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a b s t r a c t

Stochastic thermodynamics is an extension of classical nonequilibrium thermodynamics
that aims at including the effect of fluctuations occurring at small scales. In many
cases, the starting point of such approaches is a Fokker–Planck equation for the
probability density associated to the underlying stochastic variables. It is known that
for chemically reactive systems, the usual equation for entropy production derived
in this framework is not consistent with its macroscopic counterpart. It moreover
also differs from the expression obtained with the master equation, from which the
aforementioned Fokker–Planck equation derives. In the present work, we obtain a
Fokker–Planck based alternative formula for entropy production in reactive systems
that converges to the correct expression in the thermodynamic limit and is moreover
consistent with expressions obtained with the master-equation based approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of stochastic thermodynamics is to reassess the laws of classical thermodynamics by including
information related to fluctuations, which requires thermodynamic quantities of interest to be expressed in terms of
stochastic processes. The early developments of stochastic thermodynamics focused on ensemble-averaged properties of
Markovian systems, including those where chemical reactions take place [1–6]. More recently, a growing attention has
been paid to extending these concepts to individual trajectories, which has led to expressions connecting thermodynamic
quantities and the properties of large deviations [7–14].

In this work, we focus on the stochastic thermodynamics of Markovian reactive systems. The most appropriate way
to model these systems is to start from the master equation ruling the probability distribution for the number of
particles. The Gibbs–Shannon definition of entropy has been used in combination with such chemical master equations
to build a self-consistent stochastic thermodynamics, which can be shown to lead to results compatible with classical
thermodynamics [2–5]. In particular, it is possible to deduce in this framework a stochastic entropy production that is
always non-negative and converges to the expected expression in the macroscopic limit [3,4].

For moderately small systems, the master equation can be replaced by a Fokker–Planck equation for the associated
probability density. In a way similar to what is done with the master equation, the resulting chemical Fokker–Planck
equation can be combined with the Gibbs–Shannon definition to give an evolution equation for the stochastic entropy.
The identification of entropy production is, however, problematic in this case. A general expression for entropy production
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based on the Fokker–Planck equation has been put forth [7,15–18]. To be consistent with the other approaches, this
Fokker–Planck entropy production should be equal to the weak-noise limit of the entropy production obtained with the
master equation, and should converge to the classical thermodynamic form in the macroscopic limit. However, previous
studies showed that these basic constraints are not respected in the case of reactive systems [19–21]. It has been proposed
that this discrepancy arises from the fact that the Fokker–Planck equation is a coarse graining in time of the master
equation, and that this situation leads to a loss of information and, thus, of entropy [21]. As a consequence, a stochastic
thermodynamics based on the chemical Fokker–Planck equation would be consistent only at or close to equilibrium, where
this loss of information becomes negligible.

In the present work, we show that a consistent thermodynamic framework can, in fact, be constructed from the
chemical Fokker–Planck equation. The key ingredient to do so resides in the way thermodynamic forces and fluxes, and
thus entropy production, are defined. We start by rapidly recalling, in Section 2, how the rate of change of entropy and
entropy production are defined in classical macroscopic thermodynamics. In Section 3, we present the master equation-
based approach to stochastic thermodynamics. Section 4 contains the main results of this work. We first introduce the
general expression for the evolution of the stochastic entropy based on the Fokker–Planck equation. Then, we discuss how
to decompose this equation into an entropy production and an entropy flow. Section 5 is devoted to a simple example,
with which we compare our approach to previous ones. Conclusions and potential extensions of the present work are
presented in Section 6.

2. Macroscopic nonequilibrium thermodynamics

We start with a short presentation of the classical macroscopic approach to nonequilibrium thermodynamics. Consider
a reactive system at constant temperature T and volume V . The number of particles of each species k in the system
can change due to the occurrence of processes, which can correspond either to a chemical reaction or to an exchange
of particles with external reservoirs. The state of the system is defined by the number of particles of each species,
N = (N1,N2, . . .Nc). Each elementary process r induces a change of this state in the form of a jump N →N + νr , where
νr = (ν1r , ν2r , . . . νcr ) is a vector of stoichiometric coefficients, which are integers reflecting the process-induced variation
in the number of particles. Notice that there corresponds to each process r a backward process −r such that N →N − νr .

In classical nonequilibrium thermodynamics, the evolution equations for state functions are obtained by assuming
that their dependence on the state variables under nonequilibrium conditions is the same as in equilibrium [22,23].
Consequently, the time evolution for the entropy density s = S/V of a system with the above-mentioned constraints
is given by

ds
dt

=

∑
k

(
∂s
∂nk

)
T ,V ,nl̸=k

dnk

dt
, (1)

where we introduced the number densities nk = Nk/V , whose rate of change is given by

dnk

dt
=

∑
r

νkr vr . (2)

In the above expression, vr is the macroscopic rate of process r and νkr are the stoichiometric coefficients. Introducing
(2) in (1), the evolution law for s can be split into two distinct contributions (see [22,23] for details):

ds
dt

= φ + σ . (3)

The first part is the entropy flow,

φ =
1
T

∑
k,r

νkr

(
∂u
∂nk

)
T ,V ,nl̸=k

vr , (4)

where u is the density of internal energy. This contribution represents the variation of entropy due to exchange of mass
and heat with the environment. The second part, on which we focus here, is the entropy production and is a measure of
the dissipation due to the various processes:

σ =

∑
r

Ar vr =
1
2

∑
r

Ar (vr − v−r ), (5)

where we introduced the affinity of reaction,

Ar = −
1
T

∑
k

νkr µk, (6)

in which µk = (∂u/∂nk)T ,V ,nl̸=k
− T (∂s/∂nk)T ,V ,nl̸=k

is the chemical potential of species k. Note that we set Boltzmann’s
constant kB = 1 throughout the text for readability. For elementary chemical processes the affinity can be shown to be
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the logarithm of the ratio of forward and reverse rates [24],

Ar = ln
vr

v−r
. (7)

The second law of thermodynamics stipulates that σ ≥ 0 for any spontaneously occurring macroscopic process, with the
equality holding only at equilibrium. Eq. (5) indeed respects these constraints, since it can be rewritten as (see Eq. (7))

σ =
1
2

∑
r

ln
vr

v−r
(vr − v−r) . (8)

This quantity is always non-negative because of Jensen’s inequality, (a−b) ln(a/b) ≥ 0. It vanishes only whenever detailed
balance (vr = v−r ) holds for all reactions, which defines the chemical equilibrium state.

3. Stochastic thermodynamics based on the chemical master equation

We wish to extend Eq. (5) to systems where spontaneous fluctuations of composition take place. The effect of
fluctuations on the dynamics can be accounted for by considering the chemical master equation, which is an evolution
equation for the probability P(N , t) to find the system in a state N at time t:

dP(N , t)
dt

= V
∑
r

[
wr (N |N ′) P(N ′, t) − w−r (N ′

|N ) P(N , t)
]

≡ V
∑
r

[
Φr (N ′, t) − Φ−r (N , t)

]
(9)

In this equation, wr and w−r are the transition probabilities per unit time and per unit volume of the process r and of
the reverse process −r , respectively. Consequently, the quantities Φr and Φ−r are probability fluxes associated to the
corresponding reactions.

To find an expression for entropy production based on the above equation, a definition of the stochastic entropy is
required. Typically, the Gibbs–Shannon formula is used:

S̃(t) =

∑
N

[
S0 (N) − ln P(N , t)

]
P(N , t) ≡

∑
N

S∗ (N , t) P(N , t). (10)

S∗
= S0 − ln P plays the role of a statewise entropy and consists of two contributions: a part S0 representing the entropy

density of a system with a fixed number of particles, and a logarithmic part accounting for the variability of the system
through the probability distribution of the particles. The evolution equation for the stochastic entropy per unit volume
s̃ = S̃/V can be obtained by combining Eqs. (10) and (9):

ds̃
dt

=
1
V

∑
N

S∗ (N , t)
dP(N , t)

dt
. (11)

This equation is then usually split into two contributions:

ds̃
dt

= φ̃ + σ̃ (12)

where the stochastic entropy production is given by [2,3]

σ̃ =
1
2

∑
N ,r

Ãr
[
Φr (N ′, t) − Φ−r (N , t)

]
. (13)

In this expression, the mesoscopic affinity is defined by

Ãr = ln
Φr (N ′, t)
Φ−r (N , t)

. (14)

The stochastic entropy production (13) is always non-negative. Moreover, it becomes zero if and only if a stochastic
detailed balance holds for every reaction, i.e., whenever Φr (N ′, t) = Φ−r (N , t) for all r . This condition can be seen as
a stochastic extension of the macroscopic detailed balance and thus defines the equilibrium state in this framework.
Eq. (13) can also be shown to lead to the macroscopic expression (5) in the limit of infinite V , under the condition that
limV→∞ wr = vr . These properties suggest that Eq. (13) is a legitimate extension of entropy production to fluctuating
systems.
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4. Stochastic thermodynamics based on a chemical Fokker–Planck equation

An important property of the master equation is that it leads, in the limit of large V , to a Fokker–Planck equation for
the probability density ρ(n, t) ≡ V c P(N , t) that the concentrations n take a given value at time t . Consider, to show this,
the case of a 1-variable system (a more general derivation is given in Appendix A). Since the configuration N ′ leading to
a final state N after a reactive event r is given by N ′

= N − νr , the fluxes in Eq. (9) can be expanded to the leading order
in V−1 as [25]

Φr (V n′, t) =
1
V

[
wr ρ −

νr

V

(
∂ wr ρ

∂n

)
+

ν2
r

2 V 2

(
∂2 wr ρ

∂n2

)
+ · · ·

]
. (15)

We will not note the dependences in n and t anymore, for clarity. Eq. (9) thus yields to the dominant order in V−1 an
equation of the form

∂ρ

∂t
= −

∑
r

νr
∂ Jr
∂n

, (16)

in which

Jr = wr ρ −
νr

2 V

(
∂ wr ρ

∂n

)
(17)

is a probability flux associated to process r . An evolution equation such as (16) corresponds to multiple diffusion processes
in state space, with

νr wr

2 V
≡ Dr (18)

playing the role of a diffusion coefficient associated to each reaction r . We will refer to Eq. (16) as the chemical
Fokker–Planck equation, since it includes explicitly the contributions of various reaction channels.

Formulations of stochastic thermodynamics relying on the Fokker–Planck equation have been put forth, based on the
continuous Gibbs–Shannon entropy per unit volume

s̃ =

∫
dn
[
s0 −

1
V

ln
ρ

V

]
ρ ≡

∫
dn s∗ ρ, (19)

where s0 = S0/V . An evolution equation for s̃ can easily be computed from the Fokker–Planck equation, in a way similar to
what is done for the master equation. However, the way it is decomposed into an entropy flow and an entropy production
differs. In most cases, the evolution law for entropy is rearranged in the following way:

ds̃
dt

=

∫
dn s∗

(
∂ρ

∂t

)
=

∫
dn
∑
r

νr

(
∂s∗

∂n

)
Jr

=
1
2

∫
dn
∑
r

νr

(
∂s∗

∂n

)
(Jr − J−r)

=
1
2 V

∫
dn
∑
r

νr

[
V
(

∂s0

∂n

)
−

wr − w−r

Dr − D−r
+

1
Dr − D−r

(
∂(Dr + D−r )

∂n

)]
(Jr − J−r )

+
1
2 V

∫
dn
∑
r

νr
(Jr − J−r)

2

ρ (Dr − D−r )
. (20)

With this decomposition, the mean stochastic entropy production is defined by

σ̃FP =
1
2 V

∫
dn
∑
r

νr
(Jr − J−r)

2

ρ (Dr − D−r )
=

∫
dn
∑
r

(Jr − J−r)
2

ρ (wr + w−r )
≥ 0. (21)

Expressions of this type have been used to analyze the stochastic thermodynamics of various problems, including
Brownian motion, mass transport in the presence of multiple reservoirs, electrical circuits, etc. Despite its apparent
universality, this formula is inappropriate in the case of reactive systems. The entropy production (21) is zero at
equilibrium because of detailed balance (since then Jr = J−r ) and is non-negative out of equilibrium, but its form is
not compatible with the macroscopic formula (8) and the master-equation expressions (13)–(14). This is obvious from
the fact that Eq. (21) lacks the logarithmic terms found in the macroscopic and in the master-equation based equations.
Note that this issue had been pointed out by other authors before (see, for example, [21]), and was interpreted as a loss
of information related to the transition from a master equation to a Fokker–Planck equation. Our objective in this work is
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to show that a correct expression for the stochastic entropy production can nevertheless be obtained, based on quantities
entering the chemical Fokker–Planck equation (16).

Our starting point is that we interpret the inadequacy of Eq. (21) as a sign that this definition of the stochastic entropy
production incorrectly identifies the thermodynamic forces in the case of chemical reactions. Indeed, we expect a general
expression for the stochastic entropy production to read

σ̃FP =
1
2

∫
dn
∑
r

ÃFP
r (Jr − J−r ), (22)

where ÃFP
r would be the Fokker–Planck thermodynamic force associated to each process r . Using Eq. (21) amounts to

assuming that the affinity of each reaction is proportional to its associated flux, ÃFP
r ∝ (Jr − J−r ), which corresponds to the

linear regime of nonequilibrium thermodynamics. It is well known that in a macroscopic description, the validity of the
linear regime for chemical reactions is restricted to systems that are very close to equilibrium, because of the essentially
exponential dependence of the macroscopic reaction rates on the corresponding affinities. It is thus, retrospectively, not
surprising that equations such as Eq. (21) were observed to provide a self-consistent thermodynamic framework only in
the close vicinity of chemical equilibrium [21]. What we must be looking for now is thus a nonlinear relation connecting
the probability fluxes of the Fokker–Planck equation to affinities.

We adopt to this hand an approach based on the observation that although they are distinctly different quantities, Jr/ρ
plays in the Fokker–Planck formulation a role analogous to the rates vr in the macroscopic approach. This equivalence
appears more clearly by comparing the macroscopic evolution equation for entropy,

ds
dt

=

(
∂s
∂n

)
dn
dt

=

∑
r

νr

(
∂s
∂n

)
vr , (23)

to its Fokker–Planck counterpart,
ds̃
dt

=

∫
dn
∑
r

νr

(
∂s∗

∂n

)
Jr

=

∫
dn

[∑
r

νr

(
∂s∗

∂n

)
Jr
ρ

]
ρ (24)

Indeed, Eq. (24) can be seen as the mean of a state-dependent rate of change (the terms under bracket), which has the
same structure as the macroscopic rate itself, provided that Jr/ρ represents a stochastic extension of vr . This idea is further
supported by the fact that in the macroscopic limit, Jr tends to wr ρ and the equivalence with the macroscopic rate is
ensured since limV→∞ wr = vr in order for the master equation to predict the correct macroscopic kinetics. Building
on this analogy, and remembering that the macroscopic affinity is given by Eq. (7), we are led to propose the following
expression for the stochastic affinity in the Fokker–Planck approach:

ÃFP
r = ln

Jr
J−r

(25)

The evolution equation for s̃ can thus be reorganized as follows:
ds̃
dt

=

∫
dn
∑
r

νr

(
∂s∗

∂n

)
Jr

=

∫
dn
∑
r

[
νr

(
∂s∗

∂n

)
− ln

Jr
J−r

]
Jr (26)

+

∫
dn
∑
r

ln
Jr
J−r

Jr , (27)

in which we now define the stochastic entropy production as

σ̃FP =

∫
dn
∑
r

ln
Jr
J−r

Jr =
1
2

∫
dn
∑
r

ln
Jr
J−r

(Jr − J−r ). (28)

The generalization to multiple variables is straightforward (see Appendix A).
Expression (28) has the properties expected from a stochastic extension of entropy production. First, it is always non-

negative because of Jensen’s inequality. Second, it becomes zero if and only if the probability flux associated to each
reaction channel vanishes (Jr = J−r for all r). It thus acts as a measure of the distance from chemical equilibrium, just like
its macroscopic counterpart and the master equation expression. Finally, σ̃FP can be shown to be the weak-noise limit
of the entropy production obtained in the master equation framework, Eq. (13). Comparing Eqs. (17) and (15), we note
indeed that the fluxes Jr and Φr are related to the dominant order in V−1 by

Φr (N ′, t) =
1
V

[
Jr −

νr

2 V

(
∂ wr ρ

∂n

)
+ . . .

]
.
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Inserting this relation into Eq. (13) and switching to continuous coordinates yields (see Appendix B for details)

σ̃ =
1
2

∫
dn
∑
r

[
Jr − J−r −

νr

2 V

(
∂ wr ρ

∂n

)
−

ν−r

2 V

(
∂ w−r ρ

∂n

)]
× ln

Jr −
νr
2 V

(
∂ wrρ

∂n

)
J−r +

ν−r
2 V

(
∂ w−r ρ

∂n

)
=

1
2

∫
dn
∑
r

ln
Jr
J−r

(Jr − J−r) + o(V−1). (29)

We thus reach the conclusion that to the dominant order in V−1, σ̃ = σ̃FP , inasmuch as the rates wr appearing in both
approaches are the same. Since σ̃ converges to the correct macroscopic expression, the entropy production (28) based on
the fluxes appearing in the Fokker–Planck equation is thus consistent with both the master equation and the macroscopic
expressions. Note that this result can be extended to the case of multiple variables (see Appendix B).

To summarize, we just showed that it is possible to define an entropy production from the chemical Fokker–Planck
equation in a way that is consistent with other thermodynamic frameworks. The important step here was to realize that
the stochastic affinity should be expressed as a nonlinear function of fluxes, just like in macroscopic thermodynamics.
We now illustrate these results on a simple example.

5. Example: A nonequilibrium linear reaction scheme

To illustrate the properties of the expression hereby proposed, let us consider a simple, yet representative example of
chemical reaction,

A
k1
⇀↽
k−1

X
k2
⇀↽
k−2

B. (30)

In this scheme A and B are pool species whose concentrations a and b are kept constant and X is a variable intermediate.
For isothermal ideal systems, the mean-field rate equation for n is

dn
dt

= (v1 − v−1) − (v2 − v−2)

= (k1 a − k−1 n) − (k2 n − k−2 b). (31a)

The deterministic entropy production associated with this scheme reads

σ = (v1 − v−1) ln
v1

v−1
+ (v2 − v−2) ln

v2

v−2

= (k1 a − k−1 n) ln
k1 a
k−1 n

+ (k2 n − k−2 b) ln
k2 n
k−2 b

(31b)

As expected, σ vanishes when the two fluxes vanish separately, which occurs under the zero overall affinity (equilibrium)
condition k1 k2 a = k−1 k−2 b.

Since the reaction rates are linear in the composition of the system, one has wi = vi in the master equation (9). The
linearity of this system also has the consequence that the probability distribution P(N, t) is Poissonian. Consequently, it
can be shown [3] that the stochastic entropy production of the master equation approach and the macroscopic entropy
production coincide at the steady state: σ̃ = σ . Our expression (28) reads

σ̃FP =

∫
dn
[
(J1 − J−1) ln

J1
J−1

+ (J2 − J−2) ln
J2
J−2

]
. (32)

In order to calculate this entropy production explicitly, both the reaction rates and the probability density ρ are required.
This is in general a difficult task, but evaluating these quantities at steady state is much simpler if one limits oneself to
corrections of the order of V−1. Indeed, it can easily be shown (in a manner similar to what was done in [4]) that in such
case the entropy production can be approximated by

σ̃FP =

(
ln

v1

v−1

)
ns

∫
dn (J1 − J−1) +

(
ln

v2

v−2

)
ns

∫
dn (J2 − J−2) ,

where ns is the deterministic steady state value obtained by setting (31a) equal to 0. Moreover, since in the weak-noise
limit ρ is a Gaussian centered on the macroscopic solution, all the contributions proportional to the diffusion coefficients
in the fluxes Jr will be zero upon averaging. One thus finds that the stochastic entropy production is in this case equal to
Eq. (31b), and thus also to the master equation expression, as required.
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Fig. 1. Steady-state entropy production associated with the reactive system (30). The black line is given by our definition for the stochastic entropy
based on the Fokker–Planck equation, Eq. (32), which is here equal to the macroscopic expression (31b). The red dashed curve is the formerly used
expression for entropy production, Eq. (34). Parameter values are: k1 a = k−1 = k2 = k−2 = 1, so that the steady-state value for n is ns = (b + 1)/2.

For comparison purposes, note that the ‘‘classical’’ Fokker–Planck expression (21) reads here

σ̃FP = 2
∫

dn
(J1 − J−1)2

ρ(k1 a + k−1 n)
+ 2

∫
dn

(J2 − J−2)2

ρ(k2 n + k−2 b)
. (33)

In the macroscopic limit, this expression becomes at steady-state

σ̃FP = 2
(k1 a − k−1 ns)2

k1 a + k−1 ns
+ 2

(k2 ns − k−2 b)2

k2 ns + k−2 b
. (34)

As mentioned earlier, this expression will be zero at equilibrium and non-zero for nonequilibrium states as expected,
but is in general not compatible with the macroscopic equation for entropy production. We note, however, that close to
equilibrium where v1 ≈ v−1 one can expand

ln
v1

v−1
≈

v1 − v−1

v−1
≈ 2

v1 − v−1

v1 + v−1
. (35)

Inserting this (and a similar equation for the other term in the entropy production) into (31b) leads to Eq. (34), which is
thus correct only in the direct vicinity of the equilibrium state. This is illustrated in Fig. 1.

6. Conclusions

For moderately small systems, the master equation on which the stochastic kinetics of reactive systems usually rests
can be approximated by a Fokker–Planck equation. Previous attempts at developing a thermodynamic framework based
on such Fokker–Planck equations were shown to lead to inconsistencies in the case of chemically active systems. These
discrepancies were explained in terms of errors induced by the temporal coarse-graining procedure used to derive the
Fokker–Planck equation from the master equation (see [21]).

In the present work, we propose an alternative explanation. Our starting point was to note that the expression for the
ensemble-averaged entropy production that is typically used in stochastic thermodynamics based on the Fokker-Planck
equation implies that the thermodynamic fluxes (the rates of the processes) are simply proportional to the corresponding
thermodynamic forces. While this is a reasonable assumption for mass or heat diffusion, the rates of chemical reactions
are known to depend exponentially on the affinities, at least at the macroscopic scale.

We thus proposed a new definition in which the stochastic affinities are logarithms of the ratio of the forward and
reverse stochastic fluxes associated with a given reaction. We showed that this new definition is consistent with the weak-
noise limit of the master-equation formulation as well as with the classical expression of macroscopic nonequilibrium
thermodynamics. The expression that we derived can be used as a reliable basis for studies on the effect of fluctuations
on the thermodynamics of mesoscopic reactive systems.

A natural next step would be to try and generalize this approach to pathwise quantities. It is known that Fokker–Planck
equations make large errors in the probability of time-reversed paths. It would be interesting to see if the present approach
can lead to thermodynamically consistent results in such cases, or if better approximations of the master equation (for
example, stochastic differential equations with Poissonian noise) are needed.
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Appendix A. Multivariate expression for entropy production

We show here how to derive the multivariate expression for entropy production. The expansion of the probability
fluxes of the master equation reads, for multivariate systems (c is the total number of species),

Φr (V n′, t) = V c

[
wr ρ −

∑
k

νkr

V

(
∂ wr ρ

∂nk

)
+

∑
k,l

νkr νlr

2 V 2

(
∂2 wr ρ

∂nk ∂nk

)
+ · · ·

]
. (A.1)

This leads to a Fokker–Planck equation of the type

∂ρ

∂t
= −

∑
k

(
∂ Jk
∂nk

)
(A.2)

where the probability flux per species Jk reads

Jk =

∑
r

νkr wr ρ −

∑
r,l

νkr νlr

2 V

(
∂ wr ρ

∂nl

)
. (A.3)

In a way similar to what was done in the main text, each of these fluxes can be decomposed as a sum over processes,
Jk =

∑
r νkr Jr , where

Jr = wr ρ −

∑
l

νlr

2 V

(
∂ wr ρ

∂nl

)
. (A.4)

The evolution law for the stochastic entropy now reads

ds̃
dt

=
1
2

∫
dn
∑
k,r

νkr

(
∂s∗

∂nk

)
(Jr − J−r ). (A.5)

Introducing the quantity

ÃFP
r = ln

Jr
J−r

(A.6)

and rewriting (A.5) as

ds̃
dt

=
1
2

∫
dn
∑
k,r

[
νkr

(
∂s∗

∂nk

)
− AFP

r

]
(Jr − J−r ) +

1
2

∫
dn
∑
r

Ar (Jr − J−r ), (A.7)

we obtain our final expression for the stochastic entropy production in the Fokker–Planck framework:

σ̃FP =
1
2

∫
dn
∑
r

AFP
r (Jr − J−r ). (A.8)

Appendix B. Equivalence with the master equation approach

We give here details concerning the equivalence between our formulation and the master equation approach. The
master equation takes the form (see Eq. (7) in the main text for the definition of the various quantities entering this
equation)

dP(N , t)
dt

= V
∑
r

[
Φr (N ′, t) − Φ−r (N , t)

]
. (B.1)

The stochastic entropy in this setting is usually taken to be the Gibbs–Shannon entropy,

S̃ =

∑
N

[
S0(N ) − ln P(N , t)

]
P(N , t). (B.2)

The evolution equation for the density of stochastic entropy s̃ obtained by differentiating (B.2) with respect to time and
then dividing by V can again be split into two contributions [3,4]:

ds̃
dt

= φ̃ + σ̃ . (B.3)
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We are interested here in the production term, which reads

σ̃ =
1
2

∑
N ,r

[
Φr (N ′, t) − Φ−r (N , t)

]
ln

Φr (N ′, t)
Φ−r (N , t)

. (B.4)

We now consider the weak-noise limit of the systems under consideration. We start by noting that the configuration
N ′ leading to a final state N after a reactive event r is given by N ′

= N − νr , where νr is the vector of stoichiometric
coefficients (see main text). Introducing the probability density, the product wr P can be expanded as (remember that c
stands for the total number of species)

Φr (N ′, t) = wr (N ′) P(N ′, t) = V−c
[
wr

(
n −

νr

V

)
ρ

(
n −

νr

V
, t
)]

= V−c

[
wr ρ −

∑
k

νkr

V

(
∂ wr ρ

∂nk

)
+ · · ·

]
(B.5)

Switching to continuous variables and introducing (B.5) into (B.4) yields

σ̃ =
1
2

∫
dn
∑
r

[
wrρ − w−rρ −

∑
k

νkr

V

(
∂ wr ρ

∂nk

)]
ln

wr ρ −
∑

k
νkr
V

(
∂ wr ρ

∂nk

)
w−r ρ

. (B.6)

We now introduce in this expression the stochastic fluxes (A.4),

σ̃ =
1
2

∑
r

∫
dn

[
Jr − J−r −

∑
k

νkr

2 V

(
∂ wr ρ

∂nk

)
−

∑
k

νk−r

2 V

(
∂ w−r ρ

∂nk

)]

× ln
Jr −

∑
k

νkr
2 V

(
∂ wr ρ

∂nk

)
J−r +

∑
k

νk−r
2 V

(
∂ w−r ρ

∂nk

)
=

1
2

∑
r

∫
dn (Jr − J−r) ln

Jr
J−r

+
1
2

∑
r

∫
dn (Jr − J−r)

[
ln

(
1 −

∑
k

νkr

2 V Jr

(
∂ wr ρ

∂nk

))
− ln

(
1 +

∑
k

νk−r

2 V J−r

(
∂ w−r ρ

∂nk

))]

−
1
2

∑
r

∫
dn

[∑
k

νkr

2 V

(
∂ wr ρ

∂nk

)
−

∑
k

νk−r

2 V

(
∂ w−r ρ

∂nk

)]
ln

Jr −
∑

k
νkr
2 V

(
∂ wr ρ

∂nk

)
J−r +

∑
k

νk−r
2 V

(
∂ w−r ρ

∂nk

) (B.7)

The first term in the second equality is equal to the Fokker–Planck entropy production that we derived earlier. The second
term can be evaluated in the limit of large V by using ln (1 + x) ≈ x for |x| ≪ 1, which gives

−
1
2

∑
r

∫
dn [Jr − J−r ]

[∑
k

νkr

2 V Jr

(
∂ wr ρ

∂nk

)
+

∑
k

νk−r

2 V J−r

(
∂w−r ρ

∂nk

)]

= −
1
2

∑
r

∫
dn [J−r − Jr ]

[∑
k

νk−r

2 V J−r

(
∂ w−r ρ

∂nk

)
+

∑
k

νkr

2 V Jr

(
∂wr ρ

∂nk

)]

=
1
2

∑
r

∫
dn [Jr − J−r ]

[∑
k

νkr

2 V Jr

(
∂ wr ρ

∂nk

)
+

∑
k

νk−r

2 V J−r

(
∂w−r ρ

∂nk

)]
= 0. (B.8)

As for the third term, we note that

−
1
2

∑
r

∫
dn

[∑
k

νkr

2 V

(
∂ wr ρ

∂nk

)
+

∑
k

νk−r

2 V

(
∂ w−r ρ

∂nk

)]
ln

Jr −
∑

k
νkr
2 V

(
∂ wr ρ

∂nk

)
J−r +

∑
k

νk−r
2 V

(
∂ w−r ρ

∂nk

)
= −

1
2

∑
r

∫
dn

[∑
k

νkr

2 V

(
∂ wr ρ

∂nk

)
+

∑
k

νk−r

2 V

(
∂ w−r ρ

∂nk

)]
ln

Jr −
∑

k
νkr
2 V

(
∂ wr ρ

∂nk

)
Jr +

∑
k

νkr
2 V

(
∂ wr ρ

∂nk

)
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or, using again ln (1 + x) ≈ x,

≈
1
2

∑
r

∫
dn

[∑
k

νkr

2 V

(
∂ wr ρ

∂nk

)
+

∑
k

νk−r

2 V

(
∂ w−r ρ

∂nk

)] [∑
k

νkr

2 V Jr

(
∂ wr ρ

∂nk

)]
,

which is of order V−2. We thus reach the conclusion that to the dominant order in 1/V ,

σ̃ = σ̃FP , (B.9)

inasmuch as the rates appearing in both approaches are the same.
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