page d'accueil   sommaire  

Imre HORVATH


coordonnées


Imre HORVATH
tel +32-2-650.55.35, fax +32-2-650.57.67, cenoli@ulb.ac.be
Campus du Solbosch
CP165/67, avenue F.D. Roosevelt 50, 1050 Bruxelles



unités de recherche


Centre Interdisciplinaire de Phénomènes Non-linéaires et de Systèmes Complexes [Center for Nonlinear Phenomena and Complex Systems] (Cenoli)
TIPs - Physique des fluides [TIPs - Fluid Physics] (TIPs - FLUIDs)



projets


Ecoulements multi-échelles de fluides complexes et phénomènes interfaciaux (EU-FP7-MULTIFLOW) [Multiscale Complex Fluid Flows and Interfacial Phenomena (EU-FP7-MULTIFLOW)]
Le réseau Marie-Curie MULTIFLOW, financé par le 7ème Programme-Cadre de la Commission Européenne, a pour but principal la formation à la recherche de jeunes chercheurs, dans le domaine des écoulements complexes de fluides dans une grande gamme d'échelles de longueur allant du microscopique (quelques nanomètres) au macroscopique (quelques millimètres ou plus). Les fluides considérés peuvent également être complexes : solutions de polymères, de nanoparticules, colloides, cristaux liquides ... et les écoulements étudiés peuvent être influencés par de nombreux effets physico-chimiques : capillarité, changements de phase (évaporation, solidification, ...), mouillabilité, réactions chimiques, ... Le programme est articulé autour de questions fondamentales génériques, avec des applications dans de nombreux domaines technologiques : coatings, évaporateurs à film mince, refroidissement de composants électroniques, microfluidique, nanotechnologies, ... [The main objective of the Marie Curie network MULTIFLOW, funded by the 7th Framework Program of the European Commission, is to train young researchers in the field of complex flows of fluids, in a wide range of length scales from microscopic ones (some nanometers) to macroscopic ones (some millimeters or more). Considered fluids can also be complex : polymer solutions, nanofluids, colloidal solutions, liquid crystals, ... and the studied flows can also be influenced by numerous physico-chemical effects : capillarity, phase change (evaporation, solidification, ...), wetting, chemical reactions, ...The program is built around generic fundamental questions, with applications in several technological fields : coatings, thin-film evaporators, cooling of electronic components, microfluidics, nanotechnologies, ...]

Microfluidics and micromanipulation: multi-scale applicationsof surface tension (BELSPO PAI Micro-MAST) [Microfluidics and micromanipulation: multi-scale applications of surface tension (BELSPO IAP Micro-MAST)]
The scientific objectives of this IAP network are driven by fundamental questions raised in microfluidics, interfacial science, and micromanipulation. The rational use of surface tension, surface stress and capillary effects in micromanipulation will be applied to a selected number of highly relevant case studies by the network partners, including capillary gripping, capillary filling, capillary alignment, capillary sealing, capillary self-assembly and droplet manipulation (incl. generation and transport). These fundamental questions can be grouped into three categories:1. Fluid statics and dynamics: How much force is applied on solids by menisci and micro-flows in a given geometry? What happens if the solid bends when subject to these forces? Are the interfaces stable and what if not? What is the effect of an electric field? How can the microscopic description of wetting be translated into an adequate boundary condition at the macroscopic level (e.g. contact angle and hysteresis)?2. Surface engineering: How does a contact line move on a rough surface? Can one pattern the surface microscopically to control this motion? How is the motion affected by evaporation, or by the presence of colloid particles in the liquid or at the interface? Do these particles interact with the micro-patterns on the surface? Can one create highly 3D patterns on the surface by using capillary forces (e.g. to bundle nanotubes)?3. Liquid engineering: How to measure the interfacial properties of complex liquids where apart from surface tension a surface viscoelastic response is present? How to infer macroscopic properties from the dynamics at the molecular scale? And how to engineer liquids and tailor them to the requirements arising from applications? Can one make a liquid that is biocompatible, and has a large surface tension and a low viscosity?The proposed multidisciplinary program (involving ULB, ULg, KULeuven, UMons and ESPCI ' Paris) combines forefront research in physics, material science, chemistry and engineering. Its main originality relies in the efforts to enhance the collaboration of the interfacial science, microfluidics and microengineering communities. [The scientific objectives of this IAP network are driven by fundamental questions raised in microfluidics, interfacial science, and micromanipulation. The rational use of surface tension, surface stress and capillary effects in micromanipulation will be applied to a selected number of highly relevant case studies by the network partners, including capillary gripping, capillary filling, capillary alignment, capillary sealing, capillary self-assembly and droplet manipulation (incl. generation and transport). These fundamental questions can be grouped into three categories:1. Fluid statics and dynamics: How much force is applied on solids by menisci and micro-flows in a given geometry? What happens if the solid bends when subject to these forces? Are the interfaces stable and what if not? What is the effect of an electric field? How can the microscopic description of wetting be translated into an adequate boundary condition at the macroscopic level (e.g. contact angle and hysteresis)?2. Surface engineering: How does a contact line move on a rough surface? Can one pattern the surface microscopically to control this motion? How is the motion affected by evaporation, or by the presence of colloid particles in the liquid or at the interface? Do these particles interact with the micro-patterns on the surface? Can one create highly 3D patterns on the surface by using capillary forces (e.g. to bundle nanotubes)?3. Liquid engineering: How to measure the interfacial properties of complex liquids where apart from surface tension a surface viscoelastic response is present? How to infer macroscopic properties from the dynamics at the molecular scale? And how to engineer liquids and tailor them to the requirements arising from applications? Can one make a liquid that is biocompatible, and has a large surface tension and a low viscosity?The proposed multidisciplinary program (involving ULB, ULg, KULeuven, UMons and ESPCI ' Paris) combines forefront research in physics, material science, chemistry and engineering. Its main originality relies in the efforts to enhance the collaboration of the interfacial science, microfluidics and microengineering communities.]



disciplines et mots clés déclarés


Mécanique appliquée générale Mécanique des fluides Physico-chimie générale Physique de l'état condense [struct., propr. thermiques, etc.] Physique des phénomènes non linéaires Thermodynamique statistique

auto-organisation couplage chimie-hydrodynamique elasto-capillarité electro-capillarité films minces fluides complexes lévitation acoustique ligne de contact microfluidique micromanipulation mouillage nanoparticules polymères tension superficielle