Chapter 1

Introduction

The yearning to master a complicated process often prompts us to build its model. We
wish to have a model that is simple but consistent with the characteristics of volumes
of data obtained from the process. A model might serve several purposes: it could
aid in representing and reviewing available data and to generate more data of similar
characteristics. We also prefer the flexibility to evaluate the loyalty of the model to
the characteristics of the given data and subsequently alter it if need be. Such a
well-founded model should ultimately enable us to rein on the process.

The data typically comes as a set of samples and each sample is constituted by a
set of measured variables. The characteristics of the measured variables might not
be simple to comprehend. Hence, we wish the model to have a latent simplicity. To
that end, we might conveniently demand the model to use a lower number of latent
variables than the number of measured variables. Such a simplified interpretation of
the process with a fewer number of underlying unobserved latent variables than the
number of measured variables is called a latent variable model [11]. It is hoped that
the data could be represented and reviewed with ease in terms of the latent variables.

In many applications, the set of measured variables of a sample is dependent on
those of its preceding samples. The result is variation for a measured variable and
covariation between the measured variables with respect to time and such data is
called a multivariate time series [102]. The temporal variation-covariation across the
measured variables of a multivariate time series is termed its dynamic characteristics.
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Figure 1.1: Three latent time series are dynamically transformed to five measured time series.



A model built on the dynamic characteristics of a time series is a reasonably flexible
and accurate depiction of the underlying process.

Figure 1.1 illustrates a number of measured time series variables being generated
by a transformation of a lower number of variables of the latent time series. It is this,
possibly complicated, transformation that is to be modeled using the simplicity of the
lower number of latent variables. Obviously, in doing so, we ought to be aware of the
challenge that neither the transformation nor the number and characteristics of the
latent variables are known. The modeling challenge is even greater because the lower
number of variables might not be able to inherit the entire dynamic characteristics of
the measured time series.

The scope of the problem of latent variable modeling of the dynamic characteristics
of a multivariate time series is wide. It is natural, then, to restrict its scope as well
as make it practically interesting. To this end, the dynamic characteristics common
to any two measured variables [117] is deemed interesting for the modeling problem;
those characteristics are termed the commonalities. In this thesis, commonalities will
be defined in Definition 4.1 as the component cross-covariance functions of a weakly
stationary multivariate time series.

For the still unknown model and latent time series, it is assumed that the latent
variables are dynamically transformed to maximally inherit the commonalities of the
measured time series according to some suitable metric. Thus, first we seek a modeling
framework that defines the ingredients and scope of the latent variable model. The
framework develops solutions for data-driven estimation of the parameters that control
the transformation.

Apart from confirming our understanding of the process which generated the time
series used to build the model, what could we do with a data-driven model? Suppose
a model represents a collection of time series with similar commonalities. Then, the
model could be used for classification of any new time series as belonging to that
collection or not. This will be done based on similarities and dissimilarities of the
commonalities of the new time series with those of the time series already available.
Another utility could be in consistently generating future time series samples that bear
characteristics similar to the time series we had used to build the model. Such a
prospect might allow prediction of the time series given its past samples. It should
be noticed that both of these applications involve applying the latent variable model
towards unseen time series suggesting its ability to learn. Enabling the parameters
of the transformation to predict and classify multivariate time series based on their
commonalities implies a learning framework which is the main broad contribution of
this thesis.

In Section 1.1 of this introductory chapter, a brief overview of the latent variable
model with relevant references is given.

In Section 1.2, two practical examples to emphasize the motivation for a latent
variable model with dynamic transformation are animated; these examples also form
the experiments of the thesis. By these examples, interpretation of the commonalities
in a multivariate time series as well as the learnability of a dynamic factor model are
attempted. The basic assumptions that hold the latent variable model together and the
basic strategy to arrive at a suitable model are listed. The technique of independent
component analysis is complementary to the factor modeling pursued in this thesis; it
is reviewed briefly.

In Section 1.3, the motivation for choosing the dynamic factor model as the latent



variable model is stated. Its structure, it is discussed there, will transform the latent
time series to measured time series dynamically while the transformation maximally
inherits the commonalities from the measured time series according to some suitable
metric. Using its frequency-domain counterpart called the spectral factor model for
modeling and learning purposes is then vouched for.

In Section 1.4, the modus-operandii of learning a multivariate time series based
on the commonalities is elaborated in layman terms. The modeling framework is in-
troduced there; it is mentioned there how it is intended to bin discrete frequencies in
subbands and maximize the inheritance via dynamic transformation of the measured
commonalities within each of those subbands. The learning framework is also intro-
duced there; the strategies for prediction and classification of multivariate time series
using the spectral factor model are illustrated.

In Section 1.5, a brief review of existing works elsewhere in the growing literature
of multivariate time series analysis that have similar objectives as that of the spectral
factor model is conducted. Existing methodologies from diverse fields such as control
systems, econometrics, biomedical signal processing, geology, etc., that are related to
the ones used during various stages in the development of spectral factor model in this
thesis are recapped there.

In Section 1.6, a pithy statement of objectives and in Section 1.7 a summary list
of the main and supporting contributions of the thesis are provided. In Section 1.8,
the organization of the thesis is outlined while in Section 1.9 a list of publications that
motivated and aided this thesis are listed. In Section 1.10, a very essential summary
of this notation-rich thesis is presented.

1.1 Latent variable model: An overview

A model of a process with a set of underlying variables held responsible for generating
or representing a set of measured variables is the basic notion behind the latent variable
model. Among the premiers to voice this notion loudly was Spearman in [114] and
a series of works that followed. His research in psychology argued that there exists
a statistical quantity called the ‘general factor’ that remains same in the scores of all
mental tests on humans; whereas there is a ‘unique factor’ that varies with the tests.
This idea has evolved over a century. Today it is all too common to conduct such
tests where discrete responses to questions in the form of personality statements are
assumed to be expressions of latent personality traits [121]. There also exist problems
pursued in the sciences where it is necessary to assume that latent variables are not
a continuum but discrete or categorical in nature. They are mainly of two types:
First, the mixture model involves associating measured samples to a finite set of latent
variables by estimating probabilities of the associations [82]. And the second type
is the latent class model which pursues discrete latent variables that when presumed
known or available amounts to locally independent measured variables [81]; this could
be treated as a special case of the mixture model.

What qualifies as a latent variable model in this thesis in light of the above pos-
sibilities is the one which maps continuous latent variables to continuous measured
variables. However, the important requirement stipulated is that there ought to be
very few of the former in comparison to the latter. By this requirement, as envisioned
by [55], the hope is “to attain scientific parsimony or economy of description.” Con-
siderable research has progressed in this arena known as factor modeling with an aim



to explain correlations in the measured variables by a much lower number of latent
variables: It was shown in [107] that three latent factors are generally sufficient in ac-
counting for voltage variations, especially those relevant to electrocardiogram, recorded
on the surface of a human body. In [69], yield rates of a large portfolio of stocks were
shown to have a fewer number of latent factors corresponding to industry-wide com-
mon activities; whereas there were market factors unique to each of stock. Via factor
analysis, six latent features out of twelve standard measured features were extracted
for forecasting weather phenomenon in [9]. Factor models will be explored further in
Chapter 3.

It will not escape our notice that in the seminal applications of factor models
reviewed above, time dependency of the data was ignored for latent variable analysis.
But this thesis focuses on the type of continuous latent variables that are to be modeled
based on correlated samples in a multivariate time series. For the purpose of learning
from such data, the classical factor model above will be insufficient and, instead, a
dynamic factor model is required. Before entering into a detailed discussion on the
dynamic factor model and its salient features in Section 1.3, the next section serves
practical motivations for it.

1.2 Latent variable model: Two examples

In order to assert the context for a latent variable model for multivariate time series
we discuss two practical examples below.

Classification of brain activities

Figure 1.2: lllustration of the measuring of MEG signals via sensors positioned around the
head [5].

Consider the scenario of a comfortably chaired computer gamer who makes smooth
movements of a joystick by moving one of her wrists depending on the demands of a



game. Under same experimental conditions, it might be assumed that activities in her
brain are similar every time she makes the same wrist movement. Suppose we wish
to do some experiments to know what could be going on in her brain for every wrist
movement she makes. Remember that such experiments are very common these days
and international conferences and competitions are conducted to learn more about brain
activities [3]. The biggest beneficiaries of such studies include patients of neurological
disorders [105, 115].

For the experiments, magnetoencephalography (MEG) signals from a human brain
could be measured. These signals are based on magnetic fields induced by currents
due to synchronized neuronal activities. Their recording is non-invasively performed via
extremely sensitive magnetic sensors, as depicted in Figure 1.2; in reality, the sensors
of an MEG scanner are encased in a well-isolated cavity in which the head is positioned
comfortably. The signals have a temporal resolution of under a millisecond [42] and
methods are available to attribute the readings from the sensors to designated spatial
spots of the brain. Suppose ten signals attributed to ten spatial spots of the brain are
measured. We know that these signals depend on one another mutually, i.e., activities
in one part of the brain are influenced by activities in other parts. Figure 1.3 shows
real signals from one such experiment [1]. We could perhaps observe various types of
similar characteristics among any two measured MEG signals, i.e., delayed or inverted
patterns, similar peaks and troughs but with one signal more fluctuating than other, etc.
As a result, these signals could be considered temporally dependent on one another,
i.e., current brain activity at a spot is influenced by current and previous activities at
all spots.

For making a wrist movement based on some prompt, hypothesize the existence
of only two latent activities in the brain of the gamer. This hypothesis could be
based on a subjective opinion of an expert or mere guess. What they neurologically
are is not relevant here. Nevertheless, assume that these two latent activities to be,
e.g., (i) her cognition of the demands of the game and (ii) her reactions to move her
wrist. In addition, suppose the general characteristics, e.g., averages, ranges, and other
statistics, of these two fictitious latent signals of cognition and reaction are known.

The assumptions made so far are, firstly, the existence of a set of low-dimensional
latent signals and, secondly, that their statistical characteristics are known. In addition,
thirdly, assume that when the gamer has to make a particular wrist movement, the
presumed latent cognition and reaction sequences undergo a particular transformation
that gets expressed as mutual and temporal dependence seen in the ten measured
signals. Although this assumption compounds to limiting the characteristics of the
measured sequences as well. But it is a fair assumption because there ought to be
a number of time dependent characteristics common to the ten MEG signals which
are part of the same brain that collectively results in her making a particular type of
movement of the joystick or another. For this reason, it is opined that the latent sig-
nals of cognition and reaction manifest themselves as the ten measured MEG signals
consisting of a large amount of common variation-covariation, i.e., commonalities,
corresponding to her brain activities. Then, essentially, cross-correlations between
the measured variables equals commonalities. Obviously, there will be variations
of the signals unaccounted by the commonalities, which will be unique or idiosyn-
cratic characteristics pertaining to each of the measured signals and independent of
the commonalities. Hence, the gamer making a wrist movement may be regarded as,
the fourth in the list of model assumptions, that the latent signals transforming them-



selves maximally imparting desired commonalities to the measured signals according to
some suitable metric; whereas, the fifth assumption is that any unaccounted variations
of the measured signals are just undesired and independent noise.

Note 1.1. From a data generation perspective, transformation of latent variables
imparts commonalities to measured variables. From a modeling perspective, trans-
formation of latent variables inherits commonalities from measured variables.

To summarize, the model assumptions are

1. there exist generative latent variables of lower-dimensionality than the measured
variables,

2. the statistical characteristics of the latent variables are known,

3. the transformation of the latent signals limit the modeled characteristics of the
measured variables,

4. the transformation should maximally impart measured cross-correlation charac-
teristics, and

5. the non-transformable characteristics are independent noise unique to each mea-
sured variable.

The presumed characteristics of the cognition and reaction latent variables stay
same throughout the game; the gaming conditions will stay the same but challenges
will differ. Then, it could be inferred that the common characteristics of the MEG
signals during one wrist movement switch to a different class if and only if she changes
the wrist movement to another class. This is a valid inference because one part of the
brain behaves differently from another to various cognition and reaction challenges of
the game she is playing. As a result, any class differences of the movement will manifest
in the dynamic characteristics of the measured MEG signals. So a particular class of
characteristics of the measured signals during a particular class of wrist movements is
attributed to a corresponding class of transformation the latent variables undergo in
imparting the commonalities.

The objective of this experiment is modeling multivariate time series for classifi-
cation of wrist movements. Transformations corresponding to each cognition-reaction
challenge are to be estimated and one class of transformations from another are to be
distinguished. An approach could be to estimate, from all possible transformations,
one that maximizes the likelihood to have generated the measured signals. Then, the
estimate could be constrained further by requiring the presumed latent signals to max-
imally inherit, according to some suitable metric, the commonalities of the measured
signals upon their transformation. It is now clear that the two steps:

1. estimate a maximum likelihood transformation based on model assumptions and

2. estimate the maximum likelihood transformation that inherits commonalities
maximally as per a suitable metric.



Suppose we estimate the optimal latent variable model of the cognition-reaction
process corresponding to each classified example of wrist movements. Then, as shown
in Figure 1.4, for two classes of example measured MEG signals, we should be able to
classify a test measured signal as belonging to a class of movements by computing
how similar the commonalities of the test measured signal are to those in the classi-
fied examples. Obviously, the intrigue lies in classifying the measured signals without
actually knowing or seeing the particular wrist movement she had performed.

Prediction of share prices

We take financial market as our next example where, suppose, the interest is in investing
in a portfolio of shares of six companies, e.g., as shown in Figure 1.5, from various
sectors of economic activities in a country. Suppose we know a successful investor
who believes that investors are driven to purchase or sell shares based on perceived
values of three underlying latent variables, viz., general political climate, consumer
sentiments, and investor confidence. Of course, none of these fictitious latent variables
could be metered objectively in practice. We wish to validate this belief before buying
his advice. Note that as in the previous example, it is the number of latent variables
and their presumed characteristics that is our concern and not their real physical or
financial interpretations. If the investor's belief has merit, we could think of those
latent variables to transform investment activities in the share market that manifest as
changes in the share prices. Also, the latent variables when transformed must impart
as much of the common dynamic characteristics, i.e., commonalities, demonstrated by
the measured share prices.

In practice, even the best investors cannot consistently outsmart the market. And,
our investor acquaintance above could blame any unexplainable fluctuations in the share
prices on the dynamic characteristics of the share prices that the latent variables cannot
inherit. These fluctuations could be idiosyncratic characteristics unique to each of
those shares. However, if the transformation of the latent variable to the commonalities
as we envisaged is true, we might be able to explain evolving tendencies of share prices.
Therefore, in order to validate existence and influence of the commonalities, we could
go by traditional investor wisdom to assess past behavior to bet on future: We could
gather a training set of share prices of a sufficiently long evolution of various shares of
the portfolio. We could then then estimate a dynamic transformation that is optimal
in the sense of having the maximum likelihood to have generated the training series.
Subsequently, we could search among the maximum likelihood transformations one
that will maximally inherit, according to some suitable metric, the commonalities of
the share price evolution process. We could use a predictor that is based on minimizing
temporal tendencies to err in predicting the training series. The set of parameters of
such a predictor will be a function of the optimal dynamic transformation. Then, given
a current evolution of the share prices, it should be possible to predict their future
evolution with a reasonable accuracy.

Independent components versus latent factors

The thesis, as discussed so far, involves estimating a generative model where a set of
latent variables are transformed to a larger number of measured variables based on
the latter’s characteristics. To estimate the transformation matrix, the maximal inher-



itance of the mutually dependent variation-covariation characteristics was the criterion
considered.

In a complementary setting, there exists a wide body of literature called indepen-
dent components analysis or blind source separation [27, 24]. Independent component
analysis is often called ‘non-Gaussian factor analysis’ [61]. In contrast to the objec-
tive of factor analysis, the objective in independent components analysis is to identify
mutually ‘independent’ latent variables.

One of its working philosophy is due to the central limit theorem whereby any
transformation of the latent variables will be maximally non-Gaussian if it equals one
of the independent latent variables; hence, latent variables are considered non-Gaussian
[60]. In contrast, factor analysis stresses on dependencies and Gaussians are readily
accepted as the latent variables.

In another working philosophy of the independent components analysis, higher pre-
dictability of a latent series component than that of any dynamic transformation of the
latent series components is exploited to sequentially identify the latent variables [26].
In dynamic factor analysis as presented in this thesis, higher cross-correlations via com-
monalities aid predictability. On the other hand, in this thesis, the variation-covariation
characteristics of the latent variables, their mutual dependence or independence, will
be assumed known.

Moreover, in this thesis, the transformation of the latent variables will be assumed
a linear process; therefore, the measured variables are also assumed linear processes.
The focus in this thesis is in estimating a transformation for the latent variables rather
than identifying the latent variables themselves as done in a blind source separation
problem.

1.3 Dynamic and spectral factor models

As the two examples above highlight, the processes that are of our interest generate
data samples such that each measured variable is free to influence the preceding sam-
ples of itself and other variables. This emphasizes that the order in the sequence of
occurrences of the measured samples is rather important and it must be indexed appro-
priately. It is convenient to attribute the index of the sequence to discrete instants of
time. This is the reason we call such a sequential collection of correlated data samples
a time series.

In many processes we measure a set of variables at the same instant. This implies
that every sample of the data is formed by the same ordered set of multiple variables.
Such a collection of samples is referred to as multivariate data.

This thesis focuses on learning from multivariate time series where any measured
variable in a data sample is influenced by, in general, the rest of the variables in the
sample and all the variables of all the preceding samples. Such an influence could be
quantified as a function of the lag, which is the number of time instants by which
two samples differ. So, when a multivariate time series is said to display dynamic
characteristics, the term dynamic attributes its characteristics to be lag-dependent.

In the context of multivariate time series, the driving assumption is that a lower
number of latent variables are transformed to a number of measured variables resulting
in a latent variable model as illustrated in Figure 1.1. A practical motivation for that
assumption is that a fewer number of variables will aid simplicity in interpretation, mod-



eling, and computation. Note, however, that the true latent variable transformation is
unknown and estimating it is part of the objective of this thesis.

Recall that the characteristics of a measured time series are to be modeled. But
how could simplicity in modeling be aided when unknowns such as latent time series
and variable transformation are injected into the model? In that respect, either or both
the transformation and the characteristics of the latent time series could be assumed
unknown. Remember, we wish to strictly control the underlying process which the
latent time series represents and prefer it to have characteristics not as complicated
as those of the measured time series. Moreover, if possible, expert opinion on the
latent time series could be invited. Hence, it will be assumed that the latent variable
characteristics are known and the transformation is unknown.

To enhance simplicity even further, the latent variables will be assumed a multi-
variate time series with lag-independent characteristics whereas it is the transformation
that is dynamic and unknown. The challenge then is to estimate the dynamic trans-
formation that best generates the measured time series from the latent time series. In
this framework, the latent variables upon transformation are assumed to impart the dy-
namic characteristics to the measured time series. Hence, given a dataset of measured
time series, such a framework implies estimating the ideal transformation that could
yield the desired dynamic characteristics. This is illustrated in Figure 1.6, where the
‘desired time series’ is enabled to capture the desired dynamic characteristics pertain-
ing to the measured time series; whereas the ‘undesired time series’ is the difference
between the measured time series and the desired time series. The set of parameters
f of the dynamic transformation are retained for reference.

Note 1.2. Figure 1.1 depicts the unknown true transformation that generates the
measured time series from a latent time series of unknown characteristics. Whereas
an appropriate dynamic transformation of Figure 1.6 has to be estimated based on
the measured time series and the presumed characteristics of the latent time series.

Remember that the desired dynamic characteristics of the measured time series are
its commonalities. As introduced earlier and through the examples, maximally captur-
ing the commonalities is tantamount to learning. It has been decided to keep the latent
time series characteristics known, lag-independent, and simple; they are the underlying
factors of the model. The model which consults the measured time series to dynamically
transform the factors to maximize the commonalities is named the dynamic factor
model. This concept is illustrated in Figure 1.7, where the term idiosyncrasies refers
to the undesired time series that retains no commonalities. Hence, a dynamic factor
model is a multivariate time series model which dynamically transforms a latent time
series of predetermined characteristics to maximally, in some suitable metric sense, in-
herit the common dynamic characteristics of a set of measured multivariate time series.
It accepts measured time series as input and outputs commonalities, idiosyncrasies, and
the optimal model parameters.

One possible dynamic characteristic of the measured variables is periodicity. There
could be many periodic dynamic characteristics in the measured time series. A period-
icity corresponds to a frequency, which is associated with the number of time series
samples that constitutes the period. Decomposing the measured time series into com-
ponent frequencies is intuitively simple, analytically rich, and practically useful. Such
a decomposition of a time series across all possible frequencies is called the spectral



analysis [99]. An inverse synthesis of frequency components to time-domain is also
possible through spectral analysis. This is a motivation to understand the influence of
various frequencies in the dynamic characteristics of the measured time series. As de-
picted in Figure 1.8, such a frequency spectral analysis of dynamic factor model would
require analyzing measured and latent time series, commonalities and idiosyncrasies,
and dynamic transformation all in the spectral or frequency-domain. It will be called
the spectral factor model, which may be contrasted with the time-domain equivalent
in Figure 1.7. In that respect, Figure 1.9 depicts the frequency spectral equivalent of
the dynamic factor model. Note that Figure 1.9 has the same input and outputs as
the dynamic factor model in Figure 1.7 for they are subjected to spectral analysis and
its inverse, respectively.

1.4 Learning by maximizing spectral commonalities

The appeal of the frequency-domain approach in many fields of study are mainly due to
the computational advantages and the physical interpretation it offers [97, 23]. Many
time-domain processing requirements of a time series may be easily realized in the
frequency-domain; the software and hardware implementation of such processing is
widely available [63]. These further motivate, in addition to the theoretical appeal, the
development of a spectral factor model for learning from multivariate time series.

The spectral components correspond to an infinite continuum of frequencies, but
samples from a discrete time series are practically limited. This limits and motivates
targeting just a set of discrete frequencies. But uncertainty is encountered in balancing
resolution and precision of the spectral components at these discrete frequencies. To
tackle the challenge, spectral components in small non-overlapping bands of frequen-
cies may be considered. In these frequency subbands, spectral factor modeling might
be performed by assigning probabilities to various discrete spectral components of the
measured time series. The aim is to estimate a probabilistic spectral factor model that
is the most likely to affiliate the measured spectral components. For this purpose,
model parameters that will maximize the likelihood of simultaneous occurrences of all
the measured spectral components within a subband will be probed. From all possible
maximum likelihood spectral factor models, the one which maximally, in some suitable
metric sense, inherits the measured commonalities on the dynamically transformed fac-
tors could be chosen. Recall that commonalities are cross-correlations of the measured
variables. Later in the thesis, their inheritance by the dynamic factor transformation
will be defined as a very simple and intuitive function of all cross-correlations of the
measured variables over all lags.

Figure 1.10 illustrates the strategy for maximum likelihood maximum common-
alities spectral factor model estimation. The spectral components of the presumed
latent spectra and the given measured spectra are divided into frequency subbands.
For each subband, maximum likelihood estimation of parameters of the spectral factor
model will be performed. Two distinct maximum likelihood estimation methods will be
demonstrated: The first method is an analytical estimation which gives an explicit
formula for the optimal parameters. The second method is an iterative estimation
starting with initial guesses of the model parameters that are updated till they con-
verge to possible optimal parameters. Further, for each of those methods, techniques
to extract those parameters that will maximize the commonalities are devised.

Commonalities of the measured time series maximally inherited in some suitable
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metric sense by the dynamic factors allow the model to learn a process. Classification
of multivariate time series measured from various distinct processes is the first of
our two learning applications. In Section 1.2, the example of classification of MEG
signals involved in maneuvering a joystick via wrist movements was discussed in detail.
The various classes there could be regarded as dynamically transformed latent signals
corresponding to various visual prompts on a computer monitor. There will be several
example time series in a class. For each such example dataset obtained from any two
processes deemed to be distinct by an expert, two classes of spectral factor model
examples are built. The models are considered to have learned the example processes
upon maximally inheriting their commonalities on their respective maximum likelihood
parameters according to some suitable metric. Then, in order to decide which of
any two possible processes a new unclassified measured time series belongs to, the
commonalities of the new dataset need to compared with those of the two classes
of spectral factor models. Based on the discussions so far, the commonalities will
determine the dynamic transformation. In that regard, the new test measured time
series will be assigned to the class to which its estimated dynamic transformation
has the most proximity to. Such a strategy for the classification exercise requires a
comparator of the dynamic transformations as shown in Figure 1.11. This method
could be extended to associate a time series as belonging to one of any number of
identified classes of processes.

Prediction of multivariate time series is chosen as the other learning application.
Once knowledge of the characteristics and the number of latent time series variables
are presumed, a spectral factor model based on a training set of measured time series
could be estimated. Based on the optimal dynamic transformation that maximally,
according to some suitable metric, inherits commonalities of the measured time series,
a multivariate time series predictor could be built . The example of a portfolio of share
prices that was discussed in Section 1.2 is used for prediction experiments later in the
thesis. For a given length of training time series, a number of latent time series less than
the number of the measured time series are experimented with to build the spectral
factor models. Using their parameters, a prediction framework based on minimizing
the prediction error given past samples is built. As shown in Figure 1.12, a future
evolution could be charted for a given current evolution. The prediction accuracy will
be validated using the true share prices whenever it becomes available.

1.5 Dynamic and spectral factor models in literature: A
brief review

It must be mentioned at this juncture that the concept of commonalities and dynamic
factor model is not very new. In one of the earliest formal studies about dynamic fac-
tor model, its estimation in the Fourier domain was famously attempted by [100] for
advanced control systems and [104] for macroeconomic forecasting. An idea similar to
commonalities was promoted by [104] in econometrics literature as “common shocks.”
Like in this thesis, they too state the relation between the spectral density functions
via a likelihood function of the discrete Fourier transform components within disjoint
frequency subbands. Then, they obtain maximum likelihood parameter estimates via
Fletcher-Powell optimizations and standard hypothesis testing procedures. However,
they stop short of going much farther than the possibility of infinitely many uncon-
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strained solutions for the spectral factor transformation matrix.

Another line of approach is an approximate dynamic factor model with finite lags as
was developed in [118]. There, the estimation was performed as the principal compo-
nents of an expanded set of static factors; their aim was prediction of macroeconomic
variables. Their prediction equations take the form of vector autoregression where the
estimated static factor components may be directly plugged in without having to esti-
mate the Fourier domain parameters as in fully dynamic models.

Recently, [36] changed the landscape of research in this domain substantially with
their generalized dynamic factor model, e.g., they spell out the extent of flexibility
allowed for idiosyncrasies and derived the convergence properties of the model parame-
ters as the number of samples and measured variables grow. They focus on forecasting
macroeconomic variables and the work forms a series of highly acclaimed and rigorous
treatment of the subject. There are agreements between the parts of the approach to
the problem in this thesis and theirs in (i) concluding that the principal components of
the spectral density matrix gives the analytical solution (ii) the idiosyncrasies could be
mildly cross-correlated. However, the ideas introduced in this thesis are quite different
from theirs; e.g., an iterative estimation procedure and a time series classification strat-
egy are provided. Moreover, while this thesis focuses in the multivariate time series
modeling and learning frameworks, they focus on prediction of latent commonalities.
In §7.8 of [111] a maximum likelihood estimation estimation of dynamic factor model
in the spectral domain much like in this thesis is pursued. They use it for analyzing
function magnetic resonance imaging data. Their final analytical solution overlaps with
the one developed in this thesis and in [36]. But they seem not to share any qualms
regarding the non-analytical nature of the log-likelihood function and does not see
such a model from the classification or prediction perspectives. They do not provide
an iterative solution strategy either.

Among the front-runners of the dynamic factor model was [90] who wanted to estimate
the latent trajectory of a patient’s state based on vital signals. He rewrote the dynamic
factor model parameters as a Markovian state model whose estimation was carried out
via Kalman filter principles.

Now, let us divert the attention to a spectral domain method whose priority was multi-
variate time series classification rather than prediction. In [66], sample spectral densities
are compared for classifying and clustering episodes of multivariate time series. Their
experiments involved discriminating between time series generated by earthquakes and
those by explosions. However, they do not consider existence of a low-dimensional
latent time series and, as a result, were able to design disparity measures that work by
comparing the full-rank sample spectral densities. This thesis uses the information con-
tained in a rank-deficient maximum-likelihood maximum-commonalities spectral factor
transformation matrix to perform classification.

1.6 Objectives

Based on discussions on the motivation and the premise of this thesis so far, its objec-
tives are broadly divided into developing

1. a multivariate time series latent variable modeling framework
To meet this objective, dynamic and spectral factor models as well as commonal-
ities are formally introduced and defined in Chapter 4. The maximum likelihood
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maximum commonalities spectral factor model is derived in Chapter 5. An ana-
lytical form as well as an iterative procedure for estimating such a spectral factor
model are developed.

2. a multivariate time series maximum commonalities learning framework
This objective is achieved by providing multivariate time series classification and
prediction algorithms in Chapter 6, which exploit the maximum commonalities
parameters of the spectral factor model.

1.7 Contributions

The following is the list of main contributions of this thesis:

> The most original contribution of this thesis is the development of a commonalities-
based classification metric in (6.4) that compares overlap of spectral factor model
subspaces to distinguish multivariate time series processes.

> The second most important contribution is the utilization of the estimated com-
monalities in developing a multivariate time series prediction strategy via classical
vector autoregression on current and past samples; it is detailed in Section 6.3.

The following is the list of supporting contributions of this thesis, which are im-
provements, interpretations, or alternatives to existing work in the literature:

> Derived an analytical solution for spectral factor model in (5.10) using low-rank
approximation theorem.

> Derived an iterative solution for spectral factor model in Section 5.2 using the
Expectation - Maximization algorithm whose converged parameters that maxi-
mally inherit the commonalities are extracted by applying the Gauss - Markov
theorem in Section 5.2.3.

> Obtained the mild cross-correlation property of the idiosyncrasies in Property 5.1
via Weyl's theorem.

> Used Wirtinger relaxations for maximizing log-likelihood in Chapter 5.

1.8 Organization

A non-technical overview of the thesis was presented so far. In the two chapters that
follow, the basics on which this thesis is built is presented.

e In Chapter 2, an essential overview of multivariate time series analysis is provided;
very essential time-domain and frequency-domain analyses are presented there.

e In Chapter 3, parametric estimation methods for probabilistic models concisely
and as required is discussed.

With much groundwork done with the aforementioned chapters, the two chapters
that follow introduce and develop the dynamic factor model framework to suit the
learning framework objective of this thesis.
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e In Chapter 4, a technical introduction and motivation for the concepts of dynamic
and spectral factor models as well as commonalities and their maximization are
provided.

e In Chapter 5, an analytical method and an iterative method for maximum likeli-
hood maximum commonalities spectral factor model are derived.

Subsequent to the development of the dynamic factor model, the learning frame-
work is provided.

e In Chapter 6, a time series learning framework is built using the inherited com-
monalities by explicitly stating algorithms for classification and prediction of mul-
tivariate time series analysis.

The contributions are tested and possible extensions are discussed in the last two
chapters:

e In Chapter 7, the methodology and results of multivariate time series classification
and prediction experiments are presented.

e In Chapter 8, improvements and plans for further research and applications are
mentioned.
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1.9
(1
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(1)

(V)

List of relevant publications

Miranda, A. A., Olsen, C., Bontempi, G.: Fourier spectral factor model for pre-
diction of multidimensional signals, Signal Processing, 91(9):2172-2177, Elsevier,
2011.

This paper presents the vector autoregressive prediction of a multivariate mea-
sured time series on the current and past samples as developed in Section 6.3
using the autocovariance of the maximally inherited commonalities. It demon-
strates prediction of yield rate of a six-variate share portfolio with substantially
better accuracy than standard vector autoregression; the daily prices of those
yield rates are used for experiments in this thesis.

Miranda, A. A., Bontempi, G., Schuddinck, P.: Fourier spectral factor model
for classification of high-dimensional MEG signals, Under review in Biomedical
Signal Processing and Control, Elsevier, 2011.

This paper presents the commonalities-driven classification strategy developed
in Section 6.2 for multivariate time series; the magnetoencephalography experi-
ments conducted for Section 7.1 are also presented.

Miranda A. A, Caelen O., Bontempi, G.: Machine learning for automated polyp
detection in computed tomography colonography, Biomedical Image Analysis
and Machine Learning Technologies, Medical Information Science Reference,
2009.

This paper compares a number of classifiers well-known in machine learning that
perform well despite severe imbalance in the class representation and unreliable
features. That classification problem may be compared with that in Section 6.2
to understand that popular robust classifiers designed towards identically and in-
dependently distributed data are not directly usable for a multivariate time series
classification problem.

Miranda, A. A., Le Borgne, Y.-A., Bontempi, G.: New routes from minimal ap-
proximation error to principal components, Neural Processing Letters, 27(3):197-
207, Springer, 2008.

This well-cited paper discusses the classical principal components analysis from
a layman perspective. Principal subspaces, eigenvalue decomposition, trace min-
imization are recurrent themes in this thesis and are presented in simple terms
in the paper.

Miranda, A. A., Whelan, P. F.: Fukunaga-Koontz transform for small sample
size problems, Proceedings of the IEE Irish Signals and Systems Conference, pp.
156-161, Dublin (2005)

This paper discusses a strategy for comparing the principal subspaces due to the
autocorrelation matrices of two classes of multivariate data in a common full-
rank space. The features of this paper such as real-valued projections, euclidean
distance measures, binary classification, etc., are serious shortcomings for com-
paring multiple spectral factor subspaces and to overcome them the classification
metric in (6.4) was developed.
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1.10 Notations

Herein, notations and conventions used in this thesis are introduced. Unfortunatelely,
terms whose proper definitions will show up in later chapters only will be mentioned
here. Nevertheless, it is important to read this section carefully for grasping the treat-
ment of technical aspects later.

The following convention of using Latin characters is adhered to: Incremental vari-
ables such as indices are denoted using i, j, k, and [.

Note 1.3. From Chapter 4 onwards, certain alphabets are appointed to imply the
same variable for the rest of the thesis. These are, respectively, q and r for the
latent dimensionality and observed dimensionality. The letters v, x, y, and z are
used for transformed, latent, measured, and idiosyncratic variables; but they will
have an appropriate meaning depending on whether it appears in Roman, sans-serif
or boldface fonts.

Use of ¢ for time indices and h for time delays are reserved throughout. The afore-
mentioned conventions imply that both scalars and vectors are denoted in small-case.
Linear algebra drives much of the contributions and a rectangular matrix is always in
capital-case as in X.

Ideas from the basics of probability and stochastic processes are used liberally. A
sans-serif font such as in x is used to denote a random variable and its realization will
be in Roman font as in z.

Note 1.4. Random variables and vector random variables, either real-valued or
‘complex-valued’, will be denoted in the same fashion using a sans-serif font; the
context will make their distinction clear.

Also, the sans-serif font will be used to denote common mathematical operations or
functions such as log for natural logarithm, p for a probability density function, S for
spectral density function, etc.

The standard practice of using a blackboard bold font to denote number sets, e.g.
set of complex numbers C, set of integers 7Z, etc. are followed. However, a calligraphic
font will be used to denote a group of items such as two classes C; and Cy and the
Gaussian family of probability densities \.

Certain Greek alphabets will denote the same variable, function, or metric through-
out, e.g., u for mean and T for autocovariance function matrix.

Subscripts are used for indices in two capacities: First, they denote indices as in
x¢ for the t-th time sample of x. Second, they denote a component of a vector or
a matrix. E.g., xj is the k-th component of random variable x and X;; is the i, j-th
element of matrix X. This gives the possibility to interpret nested subscripts appropri-
ately. E.g., g, is the ¢t-th time sample of xj, and the inner subscript, i.e., k in x,, will
be always interpreted as the component index and the outer subscript, i.e., t in x,, as
the sequence index.

Note 1.5. Other than its usual interpretation as scalar exponent, superscript on
a function or an operator will denote the operand, e.g., 1Y denotes mean of the
random variable y.
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Fourier analysis is a persistent theme in this thesis and boldface, e.g., x(wy), implies
discrete Fourier transform components.
Presented below is a table of certain frequently used symbols and notations:

u', U’ transpose of vector u or matrix U
a, U complex conjugate of scalar or vector u or matrix U
u*, U* complex conjugate transpose of scalar or vector u or matrix U
lul, U] absolute value of scalar u; cardinality of set U
Ui matrix formed by columns i,i +1,...,7 — 1, of matrix U
det(U) determinant of real or complex-valued square matrix U
{u} time series due to sequence of random variables u; Vt € Z
Ut realization of a time series {u;} at instant ¢
u(w;j) discrete Fourier transform due to {u;} at frequency w;
PU) probability of the event U
p probability density of (a possibly vector) random variable u
P order of vector autoregression
E expectation with respect to p"
p mean of (vector) random variable u
r variance (covariance matrix) of (vector) random variable u
rwy cross-covariance (matrix) of (vector) random variables u and v
acvf autocovariance function
o0 acvf of univariate {u;} at lag h

B acvf of (univariate or multivariate) {u;} at lag h
i imaginary operator
P identity matrix of size g X ¢

diag(U) setting off-diagonal elements of U to zero
WU\l ¢ Frobenius norm of matrix U

Fourier transformation; discrete Fourier transform
independently and identically distributed
A posteriori mean of x

log-likelihood function

a dataset

length of a time series realization

number of frequency subbands

number of relevant nearest neighbors
dynamic factor transformation matrix
spectral factor transformation matrix

maximum likelihood W

SEEE R

maximum commonalities W
spectral density function of {u;}
sample spectral density function of {u;}

)y LN
c c

02)]
c

maximum likelihood SY

!

maximum commonalities SY

02)]
c
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Figure 1.3: MEG signals corresponding to ten spatial spots V1-V10 of the brain upon a
particular movement of the wrist.

— examples -
measured signals

Class 1

latent Class 1 commonalities
variable

model

— test — latent test commonalities )
easured signals variable » comparator 1/2
model
— examples — Class 2 commonalities

measured signals

Class 2

Figure 1.4: Among the two classes, a test measured signal is associated to the one to which
its commonalities are closest to.
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Figure 1.5: Daily stock prices in Deutsche Mark of six German companies between
01/01/1983 - 30/12/1993 [6].
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Figure 1.6: Dynamic transformation, whose parameters are summarized by 6, of the latent
time series will consult the measured time series to decompose the latter into
desired and undesired time series.
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Figure 1.7: According to some suitable metric, the dynamic factor model allows the dynamic
transformation to maximally inherit the commonalities from the measured time

series; their difference forms the idiosyncratic time series.
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Figure 1.8: The spectral factor model expresses dynamic factor model in frequency-domain.
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Figure 1.9: An equivalent of the dynamic factor model is built by sandwiching the spectral
factor model between spectral analysis and its inverse operations.
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Figure 1.10: Maximized commonalities for a finite 7 number of individual frequency bands
are obtained from amongst the family of maximum likelihood spectral factor
model parameters analytically and iteratively.
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Figure 1.11: A test time series is associated to a class of time series if that class has the
closest proximity, in terms of the commonalities of its examples, among all
classes to the test time series.
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Figure 1.12: A predictor for the measured time series is built using parameters pertaining to
maximally inherited commonalities of a training series. Accuracy of predictions
based on current samples of the measured time series as evidence is compared
with its future samples.
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