an increase
in the stability of the flow, reducing the maximum growth
rate and the maximum amplified wavenumber. Figure 2(b)
shows the effect of the inclination on the phase velocity
vp = −σI/k. It can be seen that for the horizontal interface,
θ = 0, the perturbations have zero phase velocity. On the other
hand, for the inclined interface, θ = π/16, the perturbation phase
velocity is positive and increases with wavenumber k and time t.

The dispersion curves for various angles of inclination at
t = 252.86 are shown in Fig. 3. The effect of the inclination can
be seen to gradually decrease the maximum amplification, the
wavenumber of maximum amplification, and the maximum ampli-
fied wavenumber as the inclination angle increases. For θ > 5π/31,
perturbations of all wavenumbers are attenuated. A very clear effect
of the inclination can also be seen on the imaginary part of the
eigenvalue, which gives rise to the drift velocity of the perturbations
[Fig. 3(b)]. For θ = 0, the eigenvalue is real, and, therefore, there is
no drift velocity. However, as θ departs from zero, σI and the drift
velocity, −σI/k increase. The phase velocity increases almost pro-
portionally to the maximum base state velocity ūmax = sin θ ; hence,
the curves for various interface inclination angles almost coincide
when the phase velocity is normalized by sin θ .

Figure 4 shows the results for large k. Figure 4(a) features
the decay rate (−σR) for different interface angles, showing that,
for large k, all perturbations decay approximately at the same rate,
regardless of the inclination angle. Figure 4(b) shows that the drift

FIG. 2. (a) Dispersion curves giving the real part σR of normal mode perturbations of the base state as a function of their wavenumber k numerically obtained for several
times. Solid lines, θ = 0, dashed lines, θ = π/16. For θ = 0, all perturbations are damped for t < 55.59, and a bifurcation occurs at t = 55.59 when the first perturbation
becomes marginally stable with a wavenumber k = 0.0583. For θ = π/16, all the curves are slightly displaced to the left and downward. (b) Dispersion curves showing
the phase velocity, vp = −σI/k, (imaginary part) of normal mode perturbations of the base state as a function of their wavenumber, numerically obtained for several times.
Solid lines, θ = 0, dashed lines, θ = π/16. All perturbations are stationary for θ = 0. For θ = π/16, the perturbation phase velocity increases with wavenumber k and
with time t.
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FIG. 3. (a) Dispersion curves giving the real part σR of normal mode perturbations as a function of their wavenumber k for several inclination angles θ at t = 252.86.
(b) Phase velocity of the perturbations normalized by the maximum base state velocity, vp/ūmax = −σI/(k · sin θ) as a function of the wavenumber obtained for several
inclination angles θ and t = 252.86. The perturbations are stationary for θ = 0. For θ > 0, the perturbation phase velocity increases with angle θ and with wavenumber k;
hence, the normalized curves for various angles almost coincide.

velocity divided by sin θ approaches asymptotically the value 1,
whatever the value of θ . This result is expected since larger k modes
are restricted to regions closer to the interface, where the nondimen-
sional mean concentration is unitary, and the flow velocity is sin θ .

On the other hand, smaller k modes penetrate deeper away from the
interface where the mean flow velocity is smaller.

Figure 5 shows the neutral stability curves (σR = 0) in the k × t
plane of normal mode perturbations of the base state, numerically

FIG. 4. Dispersion curves of normal mode perturbations of the base state, numerically obtained for several inclination angles θ and t = 252.86, for large values of
wavenumber k: (a) real part and (b) imaginary part—showing the phase velocity normalized by the maximum base state velocity, vp/ūmax.
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FIG. 5. (a) Neutral stability curves (σR = 0) in the k × t plane of normal mode perturbations of the base state, numerically obtained for several inclination angles θ . The
dashed line is the approximation t ≈ 1/(πk4) for the short-wave cut-off, as given by Slim and Ramakrishnan17 for θ = 0. For θ ' π/6, the neutral stability curve collapses

toward the approximate curve t ≈ 1/(π(4k/7)2) (dashed-dotted line) and disappears completely for θ ' π/5. (b) Level contours of σRt = 1, as performed by Trevelyan

et al.50 and others,11 showing that the lower branch of unstable modes seen for σR = 0 (left) is dynamically not relevant. (a) σR = 0, (b) σR t = 1.

obtained for several inclination angles θ . The results for θ = 0 are
comparable to the results presented by Slim and Ramakrishnan17 for
the impermeable upper boundary case. The dashed line is the curve
t ≈ 1/(πk4) that can be seen to approximate the limit of stability
for the short-wave cut-off, as given by Slim and Ramakrishnan17 for
θ = 0.

It can be observed that the curves are displaced to the right
and downward as the angle is increased, getting progressively
apart from the short-wave cut-off curve derived for θ = 0 [see in
Fig. 5(a)]. Hence, the fingering instability is expected to occur at
later times and with smaller wavenumbers as the angle is increased.
Also, in general, as the inclination angle θ is increased, there is
a reduction on the range of wavenumbers with σR > 0, up to
θ = π/5, where no growing modes were observed. For angles close
to θ = π/12, a peculiar behavior is observed for times close to
t = 5 × 103, where two separate ranges of unstable wavenumbers
are present. The slope of the upper limit of stability is increasingly
steeper as θ increases, until, for θ ' π/6, the neutral stability curve

collapses to the approximate curve t ≈ 1/(π(4k/7)2) [see dashed-
dotted curve in Fig. 5(a)]. The physical reasoning on why the growth
curves are non-monotonic at times 103 < t < 104 (for example),
that is, why are there intermediate wavenumbers which are sta-
ble, while larger and smaller wavenumbers are unstable, will be
addressed in Sec. IV D, that deals with the eigenmodes of the LSA.
Figure 5(b) shows the level contours of σRt = 1, as performed by
Trevelyan et al.50 and others.11 These curves are more representa-
tive of the dynamically relevant modes, which have a sufficiently
large growth rate to actually become of finite amplitude and appear
in a significant manner. It can be observed that, considering this

criterion, there are no significant modes on the lower branch seen
in Fig. 5(a).

2. Finite Rayleigh number (Rax and Ray ) effects

In the LSA, Rax is given by a periodic unit cell with
Rax = 2π/k. When performing direct numerical simulations, it is
necessary to keep a domain with at least Lx = Rax ≥ 2π/k to accu-
rately capture the behavior of modes associated with wavenumber k
and simulate a virtually infinite domain. We must stress that peri-
odic conditions in direct numerical simulations cause mode restric-
tions, thus not reproducing an infinite domain for large wavelength
perturbations.

The effect of finite Ray is somewhat similar, in the sense that
as the wavelength of the perturbation increases, so does the depth of
the eigenmodes. The domain depth size Ly = Ray ≥ 2π/k for the
domain to be considered “deep.” In case Ray � Rax, we will be
analyzing a “shallow” domain. The effect of a finite depth domain
is illustrated in Fig. 6, which reproduces the same results pre-
sented in Fig. 5(b), however, considering two shallow domains, with
Ly = Ray = 12 000 and Ly = Ray = 3000. The comparison shows
that long wave perturbations are more stable in the shallow domains
than in the deep domains, and eventually all unstable modes tend
to be suppressed for long times. The finite domains show a critical
time after which no unstable perturbations are present considering
the σR t > 1 criterion, and this critical time is smaller for smallerRay

numbers.
The effect of the inclination is not just equivalent to a sys-

tem with effective Rayleigh number Ra′
y = Ray cos θ , but will
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FIG. 6. Level contours (σR t = 1) in the k × t plane of normal mode perturbations of the base state, numerically obtained for several inclination angles θ . The dashed line
is the approximation t ≈ 1/(πk4) for the short-wave cut-off, as given by Slim and Ramakrishnan17 for θ = 0. For θ ' π/6, the critical stability curve collapses toward

the approximate curve t ≈ 1/(π(4k/7)2) (dashed-dotted line), and disappears completely for θ ' π/5. (a) For Ray = 12 000, the range of critically unstable modes

decreases for large times until t > 4 × 108, when no unstable wavenumbers are found. (b) ForRay = 3000, no critically unstable wavenumbers are found for t > 2 × 107.
(a)Ray = 12 000, (b)Ray = 3000.

additionally suffer from the effect of the phase velocity caused by the
combined effect of the gravity and the mean concentration profile.
This can be observed, comparing Figs. 5(b) and 6 where the effect of
the inclination is to reduce the range of unstable wavenumbers and
delay the onset of the instability, while the main effect of the finite
Ray is to suppress the unstable modes at long times.

D. Eigenmodes analysis

For each eigenvalue σ of the stability surface, there is a cor-

responding eigenmode (c̃, ψ̃) that defines the physical effect of the
perturbation. The analysis of some representative eigenmodes is
important to understand some of the features obtained from the
LSA.

The (real) space representation of the eigenmodes can be
obtained from Eq. (38),

(

c′

ψ ′

)

=









c̃

iψ̃

k



 (y) exp(σ t + ikx)



 + C.C., (67)

where C.C. stands for the complex conjugate of the expression
between brackets. The amplitude and phase of the eigenmodes is
arbitrary. However, the relationship between the amplitudes and

phases of c̃ and ψ̃ is not and may help understand the underlying
physics.

1. Horizontal interface

In the case of an horizontal interface, (θ = 0), the real space
representations of the eigenmodes (c′,ψ ′) are symmetric, due to the
absence of any convection effect from the base state, as seen in Fig. 7.

For large k [i.e., k = 5 × 10−2, Fig. 7 (first row)], the most
unstable modes are restricted to the region of the base state con-
centration boundary layer, while for smaller values of k [i.e.,
k = 1 × 10−2, Fig. 7 (second row), and k = 4 × 10−4, Fig. 7 (third
row)] they extend to regions outside the boundary layer.

2. Moderate inclination

In the case of a moderately inclined interface (θ = π/12), the
real space representations of the eigenmodes (c′,ψ ′) are no longer
symmetric, due to the presence of the convection effect from the
base state, as seen in Fig. 8. The associated modes are tilted in the
clockwise direction, with an inclination that varies with k with eigen-
modes associated to k = 1.4 × 10−3, showing a stronger inclination
(see Fig. 8—third row). The larger inclination of the modes may be
associated to a relatively lower growth rate.

However, the inclination of the eigenmodes is not monoton-
ically decreasing with k, showing that for intermediate values (i.e.,
k = 1.4 × 10−3, Fig. 8—third row) the inclination is higher than for
lower values (i.e., k = 4.0 × 10−4, Fig. 8—fourth row). This non-
monotonic dependence of the inclination of the eigenmodes can
be related and give a possible explanation for the non-monotonic
behavior of the stability surface (σR(t, k)) on this region.
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FIG. 7. Case of horizontal interface (θ = 0) at time t = 6.0 × 103 and wavenumber k = 5.0 × 10−2 (row 1), k = 1.0 × 10−2 (row 2), and k = 4.0 × 10−2 (row 3):
(ai ) concentration; (bi ) stream-function eigenmodes; and (ci ) base state solution.

The analysis of the eigenmodes provides a physical reasoning
as to why the growth curves are non-monotonic at times 103 < t
< 104 (for example), namely, why are there intermediate wavenum-
bers which are stable, while larger and smaller wavenumbers are
unstable. A key to the understanding of the suppression mecha-
nism is given by the LSA equations themselves, which show that,
as the layer is inclined, the convection effect due to the base state
is increased, causing the eigenmodes to become tilted, and even-
tually increasing the diffusion effect, decreasing the growth rate of

the modes as the inclination is increased, eventually causing the
dumping of all perturbation modes. One possible way of inter-
preting the non-monotonic results is that, for a given angle and a
certain time, there are shallow modes, mostly associated to large
wavenumbers, and deep modes, associated to small wavenumbers
[see Fig. 5(a)]. Shallow modes are mostly immersed inside the con-
centration boundary layer of the base profile, as can be seen in
Fig. 8 (first row), while deep modes reach largely outside of the
boundary layer (see Fig. 8—fourth row). As the wavenumber is
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

FIG. 8. Case of inclined interface (θ = π/12). Row 1: t = 6.0 × 103 and k = 5.0 × 10−2; row 2: t = 6.0 × 103 and k = 1.0 × 10−2; row 3: t = 4.8 × 103 and
k = 1.4 × 10−3; and row 4: t = 6.0 × 103 and k = 4.0 × 10−4. (ai ) concentration; (bi ) stream-function eigenmodes; and (ci ) base state solution.
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decreased, the modes gradually extend to regions outside of the
boundary layer; thus, intermediate wavenumbers are associated to
intermediate depths (Fig. 8—third row), suffer a stronger effective
shearing effect from the base velocity profile and, therefore, are
more affected by the combined convective–diffusive effects. This
mechanism explains why, at a given time, for large wavenumbers,
there exists a range of shallow modes that is unstable, and for small
wavenumbers, there is a range of deep modes that are unstable, leav-
ing an intermediate range of intermediate modes that are stable. The
range of small wavenumbers deep unstable modes eventually dis-
appears for longer times, which can be attributed to the extension
of the combined convective–diffusive effect to deeper modes as the
time advances. However, these low wavenumber modes have very
small growth rates and they are not critically unstable, as seen in
Fig. 5 and, therefore, not dynamically relevant.

3. Large inclination

In the case of a largely inclined interface, (θ = π/6), the real
space representations of the eigenmodes (c′,ψ ′) are distinctively
sheared, due to the presence of a strong convection effect from the
base state velocity, as seen on Fig. 9. For even larger inclinations
(θ = π/5, for instance), the LSA predicts the absence of unstable
modes, up to t ≤ 1 × 106.

4. Perturbation energy balance

Further understanding on the effect of the inclination on the
stability of the perturbations may be obtained by analyzing the
energy budget of the concentration perturbation eigenmodes energy
|c̃|2. In this section, we will employ ∗ to denote the complex conju-
gate of a general complex number.

Taking Eq. (47), and multiplying by the complex conjugate of
c̃, namely, c̃∗, we obtain

σ c̃c̃∗ =
[(

D2 − k2
)

c̃
]

c̃∗ − c̄yψ̃ c̃∗ − ikūc̃c̃∗, (68)

where the left-hand side (LHS = σ c̃c̃∗) term represents the balance,
the first term on the right-hand side (RHS1 =

[(

D2 − k2
)

c̃
]

c̃∗) is

the diffusion term, the second (RHS2 = c̄yψ̃ c̃∗) term is the produc-
tion of concentration perturbation by the effect of the perturbation
stream function on the base state concentration profile, and the third
(RHS3 = ikūc̃c̃∗) term is due to the shear from the base velocity on
the perturbation.

The real part is given by

σRc̃c̃∗ = real
([(

D2 − k2
)

c̃
]

c̃∗) − c̄y(ψ̃Rc̃R + ψ̃Ic̃I), (69)

and the imaginary part is given by

σIc̃c̃
∗ = imag

([(

D2 − k2
)

c̃
]

c̃∗) − c̄y(ψ̃Ic̃R − ψ̃Rc̃I)− kūc̃c̃∗. (70)

Here, we can recognize the real part of the eigenvalue σR as
the growth rate, and the imaginary part σI, related to the phase
velocity of the perturbation, −σI/k. Employing the polar form in

the complex plane, we can write c̃ = |c̃| exp(iϕc), ψ̃ = |ψ̃ | exp(iϕψ );
thus,

c̄y(ψ̃Rc̃R + ψ̃Ic̃I) = c̄y|ψ̃ ||c̃| cos(ϕψ − ϕc). (71)

Hence, the source of perturbation magnitude squared,
|c̃|2 = c̃c̃∗, depends critically on the relative phases ϕψ − ϕc, being
maximum when the two perturbations are on the same phase.

On the other hand, a glimpse on the effect of the inclination of
the interface on the relative phases is provided by the analysis of the
imaginary part, Eq. (70), where

σIc̃c̃
∗ = imag

([(

D2 − k2
)

c̃
]

c̃∗) − c̄y|ψ̃ ||c̃| sin(ϕψ − ϕc)

− kc̄ sin θ |c̃|2. (72)

From this expression, it can be observed that when θ = 0, the
relative phases difference ϕψ − ϕc is null, and as the inclination
angle θ increases, the relative phase angle will also increase. In other
words, as the inclination angle θ increases, the concentration pertur-
bation and the stream-function perturbation become less correlated,
decreasing the growth rate of the eigenmode.

FIG. 9. Case of inclined interface (θ = π/6) at time t = 6.0 × 103 and wavenumber k = 1.0 × 10−2: (a) concentration; (b) stream-function eigenmodes; and (c) base
state solution.
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Another effect of the inclination can be observed on the pertur-
bation vorticity ω̃,

ω̃ = −(D2 − k2)ψ̃ = (k2 cos(θ)+ ik sin θD)c̃. (73)

Again, from this expression, we can observe that, when θ = 0,
vorticity, the stream function, and concentration perturbations are
perfectly in phase (since all terms are pure real numbers), while as θ
increases the relative phases difference between the stream function
and the concentration perturbations also increases, and, therefore,
the in-phase contribution of the vorticity to the stream function
decreases. In other words, as the inclination angle θ increases, the
concentration perturbation and the stream-function perturbation
become less correlated, decreasing the growth rate of the eigenmode.

We may observe that, even though both mechanisms carry a
similar trend with respect to the effect of the inclination angle θ ,
the two are related to different terms of the equation: the first is
the feedback mechanism that pumps energy onto the concentration
perturbation from the gradient of the base concentration profile by
means of the stream function, and the second is the source term
of the stream function, which feeds directly from the concentra-
tion perturbation. Hence, the effect of the inclination angle of the
interface θ on the growth rate of the modes, σR, is twofold but, in
appearance, the same.

The contributions of the diffusion, production, and shearing
terms in the |c̃|2 budget, along with the relative angle ϕψ − ϕc, for
various inclinations are shown in Fig. 10. The real part budget shows
that the (negative) diffusion term is not greatly influenced, while the

FIG. 10. Budget of the concentration perturbation eigenmodes energy |c̃|2. The left-hand side (LHS = σ c̃c̃∗) term represents the balance, the first term on the right-hand

side (RHS1 =
[(

D2 − k2
)

c̃
]

c̃∗), is the diffusion term, the second (RHS2 = c̄yψ̃ c̃
∗) term is the production of concentration perturbation by the effect of the perturbation

stream function on the base state concentration profile and the third (RHS3 = ikūc̃c̃∗) term is due to the shear from the base velocity on the perturbation. Cases (a) θ = 0,
(b) θ = π/12, and (c) θ = π/6 with t = 6 × 103 and k = 1 × 10−2. (a) θ = 0, (b) θ = π/12, (c) θ = π/6.
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production term decreases, as the inclination angle θ is increased,
until eventually the budget becomes null or negative, for θ > π/5.
The imaginary part budget shows the increasing contribution of the
production term to the imaginary part of the eigenvalue (σI), as the
relative angle ϕψ − ϕc increases.

The behavior shown in this section is representative of pertur-
bations with very small amplitude. In order to analyze the dynamics
of finite amplitude perturbations, we perform a stability analysis
through direct numerical simulations.

V. NUMERICAL SIMULATIONS

A. Formulation

The direct numerical simulation of the nonlinear perturbation
evolution is obtained by the numerical solution of the nonlinear cou-
pled Darcy’s law [Eq. (12)], obtaining ψ , the stream function, and
Eq. (13) for the concentration transport equation. We consider peri-
odic boundary conditions at x = 0 and at x = Lx, and impermeable
walls at y = 0 and at y = Ly, with c = 1 on 0t, and ∂c/∂y = 0 on
0b. The initial conditions are given by u = 0 and c = 0 in � and
c(x, y, t = 0) = 1 + 2(ξ − 1/2)× 10−3 at the interface (0t), where ξ
is a random number in the range [0, 1].

B. Numerical implementation with finite element
method

The governing equations are solved using a finite element
method,32,51 where the differential equations and their boundary
conditions are solved in weak form employing the Galerkin method
with linear triangular elements.

The system of equations is solved in two steps. In the first
one, we obtain the stream function. Velocity components are then
obtained and introduced in the transport equation, which is subse-
quently solved. An LU factorization is applied as a preconditioner to
the matrices and the linear systems and the velocity field from the
stream-function solutions are then solved with the use of GMRES
(Generalized Minimal Residual) solver. The computational imple-
mentation is performed in a C Programming Language in house
code. LU factorization as well as GMRES routines from the PETSc
library are utilized.52 The computational parameters employed in the
simulations are given in Table I.

The chosen value of Ray = 12 000 is sufficiently large to expe-
rience all the phases of convective dissolution (see Slim16). The value
of Rax = 4000 is sufficiently large to capture a significant number
of fingers. The computational parameters (nx, ny, 1t, and ε) were
determined by a convergence study, showing grid independence.

C. Characterization of the fingering structure

Here, we present the characterization procedure of the nonlin-
ear dynamics of the concentration and velocity fields.16,37

Given the bidimensional concentration and velocity fields, we
obtain the averaged profiles in each direction at successive times.
The transverse average concentration profile is defined as

〈c(y, t)〉 = 1

Lx

∫ Lx

0

c(x, y, t)dx, (74)

TABLE I. Nondimensional parameters used in the simulations.

Parameter Simulated value

Rax = Lx Dimensionless width 4 000
Ray = Ly Dimensionless length 12 000
ar Aspect ratio 1/3
nx Number of points along x-direction 801
ny Number of points along y-direction 2 401
nel Number of triangular elements 3 840 000
1x Horizontal uniform spacing 5.0
1y Average vertical spacing 5.0
1t Time step 2.5
t0 Initial time 0.0
tend End time (θ =π /32, π /16 and π /8) 1.0 × 105

tend End time (θ = 0, π /12, π /6 and π /5) 1.7 × 105

ε GMRes tolerance 1.0 × 10−5

〈c(y, t)〉 gathers information about the total amount of dissolved
solute stored in a layer located at a distance y. In the diffusive
regime, it coincides with the analytical solution and in the convec-
tive regime, it indicates which position in the y-direction the fingers
have reached at a given time.

Analogously,

〈u(y, t)〉 = 1

Lx

∫ Lx

0

u(x, y, t)dx, (75)

〈v(y, t)〉 = 1

Lx

∫ Lx

0

v(x, y, t)dx. (76)

From these definitions, substituting in Eq. (9) we observe that

〈u(y, t)〉 = sin θ〈c(y, t)〉, (77)

and that, using the continuity equation,

〈v(y, t)〉 = 0. (78)

The longitudinal averaged profile defined as

〈c(x, t)〉 = 1

Ly

∫ Ly

0

c(x, y, t)dy, (79)

gathers information about the level of interaction between fingers.
The transverse profile allows us to define the mixing length

δL as the distance between the upper interface and the tip of the
finger with larger length. It is evaluated from the transverse aver-
age profile and is given by the minimum y coordinate such that
〈c(y, t)〉 ≥ 0.01, as a function of time. Therefore, the tip of the fin-
gers with larger length is estimated by the y-position where the
average transverse profile is equal to 0.01. In the diffusive regime,
δLdiffusive

= 2
√

t erf−1
(0.99), where t is time.
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FIG. 11. Time evolution of the concentration field at times: 5000, 10 000, 25 000, 40 000, 55 000, 70 000, 85 000, and 100 000. (a) θ = 0, (b) θ = π/12, and (c) θ = π/6.
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FIG. 12. Initial time evolution of the cases with θ = 0, θ = π/32, θ = π/16, θ = π/12, θ = π/8 and θ = π/6, in times: t = 2500, 5000, 7500, and 10 000.

The area under the curve of the transverse profile, S, represents
the amounts of solute dissolved in the host phase as a function of the
time,

S =
∫ Ly

0

〈c(y, t)〉dy. (80)

In the case of the diffusive regime, the area is given by Sdiffusive

= 2
√

t/
√
π .

An important quantity is the dissolution flux F, defined as the
rate at which the solute dissolves through the upper boundary.16,53 It

is computed as

F = 1

Lx

∫ Lx

0

n · ∇c

∣

∣

∣

∣

y=0

dl, (81)

where dl = dx/ny, and ny is the y component of the unit normal vec-
tor. In the case of the diffusive regime, the dissolution flux is given
by Fdiffusive = 1/

√
π t. We remark that in the diffusive regime, there

is no influence of the inclination angle θ on the evolution of the
concentration profile.

We also compute space–time maps of the concentration of the
solute at a fixed distance 1y′ from the upper boundary, saving the
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FIG. 13. (a) Longitudinal and (b) transverse averaged profiles for one realization; and (c) transverse averaged profiles obtained from an ensemble of nine realizations, of the
case with θ = 0 in times: 5000, 10 000, 25 000, 40 000, 55 000, 70 000, 85 000, and 100 000.

concentration along the horizontal direction in time, c(x,1y′, t).
The distance 1y′ was chosen sufficiently small to capture the onset
of the fingers. The chosen value was 1% of the dimensionless height,
which means1y′ = 120.

D. Results

Numerical simulations of the complete non-linear equations
show the time evolution of the fingers for larger times. Figure 11
presents an overall picture of the dynamic evolution of the concen-
trations (blue is c = 0, red is c = 1) when the inclination angle is
varied. Fingers for cases with θ > 0 develop similarly to the case with
θ = 0; however, they tend to drift toward the right, as predicted by
the LSA. Additionally, a delay in the development of the fingers is
visible from the concentration fields.

The time evolutions (Fig. 11) show an onset of fingers evenly
distributed along the horizontal interface (θ = 0) at early times of
evolution. However, a progressive coarsening to three to four main
fingers is observed after t = 55 000.

The merging between fingers is enhanced in the inclined inter-
face cases due to the drifting of the fingers caused by the inclination.
This leads to an early stronger coalescence process in the case of
larger inclinations, around time t = 25 000 in case with θ = π/12
[see Fig. 11(b)].

However, for the inclination θ = π/6, we can observe a delay in
the beginning of the convective regime, where the diffusive regime
lasts for a much longer time, practically up to around t = 100 000,
when the convective regime finally begins to emerge [see Fig. 15(a),
black curve for t = 100 000]. In Sec. V D 6, this case is explored and
discussed for later times.

FIG. 14. (a) Longitudinal and (b) transverse averaged profiles for one realization; and (c) transverse averaged profiles obtained from an ensemble of nine realizations, of the
case with θ = π/12 in times: 5000, 10 000, 25 000, 40 000, 55 000, 70 000, 85 000, and 100 000.
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FIG. 15. (a) Longitudinal and (b) transverse averaged profiles for one realization; and (c) transverse averaged profiles obtained from an ensemble of nine realizations, of the
case with θ = π/6 in times: 5000, 10 000, 25 000, 40 000, 55 000, 70 000, 85 000, and 100 000.

1. Initial time evolution

Figure 12 shows the initial time evolution of the cases with
inclination angles: θ = 0, θ = π/32, θ = π/16, θ = π/12, θ = π/8
and θ = π/6. The figure shows the beginning of the evolution in
the diffusive regime and the transition to the convective regime that

occurs before time t = 5000 for θ = 0, θ = π/32, θ = π/16, and

θ = π/12, before t = 10 000 for θ = π/8, while no transition occurs

until t = 10 000 for the case θ = π/6. Clearly, the interface inclina-
tion retards the convective process for angles of inclination greater
than θ = π/12.

FIG. 16. Space–time maps of the cases: (a) θ = 0; (b) θ = π/12; and (c) θ = π/6. The concentration of the solute along a line at y = 120 is plotted along the horizontal
axis of the figure, and time along the vertical one, increasing from t = 0 at the top, to tend = 100 000 at the bottom.
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2. Transverse and longitudinal averaged profiles

Figures 13–15(a), at left, show the average longitudinal profiles,
〈c(x, t)〉, at successive times, associated to the results presented in
Fig. 11 for inclined interfaces with θ = 0, π/12 and π/6, respec-
tively. These profiles show the time evolution of the horizontal
distribution of the concentration, where we can observe the onset,
fusion, and collapse of fingers.

Figures 13–15(b), at right, show the corresponding average
transverse profiles, 〈c(y, t)〉 at successive times. The profiles give us a
picture of the concentration distribution along the vertical direction.
In the diffusive regime, we recover the analytical solution of this
phase of the evolution. Once convection develops, 〈c(y, t)〉 feature
bumps due to the presence of fingers and the progression is faster
thanks to convection. In Fig. 13(b), the transverse average profile
shows that the fingers reach the bottom before the time t = 100 000.

The transverse averaged profiles for a single simulation on
the Lx = 4000 domain are not sufficient to provide a completely
converged statistical average. To produce more converged pro-
files, we have computed the transverse average profiles over an
ensemble of nine realizations and plotted this smoother average, as
shown in 13–15(c).

The results for θ = π/12 are representative of the effect of
small inclination angles (see Fig. 14), that compared to a horizontal
interface show a reduction of the undulations of the concentra-
tion profile at early times (t = 5000), and better defined fingers at
later times (t = 100 000). A different behavior for θ = π/6 can be
observed, where the diffusive regime lasts for a much longer time,
practically up to around t = 100 000, when the convective regime
finally begins to emerge, as can be seen in Figs. 11(c), 15, and 16(c).

3. Space–time maps

Figure 16 presents the space–time map associated to the
simulations of the cases with θ = 0, θ = π/12, and θ = π/6.

FIG. 17. Mixing length as a function of time of the cases with θ = 0, θ = π/32,
θ = π/16, θ = π/12, θ = π/8, and θ = π/6.

FIG. 18. Area of the averaged transverse profile as a function of time of the cases
with θ = 0, θ = π/32, θ = π/16, θ = π/12, θ = π/8, and θ = π/6.

Concentration is plotted along the horizontal axis of the figure, and
time, along the vertical one, increasing from t = t0 = 0 at the top,
to tend = 100 000 at the bottom. The figure shows the successive
onset of fingers in the boundary layer and the merging of developed
ones. The space–time maps (Fig. 16) show that, as θ is increased,
the drift velocity increases and the number of fingers decreases.
For the case θ = π/6, the instability starts to appear at around
t = 70 000 but grows very slowly until t = 100 000, without any fin-
gering occurrence. Hence, the onset of the perturbations on the
space–time maps appears at times roughly 1.0 × 101 larger than the

FIG. 19. Dissolution flux as a function of time of the cases with θ = 0, θ = π/32,
θ = π/16, θ = π/12, θ = π/8, and θ = π/6.
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FIG. 20. Time evolution of the concentration field for the case with θ = π/6 from time t = 100 000 to t = 170 000.

corresponding times for critical stability as predicted by the LSA
(see Fig. 6). The associated wavenumber k ≈ 4.7 × 10−3 is within
the range of unstable modes for t = 1.0 × 105.

4. Mixing length and area of the averaged transverse
profile as a function of time

Figure 17 shows the temporal evolution of the mixing length
for a horizontal and five inclined interfaces. This figure corroborates
the fact that larger interface inclinations delay the beginning of the
departure from the diffusive behavior. However, after an initial per-
turbation growth, all inclination cases undergo a large increase in the
mixing length that compensates the initial delay, such that at around
t = 15 000 all cases with 0 < θ < π/8 have approximately the same
mixing length. Note that, for θ = π/6, stabilization induces the
recovery of a diffusive growth of the mixing length for much longer
times.

Figure 18 plots the time evolution of the total amount of solute,
for a horizontal as well as inclined interfaces obtained, as described
in Sec. V C. The plots show that systems with inclined interfaces with
small angles, 0 < θ < π/12, dissolve almost the same amount of
solute, up to t = 10 000, while inclined interfaces with larger angles
suffer a reduction on the area at these early times due to the delay
on the convective regime. However, for larger times, inclined inter-
faces behave in a slightly different manner, increasing from θ = 0
to a maximum amount for the θ = π/12 angle, and then decreasing
for larger angles.

We must remark that the above averaged quantities are
computed taking Lx as reference, which is the length along the
(inclined) interface. If we take as reference the horizontal length
Lh = Lx/ cos θ , the amount of solute will be increased by a factor
1/ cos θ . Hence, in cases with small angles, the inclination favors a
larger amount of solute to be transferred to the porous medium.

FIG. 21. Space–time map of the case with θ = π/6 at long times.
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5. Dissolution flux through of the upper boundary

The dissolution flux, F, defined as the rate at which the
solute dissolves through the upper boundary, provides an additional
insight about the effect of the interface inclination on the amount
of solute dissolved in the porous medium. Figure 19 shows the flux
as a function of time for the considered horizontal and inclined
interfaces. It can be observed that, for all angles, the wall flux has
initially a diffusive behavior, closely following the theoretical curve
Fdiffusive = 1/

√
π t, until the emergence of the convective regime.

This figure confirms the result given in Fig. 18, i.e., inclined inter-
faces lead to a delay in the onset of the convective regime. For small
angles, the flux reaches, after a transition time, a convective regime
plateau which is not very sensitive to small angle variations. For
angles larger than θ = π/6, the convective regime is completely sup-
pressed for the range of analyzed times and the wall flux closely
follows the characteristic diffusive decreasing trend of Fdiffusive up to
t = 1 × 105. The θ = π/6 case will be further analyzed in Sec. VD 6.

6. Results of the case with θ = π/6, for t≥100000

In this subsection, we will address the long-time behavior for
the case θ = π/6 and compare to horizontal (θ = 0) and small
inclination (θ = π/12) cases. This will allow to stress that the con-
vective regime develops much later for larger inclinations and will
be eventually suppressed by angles θ > π/5.

Figure 20 shows the evolution of fingering, at long times, from
t = 100 000 up to t = 170 000, for the case of largest slope consid-
ered, θ = π/6. For this case, fingers develop only after a substantial
growth of the concentration boundary layer and accumulation of the
solute at the top of the domain. This result is consistent with previ-
ous findings that large interface inclinations cause inhibition of the
growth of disturbances.32

The same qualitative suppression mechanism has been
observed on “two-sided” systems in previous works.28,29 In particu-
lar, Wen and Chini28 also report a dramatic change on the dynamics
of the “two-sided” system for angles θ > 30, with the complete
breakdown of the columnar flow and transition to a large-scale
traveling-wave convective roll state, and significant reduction of the
transport.

The space–time map for θ = π/6 (see Fig. 21) clearly depicts
the very slow transition and delayed onset of the convective regime.
In agreement with the LSA results, perturbations start to grow at
much later times and grow very slowly until a first finger struc-
ture appears at approximately t = 100 000, followed by a second one
after a large time interval. This behavior is also consistent with the
inhibition of the growth of perturbations observed in the case of
large interface inclinations in the LSA. In fact, for θ = π/6, fingers
develop only at much later times.

Once individual fingers detach from the boundary layer, they
descend at an angle of approximately π/6 with respect to the surface
normal when they do not interact with other fingers. Addition-
ally, each descending finger drags the boundary fluid layer on its
root, causing a depletion of solute, an efficient transport to the
deeper layers, and a sharp increase in mixing length [see Fig. 22(a)],
total solute amount [area in see Fig. 22(b)], and flux at the surface
[see Fig. 23(a)]. The boundary fluid depletion occurs at much ear-
lier times in cases with smaller or zero inclination angle. However,
the boundary layer depletion is less obvious to visualize from the
concentration fields (see Fig. 20), but since it is much more fre-
quent and effective, it results in a pronounced increase in the flux.
The long-time behavior of the dissolution flux through the upper
boundary, Fig. 23(a), shows that the flux closely follows the diffusive
flux Fdiffusive up to the transition to the convective regime, that for
θ = π/6 occurs at much later times (around t ≈ 1 × 105).

FIG. 22. (a) Mixing length and (b) area of the averaged transverse profile, both as a function of time for the case with θ = π/6 at long times, compared to the diffusive
regime, the θ = 0, and θ = π/12 cases.
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FIG. 23. Dissolution flux through of the upper boundary: (a) for the case with θ = π/6 compared to the diffusive regime, the θ = 0, and θ = π/12 cases, and (b) ensemble
average of 9 realizations, for θ = 0,π/32,π/16,π/12,π/8,π/7, and π/6. The flux for case π/5 coincides with the diffusive solution, Fdiffusive, up to t = 1 × 106.

Additional simulations were performed to clarify the behavior
of the dissolution flux in various regimes up to the shutdown of con-
vection. Ensemble averages over nine realizations were employed
to compute the time averaged dissolution rates and are shown in
Fig. 23(b). The flux in the convective regime is approximately 0.017
as seen in Refs. 35 and 16, and references therein, for inclination
angles θ = 0,π/32, . . . ,π/7, while for θ = π/6, close to the criti-
cal value, it drops substantially and eventually, for θ = π/5, reaches
the values of diffusive regime, completely suppressing the convective
plateau.

The transverse and longitudinal averaged profiles for θ = π/6
(see Fig. 24) show the late evolution of the concentration field after
the inception of the convective regime. The transverse profiles are
flattened partially by the fact that the fingers are strongly inclined.
The transverse profiles [center, see Fig. 24(b)] show the progression
of the finger tips until they reach the bottom of the domain. How-
ever, the transverse average profile shows that the fingers reach the
bottom after the time t = 150 000.

The delay in the onset time for the development of the fin-
gers can be partially compensated by an increase in the magnitude

FIG. 24. (a) Longitudinal and (b) transverse averaged profiles for one realization; and (c) transverse averaged profiles obtained from an ensemble of nine realizations, of the
case with θ = π/6 in times: 100 000, 110 000, 120 000, 130 000, 140 000, 150 000, 160 000, and 170 000.
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FIG. 25. Time evolution of the case with θ = π/6 with different amplitude of the seeding noise in the initial condition, in times: t = 65 000, 75 000, 85 000, and 95 000. It
can be observed that the perturbations are tilted backward while still in the boundary layer region, in a transitional convective regime, and then bend forward when in the fully
convective fingering regime.

of the initial perturbation. Numerical experiments have shown that
increasing the initial random perturbation by a factor of 8 can
advance the time for the onset of the fingering instability from
t = 95 000 to about t = 65 000. Hence, the initial amplitude of the
perturbations is not a very important factor on the onset time, as
can be seen in Fig. 25. It can be observed that the perturbations are
tilted backward while still in the boundary layer region, as the sur-
face current transports the top layers with a larger x-velocity, and
then bend forward when in the fully convective fingering regime, as
they move deeper in the convective region, away from the top layer,
where gravity is the main driving force.

7. Results of the case with larger inclination angles

For larger inclinations angles, such as θ = π/5, LSA and direct
numerical simulations show that the diffusive regime is not dis-
rupted by hydrodynamic instabilities; thus, no convective regime is
observed.

These results, obtained for periodic (infinite) domains in the
down-slope direction, contrast with cases where finite domains with
impermeable lateral boundaries are used such as found in Ref. 15,
where the accumulation of solute at the lower side of the interface
leads to the formation of a strong downward wall current, and the
appearance of a single large finger on the side of the wall, for any
larger angle.

The dissolution rate, for larger inclinations angles, which is
the quantity of interest for predicting the dissolution time of car-
bon dioxide after injection, is found to be given by the diffusive
dissolution rate, Fdiffusive, for times up to t = 1.5 × 105, in agree-
ment with LSA results. A similar trend was also observed by Wen

and Chini,28,29 for the problem of thermal convection in an inclined
porous medium subject to a constant temperature difference. In a
quite similar fashion, in their first study,28 the Nusselt number, Nu,
is only weakly dependent on θ for θ < 20◦, although there is a slight
increase up to a maximum around θ = 10◦. For θ > 25◦ , the colum-
nar flow structure begins to break down and Nu decreases rapidly as
θ is increased further. In particular, for θ ≥ 32◦, the convection tran-
sitions to a large-scale traveling-wave convective flow. In the present
problem, as the unsteady profile reaches the bottom of the domain,
the concentration gradient is progressively reduced, thus inhibiting
the appearance of large-scale perturbations at large times.

VI. CONCLUSIONS

In this work, we considered the problem of buoyancy-driven
fingering generated in an inclined porous host layer by the dissolu-
tion, from the top surface, of a partially miscible solute in a liquid
host layer. The concentration of the solute in the fluid affects the
density of the solution, thus producing buoyancy-driven flows. The
interface between the dissolving layer and the host phase is inclined
by an angle θ relative to the horizontal direction.

We have analyzed using both LSA and nonlinear simulations
the effect of varying the angle θ on the properties of the convec-
tive dissolution dynamics. The LSA shows that the inclination of
the interface decreases the growth rate of the instability, thereby
reducing the range of unstable wavenumbers and increasing the
onset time as the angle is increased. Moreover, an inclination intro-
duces a drift velocity on the perturbations, which is observable in
both the linear stability analysis and the nonlinear simulations. The
effect of finite thickness of the inclined layer for large times is also
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addressed, showing the complete inhibition of perturbation growth
at long times, and the critical time after which no perturbations are
unstable increases with the thickness of the layer, Ray, as also found
in the case of horizontal layers.17

Results from the simulations using the full nonlinear equations
confirm the trend presented by the LSA, showing a delay on the
development of the convective instability as the angle is increased.

The mixing length evolution analysis corroborates that larger
interface inclinations delay the beginning of the departure from the
diffusive behavior. However, after an initial perturbation growth,
cases with small inclination angles undergo a large increase in the
mixing length that compensates for the initial delay, such that, at
later times, all cases with 0 < θ < π/8 have approximately the same
mixing length.

Our results show that the total mass of the dissolved solute
increases practically linearly in time in the convective regime with
small variations in cases of small inclination angles. At earlier
times, systems with inclined interfaces with small different angles,
0 < θ < π/12, present almost the same total solute mass, while
inclined interfaces with larger angles suffer a reduction on the total
mass of solute dissolved due to the delay on the convective regime.
However, for larger times, inclined interfaces behave in a slightly dif-
ferent manner, the total dissolved mass increasing from θ = 0 to a
maximum amount for the θ = π/12 angle, and then decreasing for
larger angles.

We must remark that the averaged quantities are defined here
taking the length Lx of the system along the (inclined) interface
area as reference. If we take as reference the horizontal length
Lh = Lx/ cos θ , the amount of solute will be increased by a factor
1/ cos θ . Hence, in cases with small angles, the inclination favors a
larger amount of solute to be transferred to the porous medium.

Analysis of the dissolution flux confirms the result obtained by
the total concentration mass curves, that inclined interfaces delay
the onset of the convective regime. However, for small angles, after
the delayed transition time, the flux reaches a plateau, which is not
very sensitive to small angle variations. On the other hand, for angles
larger than θ = π/5, the convective regime is completely suppressed
for the range of analyzed times.

Our results contribute to understanding the specificities of con-
vective dissolution in unbound regions where the interface direction
is arbitrary.
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