Chapter 7

Experiments

The notion of multivariate time series learning was introduced in Chapter 1 using
two practical example problems. One was classification of human MEG signals and
the other was prediction of share prices in a portfolio. It was posited that measured
multivariate signals in both these problems were generated by dynamic transformation
of a low-dimensional latent time series whose acvf characteristics are assumed known
or given. For convenience, it was assumed that the latent time series is a zero-mean
unit-variance white noise.

In designing a modeling framework for multivariate time series in Chapter 4, many
merits and challenges in estimating the dynamic transformation in Fourier spectral
domain were seen and the modeling framework was called the spectral factor model.
In deriving an optimal model in Chapter 5, the following points were considered :

(a) From all possible spectral factor models, a model that is the most likely to have
generated the available measured time series according to the principle of maximum
likelihood was found. For the maximum likelihood spectral transformation matrix
W, through (5.5) it was found that a unique analytical solution is infeasible;
whereas an iterative solution in (5.25) was obtained.

(b) From all possible maximum likelihood spectral factor models, the one which maxi-
mizes the commonalities inherited by the dynamic transformation was sought. To
attain that model, a solution each for the analytical and the iterative procedures
via Algorithms 3 and 4, respectively, were formulated.

Through the design of a learning framework in Chapter 6, the following were provided:

(i) A classifier, in Algorithm 7, based on k-nearest neighbor proximity of the projec-
tion cast by the subspace defined by the optimal spectral factor model transfor-
mation of a test time series with the training examples from various classes.

(i) A vector autoregression prediction scheme, in Algorithm 8, that replaces the acvf
of the measured time series in the classical prediction equations with the acvf
corresponding to the commonalities.

Each of these learning objective, viz., classification and prediction, will be experimented
with in Sections 7.1 and 7.2, respectively. In both experiments, their data acquisition
scheme and the general characteristics of the measured variables will be briefly ex-
plained. Importantly, limitations and advantages of these experiments with respect to
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the data will be discussed.

One important aspect of a spectral factor model that was taken for granted in the
theoretical development was the choice of the latent dimensionality. Hence, in the
experiments, its influence on classification and prediction accuracies will be tested.
Another aspect of the modeling framework that will be tested is the optimal number of
subbands as required by Theorem 2.5 of the asymptotic theory of spectral estimates.

Implementation

In addition to the practicalities discussed in Section 6.1, certain implementation aspects
of the experiments need to be highlighted. In conducting these experiments, the
learning capabilities of the spectral factor model are to be demonstrated. To allow
appropriate benchmarking, publicly available data from live fields of study will be used
without much expert insights on the processes for which the data was collected. All
experiments were conducted using a standard laptop with Intel Dual Core T7200 CPU
(2.00GHz). Implementation of the entire estimation and the learning experiments were
written using the R language [101]; the codes are intended to be made publicly available
through the Comprehensive R Archive Network [4].

7.1 Classification of magnetoencephalography signals

In the first of the introductory examples in Section 1.2, the problem of dynamic factor
model using the exercise of classification of wrist movements based on magnetoen-
cephalogram (MEG) measurements was described. The task was originally part of a
prestigious international competition which has concluded; its solutions have already
been published and the winners were announced [1]. The typical approach of par-
ticipants in the competition involved processing time series to extract certain static
time and frequency domain signatures which are then fed to state-of-the-art classifiers.
Nevertheless, the competition is attempted here to demonstrate the capability of the
spectral factor model in utilizing much of the commonalities captured by the the latent
time series presumed for the measured MEG variables for the purpose of determining
the particular class of wrist movements responsible for modulating the MEG.

Briefly recap the discussion in Chapter 1 regarding what classification of time series
implies: A class of time series may be regarded as an ensemble of finite length time
series episodes if they are realizations of the same dynamic transformation of the same
latent time series. The dynamic transformation thus represents a class of measured
time series process. But remember that the dynamic transformation is such that it al-
lows inheritance of the commonalities maximally from the measured time series. Hence,
by comparing the dynamic or spectral transformation matrix of any two measured time
series processes, it should be possible to decide which among them a new unclassified
measured time series is closest to.

Detailed description and information of the task are available in the competition
website of [1]; the data was contributed by [2]. In summary, there are ¢ = 4 classes
of wrist movements for which 10 MEG time series are recorded. All movements are
appropriately resampled to have 7 = 400 samples and have similar stimulus cues and
movement procedures. Independent data sets D; and D5 are available for two human
subjects; each subject produces 40 example movements per class and with 73 and 74
unlabeled test movements, respectively. The number of test movements per class per
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Figure 7.1: MEG signals of a human subject D; corresponding to five brain spots
(V2,V4,V6,V8,V10) during four classes of wrist movements.

subject is also unknown. For neither learning nor testing, there is a need to mix the
data from D; and D, whereas tests are assessed on their average count of classification
accuracies, aj and ag, respectively.

Testing latent dimensionality: Since it is a prerogative to estimate an appropriate
latent dimensionality ¢ for a given measured dimensionality r, the classification accuracy
on all possibilities, viz., ¢ = 1,...,r — 1 will be tested. However, as discussed in
Section 6.1, there ought to be sufficient number of samples n within a subband of the
discrete Fourier transform of the measured factor model for enhancing reliability of the
estimated parameters W € C"*4,

Testing number of target frequencies: Yet another constraint that was summa-
rized in Section 6.1 was the number j of target frequencies; the sampling rate should be
high enough so that sufficiently large 7 number of target frequencies may be assigned
to meet the conditions of the asymptotic theory of spectral estimates. Unfortunately,
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Figure 7.2: MEG signals of a human subject Ds corresponding to five brain spots
(V2,V4,V6,V8,V10) during four classes of wrist movements.

the number of samples for the data was just 400.

Balancing asymptotic Gaussanity and curse of dimensionality: A balance
has to be struck between the demands for a large number of samples n within a
subband for estimating the parameters for a latent dimensionality up to ¢ = » — 1 while
ensuring that increasing n would not hamper the large number j of target frequencies
required. It is not the intention to pre-process the data to increase the sample rate
or perform other modifications that might lead to explainable bias in comparison of
spectral factor model performance with others. As a result, it was decided to use
r = 5 measured signals only from among the 10 measured signals. In Figures 7.1 and
7.2, these are marked as (V2,V4,V6,V8 V10) instead of (V1,...,V10) of Figure
1.3. The signals V'1,..., V10 correspond to spatially adjacent parts of the brain; other
than that no set of signals seem qualitatively more similar to another set of signals
and no particular criteria was used to select the set (V2,V4,V6,V8,V10) of five
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measured signals. Obviously, using only part of the measured variables for such a
tedious classification exercise invites the risk of losing information rich data that might
reflect in poor classification accuracy. As a validation, however, the exercise with the
other set (V1,V3,V5,V7,V9) of measured signals will also be carried out.

7=20 7=25 7=230
q ai a2 ai az aj a2
1 (4054 3288|4054 3288 | 40.54 26.03
2| 40.54 32.88 | 40.54 32.88 | 40.54 26.03
314054 3288|4054 3288 | 39.19 3151
4| 4054 3288 | 40.54 32.88 | 39.19 30.14

Table 7.1: Percentages of average accuracies a; and as in classifying ¢ = 4 classes of wrist
movements on two subjects D; and Dy, respectively, based on their 5-variate MEG
(V2,V4,V6,V8,V10). The classifier was based on Algorithm 7 using x = 3 for
various values for the latent dimensionality ¢ and number of target frequencies j.

7=20 71=25 7=230
q ai a2 ai az aj a2
14054 3288 |35.14 32883 | 40.54 32.88
2139.19 3288 | 36.49 3288 | 41.89 26.03
3139.19 32.88 | 36.49 3283|4189 31.51
4| 3514 3288 | 35.14 32.88 | 40.54 30.14

Table 7.2: Results of the experiments for the 5-variate MEG (V1,V3,V5,V7,V9) with the
same setup as in Table 7.1.

The accuracy of the classification are available in Tables 7.1 and 7.2. Note that the
data obtained for both those tables are from the same set of processes with a different
set of measured variables. However, within a table there are some accuracies which do
not seem to change with dimensionality ¢ or number of subbands j. Explaining such
results is attempted below:

Class imbalance: The number of test episodes per class was unequal. Note that,
had the classes were balanced, the classification is considered to be worse than
random classification if accuracies a7 and as were below % = 25%:; whereas
perfect classification will imply 100% in any case.

Nearest neighbours: Tests on k = 5 proved to be not significantly different from
those presented in Tables 7.1 and 7.2 for kK = 3. Whereas for larger &, the
accuracies were poorer especially for larger g possibly due to the sparsity of
consistent training samples against a larger set of features.

Asymptotic Gaussanity The subbands tend to lose their distinct Gaussanity with in-
creasing bandwidth, e.g., 7 = 25 and j = 20. In such situations, the classification
accuracy becomes invariant as more Gaussian subbands are merged. Subbands
could not be increased disproportionately because of the following reason.
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| Rank | ai as | Competing methods |

1 59.5 34.3 | Reported access to ‘bipolar’ time series unavailable to others.
Fourier and wavelet features selected via genetic algorithm.
Support vector and linear discriminant classifiers.

2 31.1  19.2 | 0-0.5 s segment with 0.5-8 Hz + 20 Hz subsampling
Principal Fisher discriminant time and Fourier features.
Fisher discriminant classifiers.

3 16.2  31.5 | Fourier, wavelet features selected via genetic algorithm.
Support vector classifiers.

4 23.0 17.8 | 0-0.5 s segment with 0.5-8 Hz.

Principal Fisher discriminant time and Fourier features.
Fisher discriminant classifiers.

Table 7.3: Percentage of average accuracies of the winners published by [1].

Curse of dimensionality: With 7 = 400 and 20 being the number of transformation
matrix parameters for ¢ = 4, the subbands with n = 20; 7 = 20; n = 16;j = 20;
and n =~ 13;j = 20 will all challenge the asymptotic theory and suffer from the
curse of dimensionality.

Competition: It is noteworthy that had the spectral factor model competed in [1]
with any ¢ and j setting, as shown in Table 7.3, the spectral factor model
would have bettered all reported accuracies except against the topper. The
topper of the competition seemingly had an advantage of prior knowledge or
extra information regarding the time series. Also, no pre-processing of the time
series was done unlike the competitors; this is because expertise on the scientific
procedure of the data acquisition was lacking nor was it desired to skew the
benchmarking of the spectral factor model through unexplainable effects of data
pre-processing. However, a basic Bartlett-Hann windowing [50] is performed.
This is a standard procedure for discrete Fourier transform techniques to reduce
the Gibbs phenomenon as the theoretically periodic finite length realization of a
time series is truncated [52].

Moreover, based on available results at [1], the spectral factor model results are
a clear front runner despite not requiring any of the advanced process knowledge and
preprocessing of the competitors. Also, it is very likely that there was a handicap in
the accuracy of the classification due to the inability to use all the measured MEG
variables due to the low data sampling rate as explained earlier. Nevertheless, the
results obtained demonstrate sufficient classification capabilities of the spectral factor
model.

7.2 Prediction of yield rates of shares

In Section 1.2, the discussion on the setup of the prediction experiments was initiated
through the example of a portfolio of shares obtained from [6]. The same motivation,
data and setup are continued here. There is access to a multivariate time series
consisting of synchronously sampled daily share prices of 6 German companies over a
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period of 2747 trading days during 01/01/1983 - 30/12/1993. As shown in Figure 1.5,
the component time series demonstrate similar dynamic covariations when they increase
or decrease with observable patterns which are not necessarily readily quantifiable.

It may be verified from Figure 1.5 that there exist increasing and decreasing general
trend patterns over a substantial number of samples. Hence, regression detrending on
the training series [22] will be performed. The current test series subject to prediction
is detrended using the parameters of the regression; the result is displayed in Figure
7.3. Despite this detrending, there still exists obvious non-stationarity in the data.
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Figure 7.3: Original share prices shown in Figure 1.5 are regression detrended and split (by
the gray vertical line) into the training series followed by the test series. The test
series is corrected using the regression parameters of the training series.

Hence, this prediction exercise will implicitly also test the robustness of the spectral
factor model in deviations from the assumption of weak stationarity.

Another pre-processing is effected in the frequency-domain for the robustness of
spectral estimates. Prior to estimation of the spectral factor model, windowing of the
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time series is performed to reduce the Gibbs phenomenon arising due to disparities
between the ends of the finite length realization of the time series [52]. As with the
previous experiment, a basic Bartlett-Hann windowing [50] will be performed to the
measured time series.

How hard is this chosen problem of prediction of multivariate time series? To
answer this question, the predictability of each component series of the multivariate
time series has to be checked. In Algorithm 8, the estimate for the time series {y,} for
a horizon s given the current sample y; and the past p — 1 samples of the series was
developed. On the other hand, a very naive prediction is to assume that the future
evolution is held on the current value. Obviously, the naivety will incur errors given the
stochastic nature of the time series. To measure the accuracy of the prediction, the
ratio of the mean of the square errors normalized to the variance of the true time series,
called the normalized mean square error (NMSE), is used. The sample counterpart of
the population NMSE will be used to assess predictive performance.

naive prediction

|| s || bmw | mru | VoW | kar | sie | bas |
1 124 | 0.83 | 1.33 | 096 | 1.53 1.8
2 284 | 1.77 | 266 | 1.97 | 3.11 | 3.57
3 465 | 278 | 3.94 | 2.97 4.8 5.25
4 6.54 | 3.83 | 524 | 3.83 | 6.36 | 6.66
5 8.58 4.84 6.55 4.72 8.14 8.14
6 || 1057 | 597 | 799 | 569 | 10.04 | 9.71
7 12.47 | 7.07 9.35 6.73 | 11.81 | 11.12
8 || 1437 | 825 | 10.77 | 7.75 | 13.55 | 12.61
9 || 1636 | 9.48 | 12.34 | 8.86 | 15.40 | 13.91
10 || 18.30 | 10.78 | 13.90 | 9.95 | 17.20 | 15.09
20 || 37.09 | 22.56 | 30.79 | 21.08 | 37.44 | 31.08

Table 7.4: NMSE% of the naive prediction ;¢ = y: of each component share price of the
portfolio for various horizons s.

Table 7.4 gives the NMSE for the naive prediction of each component measured
time series for various horizons s. Note that for s = 1, i.e., for the next trading day,
the naive prediction is reasonable as the NMSE registers just about 1% prediction error
of the variance of their true evolution. For s = 5, which generally corresponds to a
week-ahead prediction records individual prediction error NMSE averaging between 4 -
9 %, which is neither trivial nor grossly incorrect. For s = 10 and s = 20 in Table 7.4,
it may be seen that the naive prediction deteriorates substantially for larger horizons.

The spectral factor model prediction methodology is due to Algorithm 8. Following
the notations in earlier chapters, the measured dimensionality is » = 6 and a latent
dimensionality ¢ < r for the spectral factor model is presumed. Within the sufficiency
of the number of samples required for a reliable estimation of transformation matrix
W € C"™*4, an optimal setting of the spectral factor model was tested in trials using
a part of the time series dataset for training and another for testing.

As input to Algorithm 8, the j spectral factor transformation matrices {W(w;)},j =
1,...,7 could be provided via either Algorithms 3 or 5. As mentioned earlier, the EM
algorithm requires multiple restarts and the parameters that correspond to the maxi-
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mum of the converged likelihood could be chosen for maximizing the commonalities.
A numerical log-likelihood convergence difference of 1078 and a maximum of 20 iter-
ations were considered appropriate [7]. For the share price portfolio dataset, the EM
algorithm typically converged in less than 10 iterations and a maximum of 20 restarts
were typically found appropriate in discovering a transformation matrix that is close to
to 1% of the log-likelihood of the analytical solution. For the ease of reporting and
with the focus on the prediction methodology, the experimental results presented here
were carried out with Algorithm 3.

The following observations were made on the prediction accuracy of Algorithm 8
using the spectral factor model as measured by the NMSE on those trials:

(i) an autoregression of order p = 2 performed consistently much better than other
orders. Hence, p = 2 was chosen for the experiments and presenting the results
of the tests with orders p # 2 is skipped.

(i) increasing the number j of subbands of frequencies as stipulated by the asymptotic
theory enhanced the prediction accuracy significantly only with ¢ = 1. Hence,
7 = 60 was picked for the experiments; it corresponds to n = 36 discrete frequency
transform components per subband which is reasonable for the estimation of the
spectral factor model parameters for » = 6 measured time series.

It is wished to do predictions of the share prices in terms of a number of trading
days, i.e., for the next day (s = 1), one week ahead (s = 5), a fortnight ahead
(s = 10), and a month ahead (s = 22). Table 7.5 gives the results of the prediction
exercise using the spectral factor model as per Algorithm 8 for horizons s = 1, s = 5,
and s = 10.

It shows that increasing the latent dimensionality ¢ increases the prediction accu-
racy with ¢ = 1 substantially worse than others and ¢ = 5 being the best. This is a
logical progression of accuracy that as you increase the latent dimensionality, the com-
monalities of the measured time series that the spectral transformation could inherit is
larger. Hence, higher the latent dimensionality, higher the accuracy or lower the NMSE.

It is the aim to pick a suitable latent dimensionality ¢ by trading accuracy of the
prediction NMSE for the number of parameters rq. It is numerically obvious from Table
7.5 that there is a significant advantage in terms of the NMSE in picking ¢ ¢ {1,2} but
q € {3,4,5}. Moreover, picking ¢ > 3 seems not to improve the accuracy much. On
comparing the NMSE from Table 7.4 for various horizon with Table 7.5, it is evident
that the spectral factor model for ¢ € {3,4,5} is a much more accurate long-term
predictor than sample acvf-based classical autoregressive predictor.

Algorithm 8 recommended replacing the acvf I'} of the measured time series {y;}
with the acvf T} of the dynamically transformed latent variables obtained through
the spectral factor model estimation. As a result, spectral factor model predictions
are assessed with the accuracy of the original predictions with the sample acvf using
the classical vector autoregression of (6.10). Table 7.6 gives the NMSE% of ;)
according to (6.10) for various orders p of autoregression. The sharp decline in the
prediction of most of the component time series with increasing orders shows that
the sample acvf estimates are very unreliable; the predictions 7, 5|, in Table 7.6 also
corroborate such a conclusion. Moreover, on comparing Table 7.6 with Table 7.5, it
is seen that for s = 1 the performance of the spectral factor model with ¢ € {3,4,5}
is similar in performance to the classical vector autoregression with p = 1. On the
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spectral factor model-based vector autoregression

|| q || bmw | mru | vow | kar | sie | bas |
s=1
1| 97.79 70.25 73.77 58.32 60.39 | 12.65
2| 5.66 0.78 6.05 6.36 3.12 5.68
3 3.47 3.99 1.60 3.69 1.52 2.36
4 2.45 2.14 1.20 3.41 1.19 1.69
5 2.36 2.05 1.17 3.32 1.17 1.64
s=25
1] 39.75 | 9431 | 205.65 | 15.35 | 174.06 | 15.96
2 290.11 28.55 22.78 26.06 11.10 | 19.52
3 9.53 9.57 4.26 9.97 4.06 5.40
4 7.36 5.56 3.24 9.42 3.36 4.19
5 7.28 5.44 3.23 9.58 3.36 4.19
s=10
1 92.17 | 236.08 | 143.46 | 168.84 | 195.85 | 29.74
2| 52.52 30.86 9.70 63.44 11.35 | 10.91
3 13.96 10.27 7.05 17.02 7.83 7.95
4| 13.96 0.61 6.62 16.81 6.98 7.90
5 13.51 9.43 6.36 16.73 6.74 7.72
s =22
1| 191.34 | 390.07 | 213.13 | 310.42 | 458.14 | 96.42
2 || 89.85 82.62 23.09 | 112.64 | 32.94 | 25.56
3 || 37.23 24.44 17.46 33.91 23.74 | 18.37
4 || 33.37 20.90 15.11 32.29 17.68 | 18.15
5| 32.51 20.47 14.62 33.44 17.02 | 17.54

Table 7.5: NMSE% of the predictions for the next day (s = 1), one week ahead (s = 5),
a fortnight ahead (s = 10), and a month ahead (s = 22) for each component
share price of the portfolio for various latent dimensions ¢; 7= 60 and p = 2 were
chosen.

other hand, for s = 5, spectral factor model with ¢ € {3,4,5} is clearly outperforming
the classical vector autoregression. For even higher horizons of s = 10 and s = 20,
the classical vector autoregression is immensely worse in performance than the spectral
factor model and the results are, hence, not presented.
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classical vector autoregression

| p || bmw [ mru| vow | kar | sie | bas
s=1
1 126 | 0.88| 205 1.79 1.83 2.82
2 526 | 0.99 | 18.32 10.58 | 23.43 87.87
3 8.83 1.03 | 35.63 18.58 | 41.21 183.35
4 12,18 | 1.10 | 59.40 | 30.03 | 60.94 | 287.96
5 1771 | 1.24 | 90.14 | 44.09 | 85.69 | 437.76

s=25

1 9.60 | 575 | 28.25 | 30.88 | 17.35 46.99

2 17.38 | 5.77 | 60.54 | 46.12 | 50.35 | 191.55
3 | 23.60 | 5.78 | 91.18 | 58.54 | 75.25 | 323.58
5 | 38.84 | 5.89 | 175.62 | 89.47 | 136.50 | 668.26
10 || 111.52 | 7.15 | 498.85 | 161.82 | 330.19 | 2438.70

Table 7.6: NMSE% of one day ahead (s = 1) and one week ahead (s = 5) predictions of each
component share price of the portfolio for various orders p of autoregression.



