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Spatio-temporal oscillations can be induced in batch conditions with ubiquitous bimolecular reactions, in
the absence of any nonlinear chemical feedback, thanks to an active interplay between the chemical process
and chemically-driven hydrodynamic flows. When two reactants A and B, initially separated in space, react
upon diffusive contact, they can power convective flows by inducing a localized variation of surface tension
and density at the mixing interface. These flows feedback with the reaction-diffusion dynamics, bearing
damped or sustained spatio-temporal oscillations of the concentrations and flow field. By means of numerical
simulations, we detail the mechanism underlying these chemohydrodynamic oscillations and classify the main
dynamical scenarios in the relevant space drawn by parameters ∆M and ∆R, which rule the surface tension-
and buoyancy-driven contributions to convection, respectively. The reactor height is found to play a critical
role in the control of the dynamics. The analysis reveals the intimate nature of these oscillatory phenomena
and the hierarchy among the different phenomena at play: oscillations are essentially hydrodynamic and the
chemical process features t he localized trigger for Marangoni flows unstable towards oscillatory instabilities.
The characteristic size of Marangoni convective rolls mainly determines the critical conditions and properties
of the oscillations, which can be further tuned or suppressed by the buoyancy competition. We finally
discuss the possible experimental implementation of such a class of chemo-hydrodynamic oscillator and its
implications in fundamental and applied terms.

I. INTRODUCTION

Chemical reactions provide fundamental means not
only for the synthesis of new products but also for the in-
ternal and spontaneous spatio-temporal self-organization
of a system1. Oscillations and waves in inorganic chemi-
cal systems represent one of the most fascinating example
of this chemically-driven order.
Inorganic chemical oscillations and waves find current ap-
plication in different areas. One of the most prominent is
the use of these systems as benchmark models for mim-
icking biological systems where waves play an efficient
strategy for cooperative transport of information as it
happens, for instance, in cellular slime molds2 or giant
honeybees3. Chemical oscillators are widely adopted in
the imitation of cellular environments and understanding
how biological functionalities can arise from the commu-
nication among oscillatory units4–6. In particular, ensem-
bles of compartmentalized coupled chemical oscillators
are exploited as “neurons” and related synchronization
patterns used to develop unconventional computing in
the way towards brain-like chemical machines, wetware
and artificial intelligence7,8.
A further challenge is represented by the use of complex
oscillatory reactions in materials science, where they can
inspire new design of smart materials9. To give a few
examples, chemical oscillators can fuel chemomechani-
cal behaviors in chemo-responsive materials, that can, in
turn, provide substrates for locomotion10 and be involved

a)Electronic mail: mabudroni@uniss.it

in promising strategies for drug delivery11. From the syn-
thesis viewpoint, nano-patterned multilayer alloys can be
obtained via periodic deposition driven by electrochemi-
cal oscillators12.
In other cases, also pertinent to the realm of materials
science, the onset of an oscillatory instability can be an
unfavorable event, needing a fine control. This happens,
for instance, in dissolution-driven self-propulsion, where
periodic trajectory bumps can obstacle the efficiency and
predictability of the self-propelled device13. Nonlinear
and oscillatory behaviors may also affect the delivery of
molecular hydrogen from the hydrolysis of borohydride
salts, limiting the use of this process as a green alterna-
tive fuel in combination with PEM cells14,15.
In order to control undesired nonlinear oscillations and
design new viable approaches to autonomous chemical os-
cillations, it is indeed of paramount importance to master
the broadest number possible mechanisms that can lead
to oscillatory instabilities16.
So far, studies on chemical oscillations have been at the
heart of nonlinear chemistry. Over the last three decades,
the innermost mechanisms for chemical oscillations in
homogeneous closed systems have been elucidated1,17,18,
pointing to the need of far-from-equilibrium conditions
and nonlinear chemical or thermal feedbacks interweav-
ing the reaction intermediates. From a theoretical per-
spective these essential properties are exemplified by the
first thermodynamically consistent model for chemical
oscillators, the Brusselator model19, and experimentally
embodied in the prototype of batch chemical oscillators,
the Belousov-Zhabotinsky (BZ) reaction20, able to oscil-
late autonomously for hours. Systematic algorithms for
designing “ad-hoc” chemical oscillators have been imple-
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Chemo-hydrodynamic pulsations 2

mented in open flow reactors, where oscillatory dynamics
can be obtained systematically thanks to a slow feedback
reaction that periodically flips a bistable system between
two steady states21. Nevertheless the whole landscape of
chemicals and reactions that can effectively give rise to
inorganic oscillators is restricted to a confined number of
species and nonlinear processes18.
Is it possible to design autonomous oscillations with more
ordinary and general kinetics?
Recently, we have opened this perspective by showing
how simple bimolecular reactions can yield spontaneous
pulsatory behaviors, in the absence of any nonlinear or
external chemical feedback22. Key for this behavior is
an active interplay between the chemical process and
chemically-driven hydrodynamics: by changing the lo-
cal chemical composition and related properties (such as
surface tension and density gradients), the reactive pro-
cess activates in-situ the medium by triggering and sus-
taining convective flows. These, in turn, feedback with
the spatio-temporal evolution of the chemical fields. Dif-
ferently from passive chemohydrodynamics, where chem-
icals behave as scalars advected by externally imposed
flows, this active loop provides an autonomous basis for
complex dynamics23.
Active chemohydrodynamics has been extensively ex-
plored in two main classes of systems.
One class relies on nonlinear kinetics, where chemically-
driven hydrodynamics further complicates the spatio-
temporal behaviors of already complex chemical struc-
tures such as fronts, waves and Turing patterns24,25.
Self-propagating autocatalytic fronts can be periodically
deformed by the antagonism between solutal and ther-
mal density– or surface–driven flows in the presence of
differential diffusion26–28 or by the competition between
buoyancy and Marangoni forces29,30. Front rippling oc-
curs when the reaction triggers high surface tension gra-
dients, as a consequence of mechanical stresses at the
quasi-horizontal interface between the reacted and non-
reacted fluid31,32. Progressive deformation and breakups
of chemical waves and spirals due to surface-flows and
gravitational currents were also found to drive these
periodic patterns to segmented waves33 and chemical
turbulence34.
A second research line, at the core of this work, focuses on
the impact of simple localized chemical transformations
on hydrodynamic instabilities. In this context, the clas-
sic A+B→C system35, where two reactants A and B are
initially separated in space and start to react upon dif-
fusive contact, was widely adopted. The structural and
dynamical properties of this reaction front (i.e. the zone
where the production rate is non-zero) have been thor-
oughly analyzed35,36 since it constitutes a paradigmatic
model for understanding, among others, self-organized
localized patterns like Liesegang bands and more com-
plex microporous structures like chemical gardens, par-
ticularly promising in materials science and for under-
standing the formation of pre-biotic environments where
life emerged37,38.

The onset of chemically-driven convection in such
A+B→C systems was found to severely modify the
morphology of classic hydrodynamic patterns in verti-
cally stratified systems39,40 and to promote a wealth of
spatio-temporal evolution of the chemical reaction due
to buoyancy-, surface-tension-41,42, or viscosity-driven43

instabilities both in vertically39,44 and horizontally ori-
ented reactors45.
Although the A+B→C systems have been studied at
length in various problems ranging from chemistry to fi-
nance, evidence for pulsatory dynamics had never been
reported. Periodic dynamics were induced by extending
the problem to an A+B→ Oscillator case, where A and
B are pool solutions containing separated reactants of
a chemical oscillator46–50, and the chance for oscillatory
dynamics is embedded in the chemistry of the system.
Differently from previous approaches, in this work we ex-
ploit the active chemohydrodynamic interplay to power
autonomous emergent pulsatory behaviors with the gen-
eral class of A+B→C reactions. The localized reaction
increases the surface tension across the mixing area, gen-
erating thereby a neat convergent stress at the liquid-air
interface. The reaction can possibly decrease the local
density, thus promoting an antagonistic upwardly ori-
ented gravitational current in the reactive zone. In prin-
ciple the reaction and related flows are not oscillatory,
but their combination leads to the emergent oscillatory
behaviors. A flavor of these dynamics is given in22 and
Fig.1, where the two main oscillatory scenarios are par-
alleled (see also supplementary material).
In the following we provide a detailed description of the
model governing the dynamics of this system (section II).
The resulting chemohydrodynamic oscillations both due
to sole Marangoni flows and by antagonistic Marangoni
and buoyancy forces are illustrated in sections III and IV.
Here, thanks to an extended characterization of the oscil-
lation properties, we single out favorable conditions and
criteria for the emergence of these patterns and show how
different regimes can be controlled by tuning the relative
importance of the two competitive contributions to the
flow. This analysis allows to understand more in-depth
the nature of the phenomenon and suggests future imple-
mentation of chemohydrodynamic waves in experimental
systems. These results are summarized in section V, be-
fore discussing fundamental and applied implications of
this study in section VI.

II. MODEL

The system consists of a two-dimensional reactor of
length LX and height LZ in a (X,Z) reference frame,
where the Z axis is oriented vertically against the gravita-
tional acceleration g = (0,−g). The reactor is supposed
to be in isothermal conditions and open to the air on
the top border, where the air-liquid interface is assumed
to be non–deformable and evaporation is also neglected.
The initial spatial distribution of the chemical species
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Chemo-hydrodynamic pulsations 3

Figure 1. Typical (a) Chemo-Marangoni damped oscillations due to chemically-driven Marangoni flows and (b) chemo-

Marangoni-buoyancy sustained oscillations arising when both buoyancy and surface tension forces are antagonistically at play
in an A+B→C system. The initial configuration of the reactants and the related topology of the chemically-induced velocity
field are sketched at the top of each panel. The two reactants A and B have the same surface tension γA = γB = γR and
density ρA = ρB = ρR, while in the reactive zone, where C forms, the surface tension locally increases γP > γR and the
density decreases ρP ≤ ρR. The snapshots illustrate the spatio-temporal evolution of the chemical (c, on the left) and the
velocity (v, on the right) fields, respectively, during few oscillatory cycles. The arrows in panel (a) at times 50–100 indicate the
flow-driven compression and RD relaxation of c. The black square in the velocity field cartooned at the top of panel (b) locates
the stagnation point, Sp. These illustrative simulations were obtained by using the dimensionless parameters ∆M = 200 and
∆R = 1.75 discussed in the text.

concentrations A,B,C

(A,B,C) = (A0, 0, 0) for X < X0 = LX/2 ∀Z
(A,B,C) = (0, B0, 0) for X > X0 ∀Z ,
(A,B,C) = (A0, B0, 0) for X = X0 ∀Z ,

describes the typical configuration of an A+B→C
problem35, cartooned at the top of Figs.1a and 1b. The
pure reactant solutions A and B have surface tension γA
and γB , and density ρA and ρB, respectively. The for-
mation of the product C occurs upon diffusive mixing
of the two reactants A and B across the initial contact
line localized at X0. In the reactive zone, the medium
surface tension, γ, and the density, ρ, locally change, in-
ducing convective transport (see top sketches in Figs.1a
and 1b).
The resulting nonlinear dynamics is governed by a set of
partial differential reaction-diffusion-convection (RDC)
equations

∂tA+ (V · ∇)A = DA∇2A− kAB , (1)

∂tB + (V · ∇)B = DB∇2B − kAB , (2)

∂tC + (V · ∇)C = DC∇2C + kAB , (3)

∂tV + (V · ∇)V = − 1

ρ0
∇P +

µ

ρ0
∇2V − g

(ρ− ρ0)

ρ0
1z (4)

∇ ·V = 0 , (5)

combined to the Marangoni boundary condition

µ∂ZU = ∂Xγ at Z = LZ , (6)

which includes shear stresses at the top free surface.
The evolution of the chemical fields I = A,B,C de-
scribed by eq. (1–3), is coupled to the incompress-
ible Navier–Stokes equations (4–5) and the Marangoni
condition (6) via the state equations for the density

ρ = ρ0

(

1 + 1
ρ0

∑

I I ∂Iρ
)

and surface tension γ =

γ0

(

1 + 1
γ0

∑

I I ∂Iγ
)

. In diluted solutions, ρ and γ can,

indeed, be expressed as a linear combination of the chem-
ical concentrations, modulated by the density solutal ex-
pansion coefficient and the surface activity of each I–th
species, 1

ρ0

∂Iρ and 1
γ0

∂Iγ, respectively. ρ0 and γ0 are the

solvent density and surface tension, respectively.
Hydrodynamic equations are written in the Boussinesq
approximation, i.e. assuming that density changes only

affect the gravitational force term g (ρ−ρ0)
ρ0

of eq.(4),

where g is the gravitational acceleration and (ρ−ρ0)
ρ0

is

the density variation due to the concentration changes
with respect to the initial reference state of the solvent,
ρ0. V = (U, V )T is the velocity field, µ is the dynamic
viscosity, DI are the diffusion coefficients of the chemical
species, and P is the dynamic pressure.
The equation system can be casted in dimensionless
form by using the reaction-diffusion (RD) scales for time,
t0 = 1/(kA0), length, L0 =

√
DAt0 and concentration,

A0 (k is the kinetic rate constant of the reaction). From
t0 and L0 the velocity and pressure scales are also derived
as V0 = L0/t0 =

√

DA/t0, P0 = µ
t0
, respectively. This

leads to the following dimensionless equations:
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Chemo-hydrodynamic pulsations 4

∂ta+ (v · ∇)a = ∇2a− ab (7)

∂tb + (v · ∇)b = δb∇2b− ab (8)

∂tc+ (v · ∇)c = δc∇2c+ ab (9)

∂tv + (v · ∇)v = Sc



−∇p+∇2v −
∑

i=a,b,c

Rai(i) 1z



(10)

∇ · v = 0 , (11)

where the variables are now all dimensionless. The
Marangoni boundary condition now reads

∂zu = −
∑

i

Mi ∂xis , (12)

where is = as, bs, cs are the surface dimensionless con-
centrations of the chemical species at z = Lz.
The Schmidt number Sc = µ/DAρ0 gives the balance be-
tween momentum and mass diffusion. We set Sc = 1000,
which is compatible with aqueous solutions where the
water kinematic viscosity ν = µ/ρ0 = 0.0089 cm2 s−1

and typical values for the diffusivity of chemical species
DI ∈ [10−6, 10−5] cm2 s−1. δi = DI/DA are the dimen-
sionless relative diffusivities.

Ri =
∂IρA0gL

3
0

DAµ
(13)

is the solutal Rayleigh number of the I–th species, tun-
ing the specific contribution of each species to the local
density, while the solutal Marangoni number

Mi = − 1

µ

√

A0

kDA
∂Iγ , (14)

quantifies the specific contribution of the I–th species to
the local surface tension.
In this dimensionless description, the letters have the
same meaning as in dimensional form where capital let-
ters have been used except for time, density and surface
tension. The dimensionless density is ρ̃ = ρ−ρ0

ρ′ =
∑

iRi i

(with ρ′ = µ
t0L0g

defining the density scale) and the

dimensionless surface tension γ̃ = γ−γ0

γ′ = −∑

iMi is

(where γ′ = µL0

t0
is the surface tension scale).

By taking the curl of both sides of eq.(10), the pressure
term ∇p can be eliminated, and using the relations that
link the dimensionless velocity field v = (u, v) to the vor-
ticity ω = ∇×v and to the stream function, ψ, u = ∂zψ
and v = −∂xψ29, we obtain the RDC equations in the
ω–ψ form

∂ta+ (∂zψ) ∂xa− (∂xψ) ∂za = ∇2a− ab , (15)

∂tb+ (∂zψ) ∂xb− (∂xψ) ∂zb = δb∇2b− ab , (16)

∂tc+ (∂zψ) ∂xc− (∂xψ) ∂zc = δc∇2c+ ab , (17)

∂tω + (∂zψ) ∂xω − (∂xψ) ∂zω = Sc



∇2ω −
∑

i=a,b,c

Ri ∂xi



(18)

∇2ψ = −ω , (19)

coupled to the Marangoni boundary condition ω =
∑

iMi ∂xis, with i = a, b, c.
To keep the system as simple as possible and ensure a
symmetrical development of the reactive zone35,36,41,44,
we assume that initial reactant solutions present the same
properties: equal initial concentration, A0 = B0, surface
tension, γA = γB = γR, density, ρA = ρB = ρR and diffu-
sivity, δb = 1. As a result, the chemical front propagates
into a “uniform” medium and initial changes of surface
tension and density (γP > γR, ρP < ρR) can only be
ascribed to the reaction-diffusion process and not to un-
balanced properties of the reactants, such as differential
diffusion. Moreover, taking into account the conserva-
tion of the chemical concentrations valid if also δc = 1,
a + b + 2c = 1 ∀x, z, t, we can directly reconstruct the
dimensionless concentration field of the product, c from
a and b. The final form of the system writes

∂ta+ (∂zψ) ∂xa− (∂xψ) ∂za = ∇2a− ab , (20)

∂tb+ (∂zψ) ∂xb− (∂xψ) ∂zb = ∇2b − ab , (21)

∂tω + (∂zψ) ∂xω − (∂xψ) ∂zω = Sc

(

∇2ω −∆R (∂xa+ ∂xb)
)

(22)

∇2ψ = −ω , (23)

with the Marangoni boundary condition ω =
∆M (∂xas + ∂xbs).
Here ∆R = R − Rc/2 and ∆M = M − Mc/2, with
R = Ra = Rb and M = Ma = Mb because we consider
that the reactants have the same contribution to the
density and the surface tension. The solution density
and surface tension read ρ̃ = ∆R(a + b) + Rc/2 and
γ̃ = −∆M(as + bs)−Mc/2, respectively.
Within this parametric formulation, the number of
parameters tuning the relative importance of solutal
buoyancy and surface tension contributions to convective
flows, reduces from six (the Rayleigh and the Marangoni
numbers of the 3 species in the system) to ∆R and ∆M .
Positive ∆R and ∆M mean that the density decreases
while the surface tension increases during the reaction.
The problem defined by eqs. (20–23) is closed by no-flux
boundary conditions for the chemical concentrations at
the four boundaries of the reactor, no-slip conditions
for the velocity field at the three solid boundaries and,
as mentioned above, Marangoni boundary conditions at
the air-liquid interface at z = Lz.
To compare the system dynamics in closed and open
conditions, additional simulations are carried out by
considering fixed boundary values for the chemical
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Chemo-hydrodynamic pulsations 5

species:

(A,B,C) = (A0, 0, 0) at X = 0 ∀Z, t
(A,B,C) = (0, B0, 0) at X = Lx ∀Z, t .

This mimics a constant lateral feeding and exhaustion
of the initial reactants and of the product. RDC equa-
tions (20–23) are solved numerically by using the Al-
ternating Direction Implicit Method (ADI) proposed by
Peaceman and Rachford51. We consider a spatial do-
main of dimensionless length Lx ∈ [125, 256] and vari-
able height Lz, discretized over a grid with meshing
hx = hz = 0.25. Simulations are run using the inte-
gration time step ht = 1× 10−5.

III. CHEMO-MARANGONI OSCILLATIONS

A. Phenomenology

Chemo-Marangoni oscillations occur when surface
stresses due to chemically-induced Marangoni flows are
dominant (either for negligible gravitational effects,
i.e. ∆R → 0, or in very shallow layers, i.e. small
values of Lz). When ∆M is beyond a critical threshold
∆Mcrit (the actual value slightly depends on Lz),
spatio-temporal oscillations of the chemical and the
velocity fields can nucleate at x0 and develop symmet-
rically towards the lateral borders (see Fig. 1a and
supplementary material).
The mechanism of wave formation follows a local
increase of the surface tension γ across the area where
the reaction consumes A and B to form C. This bears
convergent Marangoni flows at the air-liquid surface and,
by continuity a vertical down-flow at x0 that advects
the product towards the rigid bottom boundary. This
causes the deformation of C concentration field into two
symmetrical fronts (see arrows in snapshots at t = 50).
The return flow amplifies the extent of these fronts,
advects the fluid from one side to the other, sweeping c
towards the top of the reactor. The consequent forma-
tion of two new spots where surface tension increases,
modifies the velocity field, favoring the splitting of the
two initial convective rolls and weakening the vertical
convective forcing around x0. The front of c can thus
relax from the reactor bottom upwards (see arrows in
the snapshot at t = 100). After the lateral dissipation
of the symmetric waves the vertical down-flow at x0
that opposes to this RD relaxation reinforces again and
restores initial conditions for a novel oscillatory cycle.
The diffusively-driven transverse feedback mechanism
that recreates the sharp surface concentration gradient
feeding the downward Marangoni forcing, progressively
weakens because of the reactant consumption and
species diffusion and, as a consequence, waves damp
out. Note that during the whole dynamics the reaction
zone (where the reaction rate ab 6= 0) remains essentially
localized across x0.
The whole spatio-temporal deployment of these

Marangoni-driven damped oscillations is illustrated in
the space-time plot of Fig.2a, where a horizontal con-
centration profile of c taken at Lz/2 (see dashed line in
the first snapshot of Fig.1a) is reported as a function of
time. The correspondent oscillatory hydrodynamic field
is shown in Fig.2b, where we map the evolution of the
stream function ψ. ψ minima (in blue) and maxima (in
red) describe clockwise and counter-clockwise convective
rolls, respectively.
The topology of these space-time maps represents a sort
of fingerprint of the chemohydrodynamic waves, qualita-
tively preserved when changing the values of the control
parameters. Dynamical information are embedded in
the inherent timeseries obtained by plotting c and ψ at a
fixed representative point of the reactor, as indicated by
the white dashed lines in the space-time plot of Fig.2a.
The local timeseries show transient damped oscillations.
The damped character is preserved even by keeping the
system far-from-equilibrium with a lateral influx of the
initial reactants (compare circles (batch) and the solid
line).
Local timeseries and space-time plots are used to extract
the characteristic oscillation period, T , and the spatial
characteristic length of the waves, λ. The oscillation pe-
riod is obtained as the interval elapsed between the two
first successive peaks of the oscillatory timeseries which
are the most representative of far-from-equilibrium con-
ditions in our batch system. The position of ψ extrema
and their relative distance were used, as cartooned in
Fig. 2b to define the spatial characteristic wavelength,
λ of the waves. The dependencies of T and λ are then
characterized in terms of the main control parameters
∆M , ∆R and Lz. T and λ are also used to compute
the dispersion relation, relating the waves phase speed
vp = λ/T as a function of their characteristic wavelength.
Concretely, an estimate of vp is given by the slope of the
waves deployment in the spatio-temporal plots in the
range showing a stable constant drifting, namely after
nucleation and before the interaction with the lateral
borders.

B. Controlling chemo-Marangoni oscillations

1. Role of ∆M

As shown in our previous work22, there is a crit-
ical threshold ∆M > ∆Mcrit beyond which chemo-
Marangoni pulsations can occur. This condition implies
that the surface tension must increase sufficiently in the
reaction zone. In parametric terms, this is easily satis-
fied when the Marangoni number of the product, Mc, is
much smaller than that characterizing the initial reac-
tants, M . If we express Mc in terms of M , Mc = ζM ,
we can see that the condition ∆M > ∆Mcrit can also be
met for values of Mc comparable or even larger than M ,
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Chemo-hydrodynamic pulsations 6

Figure 2. Top panels: Space-time plots (Lx = 128× t = 200)
describing a) the chemical (c) and b) the hydrodynamic (ψ)
evolution of a typical chemo-Marangoni scenario in open con-
ditions (∆M = 250, Lz = 12). The plots are built at z = Lz/2
(for illustration see the white line traced in the first snapshot
of Fig.1a). Species c ranges between 0 (blue areas) and 0.5
(red areas), while ψ varies between -2 (blue areas) and 2 (red
areas). T , λ and vp indicate the characteristic oscillation pe-
riod, spatial length and phase speed, respectively. Bottom
panels: the local timeseries of c and ψ at a representative
point of the reactor (x0 − 10, Lz/2) indicated by the dashed
line in the spacetime plots. The circles correspond to the
the batch system while the solid lines describe the system
maintained in open conditions by the lateral feeding of the
reactants.

provided that

M >
2

2− ζ
∆Mcrit , (24)

with ζ ∈ [0, 2). This means that when M is large enough
such that eq.(24) holds (reactants with very low surface
tension), the occurrence of oscillations is essentially in-
dependent on the specific contribution of the product.
A local increment of the surface tension emerges au-
tonomously from the reactive process that consumes the
species responsible for low surface tension. This condi-
tion enlarges the number of chemo-physical systems that
can undergo this instability.
Although the occurrence of this instability is very sensi-
tive to ∆M , both T and λ do not vary significantly with
this parameter (see Fig.3a showing the period and the
wavelength dependence on Lz for different ∆M).

2. Role of Lz

Chemo-Marangoni spatio-temporal oscillations present
a strong dependence on Lz. The length of convective rolls
follows a linear relation with Lz (λ ∼ Lz) that, in turn,
controls T (Fig.3a). In particular, the period at which
waves are emitted from the centre grows by increasing
Lz, scaling as T ∼ L2

z. Wave formation is suppressed
below a critical height Lc (this threshold slightly shifts

Figure 3. Characterization of damped oscillations in the
chemo-Marangoni scenario. a) Dependence of the oscillation
period, T (left axis), and the characteristic length, λ (right
axis), on Lz for different ∆M (adapted with permission from
Phys. Rev. Lett. 122, 244542 (2019). Copyright 2019 Amer-
ican Physical Society). The bar at the top of the plot in-
dicates the dynamical regimes of the system throughout Lz-
domain: the red bar refers to a non-oscillatory (N.O.) scenario
corresponding to symmetric fronts; the yellow bar indicates
damped oscillations. b) Dependence of the critical ∆M upon
Lz. c) Black circles: dependence of the phase speed of chemo-
Marangoni waves, vp (left axis), on the relative wavelength
Lz/λ (bottom axis) (∆M = 200); gray squares: dispersion
relation tying the angular frequency, f = 2π/T (right axis) to
the wavevector k = 2π/λ (top axis).

to higher values when ∆M decreases). Different dynam-
ical regimes occurring in the Lz-domain are summarized
at the top of Fig.3a. Here the red bar refers to a non-
oscillatory (N.O.) scenario corresponding to symmetric
fronts departing from x0 towards the lateral borders; the
yellow bar indicates damped oscillations.
The layer thickness Lz represents a determinant parame-
ter that can modulate the balance between the reaction-
diffusion and the convective timescales. The relation
describing this critical interplay is captured by Fig.3b,
where the threshold ∆Mcrit (above which oscillations are
observed in numerical experiments) is plotted as a func-
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Chemo-hydrodynamic pulsations 7

tion of Lz. The trend separating the oscillatory from the
non-oscillatory domain shows that ∆Mcrit is inversely
proportional to Lz, with an exponent close to 1 (1.11
± 0.08). A justification of this dependence can be de-
rived through phenomenological arguments22. Chemo-
Marangoni waves result from the transverse competition
between the horizontal Marangoni-driven return flow and
the vertical RD relaxation that tends to level out the lo-
cal concentration gradients at the top surface. For os-
cillations to start, the Marangoni timescale τMa com-
patible with the wave characteristic length λ has to be
smaller than the reaction-diffusion timescale τRD needed
to cover a distance O(Lz), τRD ∼ L2

z. τMa can be
obtained as the ratio between the spatial characteris-
tic length of the convective roll, λ, and the associated
horizontal velocity of a parabolic Marangoni return flow
responsible of the shape and the entity of the chemical
front deformation. The typical profile of the horizontal
component of the Marangoni return flow follows the form
uMa ∼ ±Lz

2 ∆M (32 ẑ − 1)ẑ (where ẑ = z/Lz, and posi-
tive and negative solutions apply to x < x0 and x > x0,
respectively), with a maximum at z = 1

3Lz related to the

bulk flow, and a sign inversion at z = 2
3Lz above which

the linear shear flow prevails31,52. In Fig.4 we show that
this form (traced with symbols) fits well the velocity pro-
files developing in our system (solid curves), particularly
across the tip of the chemical front where the surface con-
centration gradients, Grads(x) = ∂xas + ∂xbs, decrease
monotonically and converge to a common behavior for
different values of ∆M .
The absolute value of the maximum of the parabolic pro-
file |uMa| at z = 1

3Lz can thus be used to define the
scaling of the characteristic Marangoni velocity which,
assuming 2Lz − 1 ≈ 2Lz, reads |uMa| ∼ (∆M)−1. Since
λ ∼ Lz (Fig. 2a), this gives τMa ∼ λ/|uMa| ∼ (∆M)−1.
By imposing τMa < τRD, we obtain that Lz > Lc ∼
(∆M)−1 or, equivalently, ∆Mcrit ∼ L−1

z , which is in
good agreement with the numerical analysis of Fig.3b.

We finally characterize the speed of the chemo-
Marangoni waves. For classic RD chemical waves devel-
oping in homogeneous excitable or oscillatory media53–55,
the speed of the waves is strictly related to the charac-
teristic wavelength (or period). The normal profile of
this dispersion relation follows a monotonic and decel-
erated growth from a minimal velocity value (associated
to the minimal wavelength for a stable wave train) to
the asymptotic velocity of a solitary pulsation. In other
words, short wavelength wave-train develop slower. For
chemohydrodynamic waves, we found a direct depen-
dence not only on λ but also on the layer depth, Lz.
In Fig.3c we combine these two dependencies by plotting
the wave speed vp versus the relative wavelength, Lz/λ.
The graph shows that waves characterized by longer rel-
ative wavelengths (short λ compared to Lz) propagate
faster (the opposite as compared to chemical RD waves).
This is confirmed for different values of ∆M and consid-
ering several depths of the reactor. A dispersion relation
f2 ∼ k3 (where f = 2π/T and k = 2π/λ) consistent with

Figure 4. Vertical profiles of the horizontal velocity of the
Marangoni return-flow, u, at x1 = 77 and t = 30 for different
values of ∆M (Lx = 128 and Lz = 17). Solid curves de-
scribe the profiles extracted from numerical simulations while
overlapping symbols show the related fitting via the form
uMa = −

Lz

2
∆M ( 3

2
ẑ− 1)ẑ × cost, where ẑ = z/Lz and cost

is a space-dependent fitting constant related to the surface
concentration gradient Grads(x) = ∂xas + ∂xbs. The profiles
Grads(x) for the same values of ∆M are also shown for the
spatial domain x ≥ x0.

that of typical capillary hydrodynamic waves56 is also re-
covered and shown with gray squares in Fig.3c (refer to
top-right axes). This allows us to conclude that the ob-
served chemo-Marangoni oscillations adhere to the main
characteristics of hydrodynamical waves.

IV. CHEMO-MARANGONI-BUOYANCY

OSCILLATIONS

A. Phenomenology

Chemo-Marangoni-buoyancy oscillations occur when
an antagonistic interplay of chemically-driven gravita-
tional currents and Marangoni flows is at play. Here,
the formation of C, by decreasing the local density of the
medium, generates a vertical up-flow opposing and par-
tially counterbalancing the Marangoni-induced conver-
gent flow. As compared to chemo-Marangoni scenario,
the topology of the velocity field becomes more complex,
with the formation of two new upwardly oriented con-
vective rolls at the bottom of the reactor that reduce
the extent of the Marangoni-related rolls at the top (see
sketches in the top panels of Fig.1b).
An illustration of three typical oscillatory cycles in this
system is given in Fig.1b (and in the supplementary ma-
terial) with the evolution of the chemical field, c, paral-
leled to the corresponding velocity field, v. An extended
representation of the dynamics is described in the space-
time plots of Fig.5 (built using concentration and ψ pro-
files at Lz/2 as indicated by the dashed line in the first
snapshot of Fig.1b).
Conceptually, the mechanism follows similar steps as in
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Chemo-hydrodynamic pulsations 8

the pure Marangoni scenario: surface-tension-triggered
convergent down-flow starts upon formation of the prod-
uct which is then pushed towards the bottom. However
buoyancy forces combine here to RD processes to bounce
back the local accumulation of the less dense product to-
wards the reactor surface. Gravitational currents there-
fore amplify and sustain the oscillatory mechanism as
can be seen in the local timeseries describing the dy-
namics at a representative point. The ψ timeseries re-
ported in Fig.5b (bottom) shows an initial growth of the
oscillation, followed by a smooth decay of the oscilla-
tion amplitude as the system evolves towards the equi-
librium. Oscillations dampen over a longer time interval
as the reactor width Lx increases. The enhancing action
of buoyancy flows is also found by simulating the ana-
logue open-system, with a lateral convection-less feeding
of fresh reactants. Here we can stabilize the oscillation
amplitude for a longer time by maintaining the system in
far-from-equilibrium conditions. This picture is different
from the pure chemo-Marangoni-driven instability where
oscillations dampen out shortly and monotonically even
in open conditions. We refer to this scenario as sustained
oscillations.

Figure 5. Space-time plots (Lx = 128 × t = 300) describing
(a) the chemical and (b) the hydrodynamic evolution of typ-
ical sustained oscillations promoted by a chemo-Marangoni-
buoyancy interplay (∆M = 250,∆R = 1.5, Lz = 12). The
plots are built at Lz/2, along the white line traced in the first
snapshots of Fig.1b. Species c in (a) ranges between 0 (blue
areas) and 0.5 (red areas), while ψ in (b) varies between -2
(blue areas) and 2 (red areas). Each panel shows at the bot-
tom the local timeseries obtained by extracting c and ψ at a
representative point of the reactor (x0−10, Lz/2). The circles
correspond to the the batch system while the solid lines de-
scribe the system maintained in open conditions by the lateral
feeding of the reactants.

B. Controlling chemo-Marangoni-buoyancy oscillations

The birth and maintenance of chemo-Marangoni-
buoyancy oscillations result from a delicate balance be-
tween Marangoni- and buoyancy-driven forces that al-

ternately dominate the dynamics. Once the oscillatory
instability is triggered via surface-tension-driven flows
(i.e. ∆M > ∆Mcrit), tuning the interplay between op-
posite Marangoni- and buoyancy-driven forces allows to
enhance the oscillatory mechanism, modify the charac-
teristics of the oscillatory regimes or even quench oscil-
lations.
At fixed ∆M , ∆R and Lz control the importance of
gravitational currents. Increasing ∆R or Lz increases
buoyancy forcing and, as a result, the vertical extent of
the Marangoni-dominated convection is reduced by larger
buoyancy competitive convective rolls at the reactor bot-
tom. The relative weight of the two contributions to the
flow can be dynamically followed through the location of
the stagnation point Sp, where the vertical velocity along
the z-axis at x0 changes sign (see sketch at the top of
Fig.1b). In particular, when buoyancy-driven forces are
dominant (high values of ∆R or Lz), Sp is closer to the
surface since the less dense product is pushed upwards;
viceversa Sp approaches the reactor bottom if gravita-
tional currents are secondary as compared to Marangoni
effects.

1. Role of ∆R

∆R > 0 switches on competitive buoyancy forces. In-
creasing ∆R (with ∆M fixed) strengthens the upwards
response to Marangoni flow, driving a progressive tran-
sition from damped to sustained oscillations and back to
non-oscillatory regimes. In the oscillatory domain ∆R
modulates the oscillation period. A parametric classifica-
tion of the main dynamical scenarios is given in the space
(∆M,∆R) in Fig.6. Suitable conditions for sustained os-
cillations span roughly the region ∆M ∈ [130, 250] and
∆R ∈ (0, 3.5], Lz = 20. More extreme values of ∆M
may also be compatible with the oscillatory instabilities
but we didn’t explore that region. A transition from
pure chemo-Marangoni damped (yellow diamonds) to sus-
tained (green circles) oscillations sharply occurs as soon
as ∆R > 0.5 and ∆M > ∆Mcrit: indeed relatively small
buoyancy contribution to the flow can enhance oscilla-
tions independently of ∆M . On the contrary, the reverse
route to non-oscillatory regimes at larger ∆R (sustained
→ damped → no-oscillations) is much more modulated
by ∆M .
The influence of ∆R on the system dynamics is further
illustrated in Fig.7a, where we report representative oscil-
latory timeseries for different values of ∆R (∆M = 200,
Lz = 20). Buoyancy contribution sustains the oscillatory
mechanism in a circumscribed range of ∆R (1.25 and 2),
while larger values cause oscillations to dampen.
A favourable antagonism for the emergence of spatio-
temporal oscillations thus requires surface-tension forces
to overcome buoyancy ones. This picture can be conve-
niently described in terms of Sp. Accordingly, the spatio-
temporal evolution of Sp in the oscillatory regimes show
that the spatial extent of the Marangoni-related domain
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Chemo-hydrodynamic pulsations 9

(given by Lz − Sp) grows in time, first monotonically,
and then following a periodic evolution when the sys-
tem starts to pulsate (Fig.7b). Oscillations can start if
Lz−Sp > Lc (indicated by the black dashed line), i.e. be-
yond the same critical height threshold Lc where the os-
cillatory instability starts in the pure chemo-Marangoni
scenario. Conversely, if buoyancy contribution prevails
over Marangoni flows, the extent of buoyancy–driven con-
vective rolls progressively grows upwards and the vertical
residual space to initiate the oscillatory mechanism via

surface tension effects falls below Lc, when oscillations
cannot start or be maintained.
Lz−Sp > Lc thus identifies a phenomenological criterion
for oscillations to occur.
Fig. 8a describes how ∆R modulates the oscillation
period through the different oscillatory regimes, indi-
cated in the top axis. Changes in ∆M , also included
in Fig.7a, show a negligible impact on the oscillation pe-
riod. By contrast, in analogy with the trend observed by
decreasing Lz in the chemo-Marangoni scenario (com-
pare with Fig.3a), the shrinking of the characteristic size
of Marangoni convective rolls due to increasing ∆R goes
in parallel with a decline of the characteristic oscillation
period (T ∼ ∆R−1). This analysis suggests that surface-
tension-driven convection is the trigger for the onset of
chemohydrodynamic oscillations (both damped and sus-

tained ones), imposing critical conditions for their possi-
ble occurrence, but it also mainly determines the charac-
teristic space length of the phenomenon.
The dependence of phase velocity of chemo-Marangoni-
buoyancy waves, vp, on the intensity of the gravitational
currents, as controlled by ∆R, is analyzed in Fig. 8b.
vp(∆R) considered at the reactor top and half converge to
a similar increasing trend suggesting that the buoyancy
contribution enhances the propagation of these waves.
By contrast, the dynamics at the reactor bottom is neg-
ligibly affected by this parameter.

2. Role of Lz

The possible scenarios obtained by varying buoyancy
forces via Lz are shown in Fig.9, where we report a) ψ
local timeseries and b) the dynamics of the correspond-
ing stagnation point normalized over Lz, (Lz − Sp)/Lz,
for different reactor heights (at fixed ∆M and ∆R).
In the oscillatory regimes where buoyancy effects are
weak (typically for Lz → Lc), we recover the character-
istic damped dynamics of pure chemo-Marangoni-driven
instability (yellow dot-dashed lines). Here the Marangoni
domain, (Lz−Sp), grows monotonically and stabilizes to-
wards Lz.
Progressively increasing Lz, buoyancy forces, though
weaker than surface tension-driven flows, increase and ac-
tively contribute to the upward-oriented relaxation of the
chemical front. As a consequence, (Lz −Sp)/Lz initially
grows in time but in a “decelerated” way and, beyond
the critical value Lc/Lz, can undergo a periodic evolu-

Figure 6. Overview of possible chemohydrodynamic scenarios
due to an antagonistic interplay between chemically-driven
Marangoni and buoyancy convection in the parametric space
(∆M , ∆R) with Lz = 20. ∆Mcrit represents the critical
∆M threshold for waves in the chemo-Marangoni-buoyancy
regime.

Figure 7. Effect of ∆R on the chemo-Marangoni-buoyancy
oscillations. a) Local timeseries of ψ at a representative point
of the reactor (x0 − 20, Lz/2) for 3 different values of ∆R
(∆M = 200, Lz = 20) and b) corresponding evolution of the
stagnation point Sp.

tion consistent with sustained oscillations.
The maximal reactor height for which chemo-Marangoni-
buoyancy oscillations can occur is expected to be

bounded by the capillary length, Lcap =
√

γ
ρg , which

gives the equilibrium between gravitational and sur-
face forces and, in our dimensionless model, scales as

Lcap/L0 ∼
√

∆M
∆R . For Lz > Lcap/L0 buoyancy forces

will prevail.
The analysis of the stagnation point dynamics allows
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Chemo-hydrodynamic pulsations 10

Figure 8. Characterization of chemo-Marangoni-buoyancy
spatio-temporal oscillations as a function of ∆R. a) Depen-
dence of the oscillation period, T , on ∆R for different ∆M
(adapted with permission from Phys. Rev. Lett. 122, 244542
(2019). Copyright 2019 American Physical Society). The
bar at the top of the plot indicates the dynamical regimes
of the system in the ∆R domain. The yellow and green
boxes refer to damped and sustained oscillatory dynamics, re-
spectively. b) Dependence of the phase speed, vp, of chemo-
Marangoni waves (considered at different reactor depths) on
∆R (∆M = 200, Lz = 20). The dashed line is to guide the
eye.

not only to isolate critical conditions for this oscillatory
scenario, but also to understand the characteristic non-
trivial dependence of the initial oscillation period upon
Lz. This traces a tent-shaped profile with a maximum
at Lmax (see Fig.10a and 11a).
In the first branch, as Lz increases, the oscillation pe-
riod increases. Here Marangoni convection governs the
dynamics and an increment in the reactor height en-
larges the size of the related convective rolls. These
approach the whole reactor height available and thus
(Lz−Sp)/Lz → 1. The oscillation period, imposed by the
characteristic length of the Marangoni convective rolls,
increases accordingly.
The trend changes when Lz is further augmented be-
yond Lmax. Here buoyancy-driven flows compensate the
Marangoni-related forcing, decreasing the spatial char-
acteristic length of chemohydrodynamic waves and, in
turn, the oscillation period. The maximum of T (Lz) thus
indicates the switch point where buoyancy-driven flows,
dynamically built during the induction period before the
first oscillatory cycle, oppose effectively Marangoni forc-
ing, such that the stagnation point cannot approach the
reactor bottom, where (Lz − Sp)/Lz = 1.
The shape and the linear scaling of the ascending branch
of T (Lz) profiles (Fig.11a) are preserved for different

Figure 9. Influence of Lz on chemo-Marangoni-buoyancy os-
cillations. a) Local timeseries of ψ at a representative point
of the reactor (x0 − 20, Lz/2) for 4 different values of Lz and
b) corresponding evolution of the normalized complementary
stagnation point (Lz − Sp)/Lz (∆M = 225, ∆R = 1.75).
The yellow dashed-dotted line describes a damped oscillatory
scenario, while green dashed, dotted and solid lines identify
sustained oscillatory scenarios.

values of ∆M and ∆R (slope 0.45(±0.02)). However,
when ∆R is increased, Lmax is shifted to lower values
since these ∆R and Lz have an analogous effect on the
strength of the buoyancy contribution and, hence, the
value of Lz needed to counterbalance Marangoni forces
decreases if ∆R increases. Fig.11b shows that the con-
servation relation between these two parameters obeys
Lmax∆R

1/3 = const, which is compatible with eq. (13),
linking the Rayleigh numbers to the spatial scale.
We finally analyze the properties of the phase speed
for these chemohydrodynamic waves that, as mentioned
above, is strictly dependent on the reactor depth, as
accounted by the relative wavelength Lz/λ. In Fig.9b
we can observe how the scaling of vp abruptly changes
when Lz/λ ∼ 0.5. Consistently with the information
embedded in the period profile T (Lz), this minimum
marks the transition from the Marangoni- (left branch)
to buoyancy-controlled (right branch) dynamics. Data
extracted at the top and half of the reactor height lie
on a similar trend while the wave dynamics at the bot-
tom shows a different pattern and no significant depen-
dence on Lz. This is a further indication that the spatio-
temporal behavior of chemo-Marangoni-buoyancy waves
mainly takes place in the reactor top-half.

V. DISCUSSION

Spatio-temporal chemical oscillations can develop in
simple A+B→C reactions. This process works in batch
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Chemo-hydrodynamic pulsations 11

Figure 10. Characterization of chemo-Marangoni-buoyancy
spatio-temporal oscillations. a) Tent-shaped profile of the
oscillation period, T as a function of the reactor height Lz

(∆M = 200, ∆R = 1.75). Lc and Tc identify the lower crit-
ical reactor height for oscillations and related period, Lmax

and Lcap/L0 locate the maximum of T (Lz) and the capil-
lary length (this is only included for the sake of illustration),
respectively. The bar at the top of the plot describes dif-
ferent dynamical regimes over the Lz domain: the red, yel-
low and green boxes refer to non-oscillatory (N.O.), damped

(D.O.) and sustained oscillatory dynamics. b) Dependence
of the wave speed (vp) of chemo-Marangoni-buoyancy waves
(considered at different depths of the reactor) on the relative
wavelength Lz/λ.

conditions, without any external feed or chemical non-
linearity, expanding thereby the possibility of chemical
oscillations to ubiquitous bimolecular reactions. The
trigger for the onset of this oscillatory instability is the
hydrodynamic feedback promoted in-situ by the chem-
ical reaction, that increases the surface tension across
the reactive zone, thus promoting a Marangoni con-
vergent flow at the liquid-air interface and, by con-
tinuity, a quasi-horizontal return flow into the reac-
tor bulk. Chemically-driven Marangoni convection pro-
duces damped oscillations. The competition between the
Marangoni-driven compressing force and transversely up-
wardly oriented RD relaxation that sustains the oscilla-
tory mechanism is weak and the oscillations smoothen-
down quickly. The presence of antagonistic buoyancy-
driven flows can counter-balance Marangoni forcing
and further enhance oscillations, leading to chemo-

Marangoni-buoyancy-driven sustained oscillations.
In closed reactors, both periodic scenarios are tran-
sient. However sustained oscillations due the chemo-
Marangoni-buoyancy interplay can be stabilized in open
reactors with a constant lateral feeding of fresh reactants,

Figure 11. a) Tent-shaped profile of the oscillation period, T
as a function of the reactor height Lz for two different values
of ∆M and ∆R. b) Dependence of Lmax on ∆R.

while chemo-Marangoni waves intrinsically dampen-out
even if the chemical reaction is kept far-from-equilibrium.
The analysis presented here allows to isolate critical con-
ditions for the oscillatory instability and provide useful
information with a view to experimental realizations of
chemohydrodynamic waves.
Chemo-Marangoni oscillations occur when a sufficiently
large surface tension gradient (∆M > ∆Mcrit) is es-
tablished across the localized reactive zone. With re-
lation (24), we found that this condition may not nec-
essarily require a dramatically different surface tension
between fresh reactants and the product, provided that
the surface tension of the pure reactants solution is small
enough. In this case the reactive process consumes the
surfactant and drives the local surface tension increase.
This extends therefore the number of possible candidates
for an experimental implementation of the phenomenon.
The reactor height, Lz, represents a critical parameter
that, by balancing the transverse competition between
the reaction-diffusion processes and convective flows, can
control the onset and the properties of chemo-Marangoni
waves. Lz has to be larger than a minimal threshold Lc

which scales as Lc ∼ ∆M−1.
Lc turns to be a useful reference to predict the on-
set of chemo-Marangoni-buoyancy-driven oscillations as
well. This scenario relies on a delicate balance be-
tween surface-tension-driven compression and buoyancy-
driven relaxation, where the former has to be dominat-
ing. This condition is satisfied when the position of
the stagnation point, Sp, locating the relative extent
of Marangoni- and buoyancy-controlled domains, is such
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that (Lz − Sp) > Lc. The antagonism between the two
convective forces at play can be tuned via ∆R (i.e. con-
trolling the density gradient between the reacted and un-
reacted areas). Increasing this parameter drives a tran-
sition from sustained to damped oscillations, and eventu-
ally leads to suppress completely the oscillatory mecha-
nism. Throughout this route towards oscillation extinc-
tion, the oscillation period drops because increasing ∆R
reduces the extent of Marangoni-related convective rolls
which characteristic length determines the oscillation pe-
riod. The latter shows a fingerprinting tent-shaped pro-
file over the Lz domain, with a maximum at Lmax mark-
ing the switch from the fully Marangoni- to Marangoni-
buoyancy-controlled regimes. Lz and ∆R exert a coher-
ent impact on buoyancy intensity accounted by the rela-
tion ∆R1/3 Lmax = const.
The analysis of the oscillation period suggests that
surface-tension-driven convection is the key phenomenon
at the basis of chemohydrodynamic oscillations (either
damped or sustained ones), mainly imposing critical con-
ditions for their possible occurrence and their character-
istic space length and oscillation period.
The dispersion relations of chemohydrodynamic waves
that characterizes the wave speed vp as a function of
the wavelength show a strong dependence on the reac-
tor height, expressed by the relative wavelength Lz/λ.
This is different from typical RD chemical waves, where
the wave speed only depends on the characteristic wave-
length of the wave train. The functional dependence is
also reversed: in the chemo-Marangoni scenario, short-
wavelength waves (long relative wavelength Lz/λ) prop-
agate faster, following the typical dispersion relation of
surface-tension-driven hydrodynamic waves.
In analogy with the period dependence on Lz, in
chemo-Marangoni-buoyancy waves, the dispersion rela-
tion presents two distinct branches with a drastically dif-
ferent scaling that allows to discriminate between dif-
ferent regimes. Buoyancy forces are effective when the
relative wavelength Lz/λ > 0.5. Combined to the in-
formation given by the oscillation period, data taken at
different reactor depths further indicates that coherent
patterns of this oscillatory scenario are mainly located at
the top-half of the reactor.
As a whole, the dispersion relations reveal the hy-
drodynamic nature of the oscillatory phenomena de-
scribed in this paper. However, differently from classical
cases where Marangoni stresses can promote oscillations
thanks to an externally imposed constant spatial gradi-
ent of temperature52, here the localized reaction works
as an autonomous and self-propagating source of sur-
face tension (and density) gradients that activate con-
vective flows unstable towards oscillatory instabilities. A
hierarchy of the main ingredients at play in this chemo-
hydrodynamic interplay can be established: (i) the re-
active source is the essential primer of the phenomenon,
sustaining localized surface and density gradients; (ii) the
resulting Marangoni flows undergo the oscillatory insta-
bility, thus determining the instability critical condition

and the wave characteristic length; (iii) buoyancy-driven
flows feature a feedback that sustains oscillations and
modulate their properties.
Chemical oscillations in this system are therefore the re-
sult of shifting from kinetic to hydrodynamic complexity.

Experimental implementation of chemo-hydrodynamic

oscillations

The mechanism discussed above presents a broad in-
terest because the chemical scheme used can be tailored
to any second-order process and its simplicity paves the
way for the experimental isolation of such a class of os-
cillators.
Proof-of-concept experiments can be devised taking into
account the minimal ingredients described above (mainly
localization of the reactive source, that has to sustain a
large surface-tension gradient). Labscale model systems
may thus include processes that also induce thermal con-
tributions. In general, temperature gradients can affect
the local surface tension and density of a fluid in a sim-
ilar way as concentration fields (solutal contribution).
A local decrease of temperature normally increases the
surface tension and the density. When surface tension
(and density) changes are prevalently induced by ther-
mal effects due to chemical or dissolution processes, the
resulting spatio-temporal dynamics should adhere qual-
itatively to those predicted with our model, with tem-
perature and flow pulsations in place of concentration
waves52. Chemo-Marangoni-driven oscillations could be
then obtained in very shallow quasi-2D reactors (or in mi-
crogravity flights) through endothermic processes (where
solutal effects can be neglected) such as the endother-
mic alkyl-formate hydrolysis57 or dissolution of salts like
NH4NO3. Although a quantitative description in these
systems needs to include proper thermal and energy pa-
rameters, the resulting framework is isomorphic to the
isothermal model presented above.
The presence of thermal contribution introduces a fur-
ther degree of freedom when it combines to solutal ef-
fects. Their global effect will be a weighted composition
of these two contributions and depends on the way they
combine, i.e. whether cooperatively or antagonistically.
If one of these two contributions is uncoupled from the
chemical source, their relative effect can be tuned and
oriented at will. For example, photochemical isomer-
ization of thermoreversible photochromic spiro-oxazine
or azobenzene surfactant molecules are associated with
a considerable and tunable increase of surface-tension,
that can be maintained in far-from-equilibrium condi-
tions under constant irradiation58,59. With this kind
of systems, the heat provided by a localized irradiation
to promote the photochemical transformation can also
induce a density decrease, providing antagonistic buoy-
ancy forces that match minimal conditions for chemo-
Marangoni-buoyancy oscillations.
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VI. CONCLUSIONS

The mechanisms presented in this paper not only
address the initial question whether emergent oscilla-
tory behaviors are possible without nonlinear kinetic
feedback, but they also open the perspective of a new
paradigm for chemical patterns formation, including sta-
tionary structures, based on a simple chemistry. The
chance for finding these patterns relies on expanding the
parametric exploration of the chemohydrodynamic inter-
play, that so far has been restricted to the specific an-
tagonism described by ∆M,∆R > 0 (quadrant I of the
parameter space of Fig.5). The reverse antagonism (the
reaction decreases the surface tension and can increase
the local density) when ∆M,∆R < 0 and cooperative
scenarios with both chemically-driven contribution to the
flow oriented in the same direction (∆M > 0,∆R < 0
and viceversa) are under current analysis. Preliminary
results show that even in these cases, chemohydronamics
can bear emergent oscillatory behaviors, confirming the
generality of this mechanism as a source of complexity.
Chemohydrodynamic waves can be further generalized
by considering different specific properties and combina-
tions of the chemical species (δi, Ri,Mi). Check simu-
lations in this regard show that we can complicate the
dynamics with asymmetric evolution of the concentra-
tion fields, though the main ultimate dynamical features
remain preserved.
Our theoretical framework can guide the interpretation
of similar periodic dynamics observed in several contexts
with both fundamental and applied relevance. To name
a few, pulsations have been found at microscopic level
in crystals undergoing dissolution in a host solution60.
This complex kinetics in the release of matter due to the
surface reactivity can impact many different processes
ranging from corrosion to pharmaceutical bioavailability.
Our study enlarges the comprehension and the panorama
of waves triggered by surface-driven convection found
in non-reactive systems61–63. Oscillatory dynamics in-
deed occur in self-propulsion of particles powered by
dissolution-driven Marangoni flows13, thus affecting the
efficiency and predictability of the motion.
The identification and control of oscillatory instabilities
driven by chemo-hydrodynamics is also key for the op-
timization of industrial processes involving heat and/or
mass transfer across reactive interfaces, in which natu-
ral and Marangoni convection play an important or even
a dominant role. An example is represented by crystal
growth techniques52. It has been already shown how the
efficiency of this kind of processes, pointing at growing
high-quality single crystals with uniform material prop-
erties, is challenged by the formation of striations or
segregation bands due to the onset of thermally-induced
Marangoni and natural oscillatory convection.
From the fundamental viewpoint chemohydrodynamic
mechanisms can be exploited to engineer new viable
pathways to chemical oscillators with simple reactions
that, as mentioned in the introduction, can be used in

turn to approach transport of chemical information and
signalling as well as to actuate reactive fluids and films.
Finally, the simplicity of the proposed mechanisms for
self-organized structures can impact and stimulate new
studies in areas as fascinating as Origin of Life, where
one of the main challenges resides in identifying plausi-
ble scenarios for emergent chemical structures and early
functional behaviors in contexts characterized by a min-
imal chemistry.

SUPPLEMENTARY MATERIAL

See Supplementary Material for illustrative movies
of chemo-Marangoni- and chemo-Marangoni-buoyancy-
driven pulsations.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

ACKNOWLEDGMENTS

M.A.B. gratefully acknowledges funding from Pro-
gramma Operativo Nazionale (PON) Ricerca e Inno-
vazione 20142020, Asse I “Capitale Umano”, Azione I.2
A.I.M. “Attrazione e mobilita dei ricercatori”, Linea 2
(Attrazione dei Ricercatori). Funding by Prodex, F.R.S.-
FNRS, and the Fondation ULB is also gratefully acknowl-
edged.

REFERENCES

1G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium

Systems (Wiley, New York, 1977).
2E. Pálsson and C. E Cox, “Origin and evolution of circular waves
and spirals in dictyostelium discoideum territories,” Proc. Natl.
Acad. Sci. 93, 1151–1155 (1996).

3G. Kastberger, E. Schmelzer, and I. Kranner, “Social waves in
giant honeybees repel hornets,” PLoS One 3, e3141 (2008).

4A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and
K. Showalter, “Dynamical quorum sensing and synchronization
in large populations of chemical oscillators,” Science 323, 614–
617 (2009).

5V. K. Vanag, “”cognitive” modes in small networks of almost
identical chemical oscillators with pulsatile inhibitory coupling,”
Chaos 29, 033106 (2019).

6M. A. Budroni, K. Torbensen, S. Ristori, A. Abou-Hassan, and
F. Rossi, “Membrane structure drives synchronization patterns
in arrays of diffusively coupled self-oscillating droplets,” J. Phys.
Chem. Lett. 11, 2014–2020 (2020).

7K. Gizynski and J. Gorecki, “Cancer classification with a network
of chemical oscillators,” Phys. Chem. Chem. Phys. 19, 28808–
28819 (2017).

8P. L. Gentili, M. S. Giubila, and B. M. Heron, “Processing bi-
nary and fuzzy logic by chaotic time series generated by a hy-

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
42

56
0



Chemo-hydrodynamic pulsations 14

drodynamic photochemical oscillator,” Chem. Phys. Chem. 18,
1831–1841.
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