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We derive general conditions for the emergence
of sustained chemomechanical oscillations from a
non-oscillatory adsorption/desorption reaction in a
gas/solid porous medium. The oscillations arise from
the nonlinear response of the solid matrix to the
loading of the adsorbed species. More particularly,
we prove that, in order for oscillations to occur,
adsorption of the gas must in general cause a
swelling of the solid matrix. We also investigate
the prototypical case of Langmuir kinetics both
numerically and analytically.

This article is part of the theme issue ‘Dissipative
structures in matter out of equilibrium: from
chemistry, photonics and biology (part 2)’.

1. Introduction
Fifty years ago, Prigogine & Lefever [1] proposed the
simple abstract model of a chemical oscillator now
known as the Brusselator. It is difficult to overstate the
role that the Brusselator has had in the development
of nonlinear chemical dynamics. In the years that
followed, other simple oscillatory models, some of them,
such as the Oregonator [2], based more directly on
specific chemical oscillators, were developed and led to
important insights into the phenomenology of nonlinear
chemical reaction networks.

These models, and most early experimental studies of
chemical oscillation, focused on homogeneous systems,
typically in aqueous solution, though both experiments

2018 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2017.0374&domain=pdf&date_stamp=2018-11-12
http://dx.doi.org/10.1098/rsta/376/2135
mailto:epstein@brandeis.edu
https://dx.doi.org/10.6084/m9.figshare.c.4245455
https://dx.doi.org/10.6084/m9.figshare.c.4245455
http://orcid.org/0000-0003-3180-4055


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170374

.........................................................

and models were subsequently extended beyond well-stirred systems to include the waves and
patterns that arise in reaction–diffusion systems.

In the half century following the birth of the Brusselator, investigations of chemical oscillation
and pattern formation have increasingly turned toward heterogeneous media, where the
necessary nonlinearity in the dynamics may arise primarily from the kinetics of the chemical
reaction network, the behaviour of the medium or the interaction of the two. For example,
experiments on beads of cation exchange resin impregnated with the catalyst of the Belousov–
Zhabotinsky (BZ) reaction in a solution of the BZ reactants [3] or on microemulsions consisting
of the BZ components in aqueous nanodroplets surrounded by a monolayer of surfactant in a
sea of octane [4] give rise to a much richer array of dynamical behaviour than the BZ reaction in
homogeneous aqueous solution. In these systems, the chemistry of the BZ reaction provides the
essential nonlinear dynamics, and the medium enables inherently oscillatory subunits to interact
in novel ways. On the other hand, in experiments involving relatively simple reactions, such as
the oxidation of carbon monoxide on metal surfaces [5], changes in the character of the surface
in response to changes in surface coverage by reactants and intermediates constitute the major
impetus for the wealth of patterns observed. Similarly, in gels one may contrast the behaviour
of oscillatory BZ gels, pioneered by Yoshida [6], in which the BZ dynamics drive the remarkable
chemomechanical behaviours observed, with the systems studied by Boissonade [7] and Horvath
et al. [8], in which a mildly nonlinear (spatially bistable, but not oscillatory) kinetics interacts with
a pH-responsive gel medium so as to generate chemomechanical oscillations.

In this paper, we explore whether extremely simple chemistry, i.e. adsorption and desorption
of a single chemical species onto a porous solid whose porosity varies nonlinearly with surface
coverage, can result in oscillations. In our treatment, only one reversible elementary chemical
reaction step is involved, and complicated chemical feedbacks such as those encountered in
the BZ reaction are excluded. We develop and analyse a two-variable model for such a system,
which one might dub the ‘poroscillator’, and demonstrate that oscillations can in fact arise under
appropriate conditions. We first describe the elements of the model and the corresponding set of
rate equations in a rather general way. This allows us to derive the broad conditions under which
the model might allow oscillations. We then turn to the specific case of Langmuir kinetics subject
to different functional dependences of the porosity on the surface coverage. We use our theory to
prove that while linear porosity functions are unable to destabilize the steady state, nonlinear
porosities can indeed produce oscillations under appropriate conditions. We numerically test
these last results by choosing a sigmoidal porosity function.

2. Theory in terms of surface concentration
Let us consider a system where a solid porous matrix of volume Vs is continuously and uniformly
in contact with a gas phase of volume Vg. We assume that the gas phase contains a reactive
species X at molecular concentration C, which can reversibly adsorb on specific adsorption sites
on the surface of the solid matrix, whose total number per unit surface area of solid is σ t. We
define the fraction of adsorption sites occupied by the species X as the coverage θ and the
surface concentration of X molecules as σ = θσ t. We are interested in the case where the structural
properties of the solid matrix are modified by the presence of the adsorbed gas. More particularly,
we assume that the solid matrix can reversibly swell when molecules of X are either adsorbed or
desorbed, thus increasing the volume Vs.

Our first aim is to derive suitable evolution equations for C and σ . If we denote by vads and vdes
the molecular rates of adsorption and desorption—i.e. the number of gas molecules per unit time
that, respectively, adsorb onto or desorb from a unit surface of the solid matrix—we can write

dσ

dt
= vads − vdes. (2.1)

In order to derive a similar equation for C, we consider that, although Vs and Vg may vary because
of the adsorption reaction, the total volume Vt = Vs + Vg of the system—which is assumed to
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reside in a rigid container—is constant. If we define the porosity of the system as φ = Vg/Vt, the
quantity φC can only vary due to changes in the number of molecules of X in the gas phase,
which—in a closed system—only occur because of the adsorption/desorption reaction with the
solid matrix. The mass balance on the molecules of X in the volume Vt will therefore read

d(φC)
dt

= −d(ζσ )
dt

= −ζ (vads − vdes) − σ
dζ

dt
, (2.2)

where ζ is a specific surface area, i.e. the area of solid matrix divided by the total volume Vt.
Notice that when we expanded the derivative on the RHS of the previous equation, we had to

account for the fact that the specific surface area ζ can change in time because of the swelling of the
matrix. In a similar way, we cannot consider the porosity φ as constant in time when calculating
the time derivative of the LHS of equation (2.2), due to the fact that we assumed that Vs varies
with σ while Vt remains constant. This will therefore produce a term proportional to dφ/dt for
which, together with the term dζ/dt, we should in principle provide additional evolution laws.
This task can be properly performed only if we know how the mechanical properties of the
solid matrix relax in time in response to a change in composition, but such a detailed analysis
is beyond the scope of this paper. Our aim here is to investigate the possibility of identifying
a mechanochemical coupling that can lead to sustained oscillations with minimal ingredients;
therefore, we wish to keep our model as simple as possible. For this reason, we assume that we
can take all structural properties of the solid matrix to be functions of the coverage, whose precise
form is, of course, system dependent, but which nevertheless allows us to invoke the chain rules
dφ/dt = (∂φ/∂σ )(dσ/dt) and dζ/dt = (∂ζ/∂σ )(dσ/dt). One way to realize this is, for example, if
the relaxation of the solid matrix to a new configuration due to composition changes occurs on a
much faster time scale than that of the reaction. Using the chain rule, we can write equation (2.2) as

dC
dt

= −
[(

ε + ∂ε

∂σ
σ

)
1 − φ

φ
+ (C − εσ )

∂ ln φ

∂σ

]
(vads − vdes), (2.3)

where we have additionally expressed the specific surface area as ζ = ε(1 − φ), with ε being the
ratio between the surface and the volume of the solid matrix.

Equations (2.1) and (2.3) describe a closed system, which will eventually reach a stationary
state determined by the conditions for the chemical equilibrium of the adsorption/desorption
reaction. In order to have sustained oscillations in time, we need to keep the system far from its
equilibrium state by opening it to fluxes of matter (and/or energy). We therefore add to the RHS
of equation (2.3) a term δ(C0 − C), which models the effect of exchanging X at a constant flux rate
δ with an external reservoir kept at constant concentration C0. The resulting equation describes
a zero-dimensional or a “well-stirred” porous medium. A more detailed modelling approach
would require the addition of a diffusion term to (at least) equation (2.3) and the introduction
of exchanges with the external reservoir as boundary conditions. We do not expect, however,
that such an extension of the present model would provide new qualitative insight with respect
to the questions that are being assessed in this work. We shall therefore view this flux term as
an approximation for infinitely large diffusion coefficients and understand that any instability
that we may find in this homogeneous model may develop with a non-trivial spatial dependence
when finite diffusion coefficients are taken into account.

So far we have kept the reaction rates vads and vdes rather general, but, in order to analyse the
stability of the system, we need to know how these rates depend on the variables C and σ . For the
sake of generality, we still avoid giving explicit expressions for the reaction kinetics at this stage
and assume only that the desorption rate depends on the the surface concentration of adsorbed X
molecules, while the adsorption rate also depends on the concentration of X in the gas phase. This
assumption is reasonable if the gas phase is dilute in X and it is consistent with the most common
adsorption/desorption kinetic laws. Introducing the rescaled concentration c = C/C0, our system
of equations can be written as

dc
dt

= −β(c, σ )(vads(c, σ ) − vdes(σ )) + δ(1 − c) (2.4)
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and
dσ

dt
= vads(c, σ ) − vdes(σ ), (2.5)

with

β(c, σ ) =
(

ε(σ )
C0

+ ∂ε(σ )
∂σ

σ

C0

)
1 − φ(σ )

φ(σ )
+
(

c − ε(σ )
σ

C0

)
∂ ln φ(σ )

∂σ
, (2.6)

and where we have highlighted the dependences of the possibly non-constant quantities on the
dynamical variables.

We assume hereafter that, for any gas concentration, there is a single value of the surface
coverage at which the adsorption and desorption rates are equal. Equations (2.4) and (2.5)
therefore possess a unique steady state (1, σ 0), where σ 0 is the solution of the balance
condition vads(1, σ 0) = vdes(σ 0). This is true, for example, for non-cooperative adsorption without
intermolecular forces between adsorbates, or in the absence of phase transitions in the adsorbed
phase. This restriction, however, does not affect the generality of our results even in the case of
multistable systems.

In order to analyse the stability of the above steady state, we linearize equations (2.4) and (2.5)
around it, obtaining the Jacobian matrix

J =
[

−β(1, σ 0)(vads)c − δ −β(1, σ 0)((vads)σ − (vdes)σ )
(vads)c (vads)σ − (vdes)σ

]
, (2.7)

where all terms are evaluated at the steady state and where for simplicity of notation we have
dropped the c and σ dependences and use a c or σ subscript to denote partial derivatives with
respect to either variable. The signs of the trace

Tr(J) = −β(1, σ 0)(vads)c − δ + (vads)σ − (vdes)σ , (2.8)

and the determinant

Det(J) = δ[(vdes)σ − (vads)σ ], (2.9)

of J determine the stability of the steady state. As shown below, Det(J) > 0, which implies that the
steady state will become unstable for Tr(J) ≥ 0, with the equal sign marking the onset of a Hopf
bifurcation, typically associated with the creation of limit cycles and sustained oscillations.

Although we do not have explicit expressions for the kinetic laws in our model, we can still
make educated guesses as to the signs of the derivatives in equations (2.8) and (2.9). The simplest
scenario is when the rates of adsorption and desorption are monotonic functions of c and σ . Under
this assumption, the rate of adsorption typically increases with the concentration of gas and
decreases with the surface concentration of adsorbate. Similarly, the rate of desorption generally
increases with the surface concentration of adsorbed species. From these considerations, we take

(vads)c > 0, (vads)σ < 0, (vdes)σ > 0. (2.10)

Under conditions (2.10), Det(J) is always positive regardless of the exact form of the kinetic laws.
As for the trace, the last three terms in equation (2.8) are always negative under our assumptions
and therefore act as stabilizing terms. The only source of instability can therefore come from the
first term on the RHS of (2.8) if and only if β(1, σ 0) < 0. In order to see what this means in more
explicit terms, we combine equation (2.8) with the inequality Tr(J) ≥ 0 and rearrange to obtain(

1 − ε
σ 0

C0

)
(ln φ)σ + εσ

σ 0

C0

1 − φ

φ
≤ −

[
ε

C0

1 − φ

φ
+ δ

(vads)c
+ (vdes)σ − (vads)σ

(vads)c

]
. (2.11)

Expression (2.11) therefore provides a general condition that can be used as a test for both
theoretical and experimental systems when the dependence of the solid structure on the
composition is known or can be empirically determined.
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3. Theory in terms of fractional coverage
Sometimes, it is more convenient to express the evolution equations in terms of the fractional
coverage θ rather than the surface concentration σ . This is especially true if we want to derive
explicit expressions for the control parameters of our system from simple microscopic arguments,
because thinking in terms of fractional coverage and occupancy leads to much simpler geometric
and kinetic arguments. This will be the case, for example, in the next section, when we explicitly
introduce the Langmuir kinetics. Since our main purpose in switching to the θ framework is
to have a more intuitive interpretation of the structure of our system, we first want to better
quantify the relations between the structural parameters in our model, namely φ, σ t and ε, by
introducing a general geometric view of the microscopic structure of the system, which will allow
us to introduce structural constraints in our kinetic model in a precise and controlled way.

Let us idealize the porous matrix as being composed of a collection of nb blocks each of volume
Vb and surface area Ab. Each block has on its surface a number ns of adsorption sites, which is
constant. For convenience, we develop our analysis in terms of the porosity variable. If we call
VbM the maximum volume that can be reached by each box—i.e. the volume for which all the
space is filled with solid, or in other words nbVbM = Vt—we can express the volume of each box as

Vb = VbM(1 − φ). (3.1)

We also assume that, although the size of the blocks changes during adsorption, their shape does
not. This ansatz allows us to write the surface to volume ratio and its derivative as

ε = Ab

Vb
= ε0Vγ

b = ε0Vγ

bM(1 − φ)γ (3.2)

and
εσ = ε0Vγ

bM(−γ )(1 − φ)−1+γ φσ , (3.3)

where ε0 and γ are constants specific to the geometry of the blocks. In general, for non-fractal
objects of regular shape, γ = − 1

3 regardless of the shape, while ε0 is shape dependent: for example,
cubic boxes have ε0 = 6, spherical boxes have ε0 = 62/3π1/3, etc. With this in mind, equation (3.3)
shows that εσ and φσ have the same sign. Finally, we can use (3.2) to express σ t and σ t

σ in terms
of φ,

σ t = ns

Ab
= ns

ε0
V−(1+γ )

bM (1 − φ)−(1+γ ) (3.4)

and
σ t

σ = ns

ε0
V−(1+γ )

bM (1 + γ )(1 − φ)−(2+γ )φσ . (3.5)

The last equation, incidentally, shows that, if ns is constant, σ t
σ and φσ must have the same sign.

In order now to derive the evolution equations in terms of θ , we can either start from equations
(2.1) and (2.2), assume that σ t = σ t(θ ), ε = ε(θ ) and φ = φ(θ ), and follow a completely analogous
reasoning to the one used to derive equations (2.4) and (2.5), or alternatively we can start
directly from equations (2.4) and (2.5) and use the fact that dσ = d(σ t(σ )θ ) = σ t(1 + θ (ln σ t)θ ) dθ

to transform all the derivatives with respect to σ into derivatives with respect to θ . In either case,
we arrive at the following evolution laws for c and θ :

dc
dt

= −β̃(c, θ )(vads(c, θ ) − vdes(θ )) + δ(1 − c) (3.6)

and
dθ

dt
= vads(c, θ ) − vdes(θ )

σ t(θ )(1 + θ (∂ ln σ t(θ )/∂θ ))
, (3.7)

with

β̃(c, θ ) = ε(θ )
C0

1 − φ(θ )
φ(θ )

+ (θ/C0)((1 − φ(θ ))/φ(θ ))(∂ε(θ )/∂θ ) + (c/σ t(θ ) − ε/C0θ )(∂ ln φ(θ )/∂θ )
1 + θ (∂ ln σ t(θ )/∂θ )

.

(3.8)
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Comparison between equations (2.4), (2.5) and equations (3.6), (3.7) shows that they have a similar
form, but the multiplying factors in the latter are more complicated than in the former. This is
a consequence of explicitly expressing σ as the product of θ and σ t: as a result, the structural
changes due to the swelling of the solid matrix are not only reflected in the change of porosity
φ and surface to volume ratio ε, but also in the change of the total site density σ t. Similarly to
what we did before, we can compute the Jacobian matrix J′ of equations (3.6) and (3.7) around the
steady state, (1, θ0), which has trace and determinant

Tr(J′) = −β̃(1, θ0)(vads)c − δ − (vdes)θ − (vads)θ
σ t(1 + θ0 (ln σ t)θ )

(3.9)

and

Det(J′) = δ
(vdes)θ − (vads)θ
σ t(1 + θ0(ln σ t)θ )

. (3.10)

Now we assume that the rates of adsorption and desorption, respectively, decrease and
increase with θ , so that

(vads)θ < 0, (vdes)θ > 0. (3.11)

Once again we find that, in order for the trace (3.9) to be positive, a necessary but not sufficient
condition is that β̃ < 0. However, in order to have a Hopf bifurcation now, we must also require
that the denominator of equation (3.10) be positive—that is to say, (ln σ t)θ > −1/θ0—in order for
Det(J′) > 0; otherwise the steady state will be a saddle point. In more explicit terms, we can obtain
sustained oscillations if(

1 − ε
σ tθ0

C0

)
(ln φ)θ + ε

σ tθ0

C0

1 − φ

φ
(ln ε)θ

≤ −
[(

ε

C0

1 − φ

φ
+ δ

(vads)c

)
σ t(1 + θ0(ln σ t)θ ) + (vdes)θ − (vads)θ

(vads)c

]
(3.12)

and

1 + θ0(ln σ t)θ > 0. (3.13)

Because of equations (3.2) and (3.4), we can express (ln ε)θ and (ln σ t)θ as

(ln ε)θ = (−γ )
φ

1 − φ
(ln φ)θ (3.14)

and

(ln σ t)θ = (1 + γ )
φ

1 − φ
(ln φ)θ , (3.15)

which simplifies equations (3.12) and (3.13) as

(ln φ)θ ≤ −
[(

ε

C0

1 − φ

φ
+ δ

(vads)c

)
σ t + (vdes)θ − (vads)θ

(vads)c

](
1 + δ σ t

(vads)c

(1 + γ )θ0φ

1 − φ

)−1

(3.16)

and

(ln φ)θ > −
(

(1 + γ ) θ0φ

1 − φ

)−1

. (3.17)

A careful look at equation (3.16) shows that the sums of the terms within square and round
brackets are always positive, meaning that a necessary (although not sufficient) condition for Tr(J)
to be positive is that (ln φ)θ must be strictly negative. This means that, in order to generate self-
sustained chemomechanical oscillations from an adsorption/desorption reaction, the porosity
must be a decreasing function of θ or, in other words, that adsorption of gas must cause a swelling
of the solid matrix. This is a significant result, because it provides a strong restriction on the types
of solid structures that can potentially produce this type of oscillation.
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4. Langmuir kinetics
In order to gain more insight into the physical requirements needed to satisfy expression (2.11)
or (3.16) and (3.17), we now introduce an explicit adsorption/desorption mechanism: Langmuir
kinetics [9]. The main reason for this choice is that the Langmuir kinetics is arguably the simplest
prototypical example of adsorption/desorption kinetics. This system will therefore provide a
useful benchmark to assess the conceptual validity of the theory we propose here, while at the
same time serving as a minimal example for possible future investigations. In other words, if the
recipe we propose here is able to generate oscillations with Langmuir kinetics, it is even more
likely that oscillations will arise when more complex kinetic laws are considered.

The rates of adsorption and desorption for Langmuir kinetics can be expressed as

vads = kadsC0σ
tc(1 − θ ) = kadsC0c(σ t − σ ) (4.1)

and
vdes = kdesσ

tθ = kdesσ , (4.2)

where kads and kdes are two kinetic parameters whose values depend on the temperature and on
the chemical nature of the system, but which are assumed to be constant with respect to both the
adsorption/desorption reactions and the expansion/contraction of the solid matrix. In order to
rigorously verify this assumption in microscopic terms, one can explicitly derive equations (4.1)
and (4.2) from the kinetic theory of gases [10] and show that the microscopic quantities defining
the two kinetic constants are not affected by the swelling of the solid matrix (see the electronic
supplementary material).

Since the mathematical formulation in terms of σ seems to be simpler, let us us first try to plug
the Langmuir kinetics into equation (2.11). From equations (4.1) and (4.2), we can write the partial
derivatives appearing in (2.11) as

(vads)c = kadsC0σ
t
(

1 − kads C0

kadsC0 + kdes

)
, (vads)σ = −kadsC0(1 − σ t

σ ), (vdes)σ = kdes, (4.3)

which are, of course, evaluated at the steady state (1, kadsC0σ
t/(kadsC0 + kdes)). Notice that in

order to satisfy (vads)σ < 0 we need to have σ t
σ < 1, which certainly holds for non-cooperative

systems, where converting an empty site into an occupied site cannot cause the appearance of
an unoccupied site. By using the above expressions and defining Keq = kads/kdes, we can rewrite
equation (2.11) as (

1 − ε
σ tKeq

C0Keq + 1

)
(ln φ)σ + εσ

σ tKeq

C0Keq + 1
1 − φ

φ

≤ − ε

C0

1 − φ

φ
− 1 + C0Keq

σ t

(
1

C0Keq
+ δ

C0kads
+ (1 − σ t

σ )
)

. (4.4)

The previous expression shows that it is possible in principle to have chemomechanical
oscillations even with simple Langmuir kinetics and that, as long as (1 − ε(σ tKeq/(C0Keq + 1)) > 0,
only decreasing porosity functions are able to satisfy this condition. At this point, it would be
tempting to substitute equations (3.2)–(3.5) in (4.4) to test which types of porosity functions
would satisfy it, but should we adopt this straightforward approach, we would quickly encounter
difficulties. The problem is that the porosity that enters (4.4) is evaluated at the steady state, but
the steady state value of σ explicitly depends on σ t, which is in turn expressed as a function of
the porosity, leading to self-recursive definitions, which may greatly complicate the mathematical
treatment. Since the source of this self-recursiveness is the fact that the steady state value of σ

depends on σ t, we can overcome the problem by switching to the formulation in terms of the
fractional coverage θ , whose steady state value according to equations (4.1) and (4.2) is θ0 =
KeqC0/(KeqC0 + 1). The θ framework also offers the advantages of a more intuitive interpretation
of the microscopic properties of the solid matrix in relation to its adsorption-induced swelling,
and of working with a variable that is normalized between 0 and 1.



8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170374

.........................................................

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4
q

f

0.6 0.8 1.0

Figure 1. Porosity as a function of θ . The black curve is the porosity function defined by (5.1) withφM = 0.5,φm = 0.1, θj =
0.4 and α = 11.5. For reference, we also plot in grey φcrit as a parametric curve versus θ 0 when K̃eq varies from 10−3 to 103

(withγ = − 1
3 and ρ̃ = 0.1). The first condition in (4.12) is satisfied if at θ = θ 0 the black curve lies below the grey one. The

vertical bar marks the location of θ 0, a case that is analysed in more detail below, corresponding to K̃eq = 0.68.

By substituting equations (4.1) and (4.2) into (3.6) and (3.7) and taking into account equations
(3.2), (3.4), (3.14) and (3.15) we can write the evolution equations for our system as

dc
dτ

= − [ρ̃/φ + c(ln φ)θ ]
1 + (ln φ)θ (1 − γ )(φ/(1 − φ))θ

(
c(1 − θ ) − θ

K̃eq

)
+ δ̃(1 − c) (4.5)

and

dθ

dτ
= 1

1 + (ln φ)θ (1 − γ )(φ/(1 − φ))θ

(
c(1 − θ ) − θ

K̃eq

)
, (4.6)

where we have introduced the non-dimensional quantities

τ = C0kadst, ρ̃ = ns

C0VbM
, K̃eq = C0Keq, δ̃ = δ

C0kads
. (4.7)

Thanks to the non-dimensionalization (4.7) we are able to characterize the system in terms of
just three independent dimensionless parameters: K̃eq, δ̃ and ρ̃. The parameter K̃eq represents
a normalized equilibrium constant, which controls the equilibrium position θ0. The parameter
δ̃ is the ratio between the rate of exchange with the external reservoir and the intrinsic time
scale of the reaction, C0kads. The parameter ρ̃ represents the ratio between the total volume
concentration of sites and the reference gas concentration C0. This quantity plays a very important
role in our theory, because it controls the importance of the structural changes on the overall
dynamics. Notice that ρ̃ is independent of the system-dependent geometric quantities ε0 and
γ . More generally, the independence of equations (4.5) and (4.6) from ε0 is significant, because it
means that these equations are valid regardless of the specific geometric details of the microscopic
structure.

The oscillatory instability arises from the term proportional to (ln φ)θ within the square
brackets in equation (4.5), which, as we already saw, must be negative. Notice, however, that
the effect of this destabilizing structural term is opposed by the term proportional to ρ̃, which is
always positive. If ρ̃ is large, the quantity within square brackets in (4.5) will be less dependent
on changes in porosity, and the steady state will be stable. This result suggests that the emergence
of oscillations will be facilitated in systems where there are more gas molecules relative to the
number of adsorption sites.
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Figure 2. Porosity function (a) and bifurcation diagram (b) forφM = 0.5,φm = 0.1, θj = 0.4,α = 10, ρ̃ = 0.1, δ̃ = 1 and
γ = − 1

3 . The solid black and grey curves represent the same quantities as in figure 1. The dashed grey curve marks the value
of the termwithin square brackets in (4.10). The blue, red and purple curves, respectively, are�min,�max and (lnφ)θ : the steady
state is unstable when the purple curve lies between the blue and red curves. The grey, red and blue curves have been plotted
as parametric curves versus θ 0 when K̃eq varies from 10−3 to 103. The labelled vertical bars mark the positions of five different
values { 1©, 2©, 3©, 4©, 5©} of θ 0 corresponding to K̃eq = {0.490, 0.538, 0.708, 0.977, 1.072}.

Switching to more quantitative terms, from equations (4.1) and (4.2) (and taking again into
account equations (3.2), (3.4), (3.14) and (3.15)), we can calculate that for Langmuir kinetics

(vads)θ = −V−γ

bM C2
0kads

ε0
ρ̃(1 − φ)−(1+γ )

(
1 − (ln φ)θ (1 − γ )

φ

1 − φ
(1 − θ0)

)
(4.8)

and

(vdes)θ = V−γ

bM C2
0kads

ε0

ρ̃

K̃eq
(1 − φ)−(1+γ )

(
1 + (ln φ)θ (1 − γ )

φ

1 − φ
θ0
)

, (4.9)

which are guaranteed to be in agreement with (3.11) under our working hypothesis (ln φ)θ < 0.
Substituting the above equations into the conditions for the Hopf bifurcation (3.16) and (3.17) and
rearranging in terms of (ln φ)θ leads to the two inequalities

− (ln φ)θ ≥ �min = 1
(1 + γ )

1 − φ

φ

1 + K̃eq

K̃eq

[
(1/δ̃)(1 + 1/K̃eq + (1/(1 + K̃eq))(ρ̃/φ)) + 1

(1/δ̃)(1/(1 + γ )K̃eq)((1 − φ)/φ) + 1

]
(4.10)

and

− (ln φ)θ < �max = 1
(1 + γ )

1 − φ

φ

1 + K̃eq

K̃eq
. (4.11)

A necessary but not sufficient requirement in order to have oscillations is thus to identify a region
of the parameter space for which �min < �max. This is possible if and only if the term within square
brackets in (4.10) is smaller than 1, which—assuming (1 + γ ) > 0—translates into

φ < φcrit = 1 − (1 + γ )(K̃eq/(1 + K̃eq))ρ̃

1 + (1 + γ )(1 + K̃eq)
, with 0 < (1 + γ )

K̃eq

1 + K̃eq
ρ̃ < 1. (4.12)

Thus, in addition to the negative slope rule we discussed earlier, oscillations with Langmuir
kinetics require that the value of the porosity at the steady state does not exceed a threshold
value φcrit determined by K̃eq and ρ̃, which in turn must also respect the second condition in
(4.12). For γ = − 1

3 , this latter condition becomes 0 < θ0 < 3/2ρ̃, which is automatically (although
not exclusively) satisfied if we keep ρ̃ < 3

2 . It therefore seems that oscillations are more likely to
occur if ρ̃ is not too large. On a similar note, we observe that the spread between �min and �max

increases when the term within square brackets in (4.10) becomes smaller. If δ̃ is very large, this
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Figure 3. Numerically calculated phase portraits for the five sets of parameters described in figure 2. The four curves in each
panel correspond to four different initial conditions. The black point marks the location of the steady state. The dotted grey
curve is the nullcline dθ/dτ = 0. The numerical integrations in this and the following figures have been performed with a
Runge–Kutta algorithm, by using the NDSolve function of Mathematica.

quantity approaches 1, making oscillations impossible. Thus, oscillations are more easily obtained
for small values of both ρ̃ and δ̃.

Once all the above conditions are met, the ability of the system to produce chemomechanical
oscillations will only depend on the structural response of the solid matrix with respect to the
concentration of adsorbate. In our theory, this response is expressed in terms of the functional
dependence of φ on θ . If we use a simple linearly decreasing porosity of the form

φ(θ ) = φM − (φM − φm)θ , (4.13)

it is possible to prove that equations (4.10) and (4.11) are never satisfied. This means that, in
order to generate sustained oscillations with a simple Langmuir scheme, one needs a nonlinear
dependence of the porosity on the fractional coverage.

5. Numerical results
In order to gain more intuition into the role played by the control parameters on the emergence
of oscillations, we perform numerical integrations of equations (4.5) and (4.6) by introducing the
sigmoidal porosity function

φ(θ ) = φm + (φM − φm)( 1
2 + 1

2 Erf[−α(θ − θj)]), (5.1)

which smoothly decreases from an upper plateau φM to a lower value φm in the neighbourhood
of θ = θj; the sharpness of the jump is controlled by the parameter α (figure 1).

Examining figures 2–4, we observe that the instability region is bounded by a supercritical
Hopf bifurcation for large values of θ0 (between 5© and 4©), which gives rise to a stable limit cycle,
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Figure 5. Bifurcation diagrams for the porosity function and equilibrium constant described in figure 1 at several values of
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and by a subcritical Hopf bifurcation for small values of θ0 (between 3© and 2©), which produces
an unstable limit cycle within the previous stable one. The limit cycle formed by the supercritical
Hopf bifurcation survives past the subcritical Hopf bifurcation and disappears through a saddle–
node bifurcation of limit cycles (between 2© and 1©) after colliding with the unstable limit cycle.
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Figure 6. Numerically calculated phase portraits for the nine sets of parameter values in figure 5. Colour coding is the same
as in figure 3. The initial condition of the only plotted trajectory in each panel was chosen to be very close to the (unstable)
steady state.

Therefore, if we keep ρ̃ and δ̃ constant, oscillations can emerge in essentially two ways as we
change the value of K̃eq: either gradually and with small initial amplitude—when decreasing K̃eq

from the high θ0 stability region—or abruptly with large initial amplitude—when increasing K̃eq

from the low θ0 stability region.
Finally, figures 5–7 exhibit the effect of varying ρ̃ and δ̃ while keeping K̃eq constant. Figure 5

demonstrates that the region where oscillations are possible (i.e. the region between the red and
blue curves) shrinks as we move to larger values of either ρ̃ (moving from (a,d,g) to (c,f,i)) or δ̃

(moving from (a–c) to (g–i)), as we had already predicted by looking at the form of the term within
square brackets in (4.10). The numerical simulations provide insights not available from a linear
stability analysis: how ρ̃ and δ̃ affect the amplitude and the period of oscillations. Figure 6 shows
that increasing either ρ̃ or δ̃ tends to decrease the amplitude of the limit cycle, with ρ̃ having a
larger effect than δ̃. This is confirmed by looking at figure 7, which shows the time evolution of
φ and θ . These time series also show that increasing δ̃ causes a dramatic decrease in the period
of oscillations, while increasing ρ̃ has a more modest (and non-monotonic) effect on the period.
In other words, the numerical integrations suggest that the amplitude of oscillation is primarily
controlled by ρ̃ while the period depends more strongly on δ̃.
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Figure 7. Numerically calculated time evolution ofφ (black curve) and θ (light blue curve) for the nine plots in figure 6.

6. Conclusion
The aim of this work has been to present a proof of concept for a new class of chemomechanical
oscillators that do not rely on an intrinsically oscillating reaction. Our primary goal was to show
that, when structural changes are coupled with simple adsorption/desorption kinetics, they can
provide a dynamical feedback that leads to the emergence of non-trivial behaviours. We have
shown that, in order for such behaviours to arise, the structural changes must fulfil several
requirements. One general criterion is that the porosity of the system must decrease as the surface
coverage of adsorbate increases near the steady state, i.e. there is an adsorption-induced swelling
of the solid matrix around the steady state.

In the particular case of Langmuir kinetics, we mentioned that a linear dependence of the
porosity on the adsorbate loading cannot create an instability. This result suggests that, in order to
compensate for the relative simplicity of the reaction, we need to introduce a nonlinear feedback
in the dynamical response of the structure. An interesting thing to test in the future is whether this
constraint may be relaxed if nonlinear adsorption/desorption kinetics (involving, for example,
different degrees of molecular cooperativity) are taken into account or, in other words, what are
the minimal requirements on the adsorption kinetics in order to build oscillations with a linear
porosity function. The introduction of one or more competing adsorbates or of chemical reactions
on the surface are additional features that would make the model more generally applicable (and
more prone to oscillation).

We also showed that there may be additional universal restrictions—in addition to the general
decreasing slope of the porosity function—in order to build oscillations with a given adsorption
scheme. In the case of the Langmuir scheme, we found that the value of the porosity at the steady
state must not exceed a critical threshold that depends on the parameters of the system. Finally,
we found in a simple numerical example that oscillations are possible within a relatively large
range of values of the control parameters and can arise with a wide range of amplitudes and
periods.
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Although we recognize that at this stage our results are only a theoretical prediction, we
hope that this work may inspire future investigations aimed at experimentally finding, or
even designing, examples of ‘poroscillators’. A critical problem to solve toward that end is to
identify the microscopic properties that a material must have in order to produce the kind of
nonlinear response needed for oscillations. Finally, an important question that we do not address
in this paper concerns the thermodynamic properties of the class of systems discussed here.
While standard chemical oscillators are kept out of equilibrium by constant introduction of
fresh reactants and removal of products, the present system does not have a net reaction flux
from reactants to products. In other words, the oscillations seem to occur around a chemical
equilibrium state, despite the very well-known thermodynamic truth that chemical oscillations
cannot occur around equilibrium if mechanical equilibrium is also established in the system
[11]. This apparent contradiction may be resolved by considering that the system studied here
is never in a state of mechanical equilibrium, owing to its continuous expansion and contraction
cycles. This observation suggests that these oscillations may be a particular case of mechanical
oscillations that are established and maintained through the action of a chemical reaction, rather
than being ‘fuelled’ by the chemistry itself. In other words, the poroscillator seems to be akin
to a metronome whose internal cogs and wheels are represented by the chemical reaction, but
where the spring that keeps the system far from equilibrium is driven by something else. It would
therefore be very interesting to examine more closely the thermodynamics of the poroscillator to
try to identify the thermodynamic driving force responsible for keeping the system out of balance,
thereby providing the conditions needed for oscillations.
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