The Effect of Environmental Disturbances on the Dynamics of Marine Intertidal Populations

ZVIA AGUR

Department of Applied Mathematics,
The Weizmann Institute of Science,
Rehovot, 76100 Israel

AND

JEAN LOUIS DENEUBOUG

Service de Chimie Physique II, C.P. 231,
Université Libre de Bruxelles,
1050 Bruxelles, Belgium

Received December 1, 1983

A model is proposed for studying the influence of the duration of a nonreproducing life stage on the dynamics of marine intertidal populations. Analysis of the model shows that this system, in which the time delay (the nonreproducing stage) is in a density independent term, has two solutions. When the nonzero solution exists it is a stable point. A randomly occurring environmental disturbance, to which only the nonreproducing stage is resistant, is superimposed on the basic deterministic equation. Average extinction time, estimated by simulation, appears as a nonmonotonic function of the duration of disturbance. The graph of extinction time has multiple extrema with minima occurring where the ratio between the duration of the resistant stage and the duration of disturbance is an integer. This phenomenon is more sharply manifested when the intrinsic growth rate and frequency of disturbance are relatively large and when the variance in the duration of disturbance and the duration of the resistant stage is not too large. Increasing patchiness of the habitat has a minor effect on the pattern of dependence of the extinction time on the ratio between the juvenile and environmental periods. The suitability of the model for describing the marine intertidal system of the northern Red Sea is discussed, and it is suggested that the duration of the larval stage can determine adult population dynamics. © 1985 Academic Press, Inc.

1. INTRODUCTION

Many organisms have a nonreproducing life history stage which is resistant to external disturbances inflicted on the reproducing forms. Seeds of plants are relatively immune to extreme aridity. Eggs of various insects are less affected than other life stages by weather vagaries, parasites, etc. We
suggest that planktotrophic larvae of marine benthic invertebrates are another example of such an escape. Diffusing in the sea, these larvae are not susceptible to catastrophic wave action, which by tearing sessile adults from their beds or by covering inhabited patches with sand, can bring local adult populations on the shore to extinction.

The termination of the seed stage of annual plants and of the hibernating egg stage of some insects follows the end of their respective unfavorable seasons. In many other systems, the transition from a juvenile to an adult form is not determined by known periodic climatic signals. For pelagic larvae it was suggested that their longevity is determined by factors such as mixing in the onshore-offshore direction, length of the larval development period and mortality in the plankton (Jackson and Strathmann, 1981), maximization of recruitment per unit of reproductive effort (Vance, 1973; Palmer and Strathmann, 1981), individual selection for spreading siblings (Strathmann, 1974), habitat selection (Doyle, 1975), and maintenance of genetic continuity between distant populations (Scheltema, 1971). Mileikovsky, (1971) suggests that a longer mobile prereproductive stage increases dispersal and enables fast recuperation from critical reduction in population size.

Todd and Doyle (1981) propose the settlement-timing hypothesis according to which the duration of the pelagic stage may be determined so as to bridge the period between the optimal time to spawn and to settle. While stressing the significance for some species of the actual settling date, the same authors also note that other species have unpredictable timing of settlement, presumably due to stochastic environmental changes.

Stochastic environmental regimes greatly affect the dynamics of populations in general (Scheffer, 1951; Mech, 1966; Ito, 1980) and those of the marine intertidal populations in particular (Ayal and Safriel, 1982a,b; Paine, 1979). Under such conditions the existence in some species of an immune life stage is a bonus. However, this obvious benefit is traded off by a time delay in reproductive activity which causes an overall reduction in the intrinsic growth rate. Results of Parnas and Cohen (1976) imply that even for low frequency of disturbance the optimal duration of the resistant stage should be larger than the duration of an individual disturbance.

The relation between random environmental disturbances and the duration of the juvenile life stage is studied in the present article. Our approach is new in considering environmental stochasticity in the form of alternating periods of harsh and favourable conditions whose time scale may equal the biological time scale. By choosing this non-Markovian representation of the environment we deliberately sacrifice mathematical tractability for the sake of a more realistic description of many natural environments, whose variation can be approximated neither by deterministic models nor by stochastic white noise models.

The model attempts to give a specific description of the population dynamics of some marine intertidal molluscs in the northern Red Sea. We do not suggest that its precise form is a good description of all intertidal populations, or exclusively of intertidal populations. The main results reported here seem counterintuitive. In another work (Agur, in press) they are explored in a more general framework. The latter work shows that results presented hereafter are independent of the exact details of the deterministic equation, whereas the distribution of intervals between disturbances appears to determine the general pattern of extinction. For this reason the concepts presented here should be also appropriate for various other populations that live in regimes of random, relatively long, environmental disturbances to which only their nonreproducing life stage is vulnerable.

The article is organized in the following fashion. The deterministic model and its stochastic variant are outlined in the second section and the simulation results are presented in the third section. The motivation for making the various assumptions and the suitability of the model for describing marine intertidal dynamics are taken up in the discussion.

2. THE BASIC MODEL

2.1. Population Growth in a Constant Homogeneous Environment

The continuous growth of a single population with overlapping generations in a restricted environment is approximated by the well-known logistic equation

\[ \frac{dx}{dt} = rx(1 - x/K). \]

The systems analyzed in the present work have the following 3 main characteristics:

(1) A birth process with two stages: birth of juveniles—the planktonic larvae, and recruitment of juveniles to the adult population.

(2) Recruitment is assumed to be the only density dependent element.

(3) The juvenile stage provides a time-lag \( \tau \) between birth and maturation.

Under these assumptions the increment to the adult population at time \( t \) will depend on 3 factors:

(i) the birth of juveniles at time \( t - \tau \), proportional to the number of adults at time \( t - \tau \),

(ii) the chances that juveniles born at time \( t - \tau \), will survive to time \( t \),
(iii) the free resources available for adults which will determine the fraction of juveniles that will actually mature.

If \( J(t - \tau) \) denotes a cohort of juveniles born at time \( t - \tau \), during one time interval, then \( J(t - \tau) = \lambda x(t - \tau) \), where \( \lambda \) is the birth rate and \( x(t - \tau) \) is the number of adults at time \( t - \tau \). The dynamics of this cohort is given by

\[
dJ/dt = -\mu' J,
\]

where \( \mu' \) stands for the mortality rate of juveniles.

If \( \tau \) is the duration of the juvenile stage then \( J(t) = \lambda x(t - \tau) \exp(-\mu'\tau) \) will be the number of juveniles born at time \( t - \tau \) that are ready to be recruited at time \( t \). According to assumption (2) above the number of recruited individuals at time \( t \) will be

\[
A x(t - \tau) \exp(-\mu'\tau)(1 - x(t)/E),
\]

where \( E \) is the environmental limiting factor. Adding now the deterministic term of adult mortality \( \mu \), and putting \( x' = x/E \) and \( \lambda' = \lambda \exp(-\mu'\tau) \) we obtain

\[
dx'/dt = \lambda' x'(t - \tau)(1 - x'(t)) - \mu x', \tag{2}
\]

Note that whereas in the logistic model (Eq. (1)), equilibrium population size will be \( x^* = K \), in Eq. (2) it will be \( x^* = E(1 - \mu/\lambda') \). Having a different role, the environmental limiting factor was denoted \( E \) in Eq. (2) instead of the conventional \( K \) of the logistic equation. Figure 1 shows some characteristic time behaviour of Eq. (2) for different values of the parameters \( \mu, \lambda', \tau \). Equation (2) has one or two stationary states, \( x' = 0, x' = 1 - \mu/\lambda' \), depending on the values of its parameters. Analysis of the linear stability of (2) around the stationary states is given in the Appendix, whereas numerical simulations of Eq. (2) are shown in Fig. 1.

2.2. Multipatch Environments

Equation (2) considers a single patch environment which is homogenously affected by each disturbance. Hence, although its actual physical dimensions are not explicit in the present model, they must be considered small enough to justify the assumption of spatial homogeneity.

In Eq. (3) we extend the model to include multipatch environments that vary in the number of patches \( N \) and in their density.

\[
dx'_j/mt = \sum_{i=1}^{N} \lambda' x'_j(t - \tau) g(s_{ji}, \tau)(1 - x'_j) - \mu x'_j, \quad i = 1 \text{ to } N. \tag{3}
\]

In Eq. (3), \( g(s_{ji}, \tau) \) is the probability of a juvenile with longevity \( \tau \) that was hatched on patch \( j \) to arrive at patch \( i \). Assuming Fick's law, \( g(s_{ji}, \tau) ds = 1/\sqrt{4\pi dt} \exp(-s_{ji}^2/2) ds \), where \( d \) is the diffusion coefficient, \( c \) is the drift coefficient, \( s_{ji} \) is the distance between patch \( j \) and patch \( i \), and \( ds \) is the patch size. Equation (3) considers 1-dimensional diffusion between many small patches in a linear, relatively large, habitat (e.g., along the coasts of an ocean). We ignore diffusion in the perpendicular axis, assuming that its main effect is taken account of in the larvae mortality term. The values of the diffusion and drift coefficients in the mobility function \( g(s_{ji}, \tau) \) were chosen such that the contribution of adults to subsequent recruitments in their own site is considerably large. This assumption is justified in areas such as the Gulf of Eilat in the Red Sea, where available patches are very distant from each other and are often located in the inner part of lagoons with narrow openings into the sea (Ayal and Safrin, 1982b). Obviously the exact form of \( g(s_{ji}, \tau) \) can be adjusted to other modes of dispersal, but this function is expected to be of secondary importance in the model. It should be noted that Eq. (2) is a special case of Eq. (3) for \( N = 1 \), and \( g(s_{ji}, \tau) = 1 \).

2.3. Stochastic Environment

Disturbances are assumed to cause an instantaneous death of a fraction \( \Delta \) of the adult population, where \( 0 < \Delta < 1 \). Their duration is constant or normally distributed, with an average value \( \delta \). The times between the end of one disturbance and the beginning of the next one are independent exponentially distributed random variables with a mean \( 1/\varphi \) (stochasticity of this kind is conventionally called "telegraphic noise"). It should be noted that the assumption of random occurrence of disturbances is a basic property of the model. This is demonstrated elsewhere (Agur, in press), where simulation experiments in an environment with a periodic distribution of intervals show
different results than those in an environment with exponentially distributed intervals.

In the computer simulation the stochastic process was coupled with the deterministic population growth using the following procedure. In each simulation experiment Eq. (2) or Eq. (3) was integrated by the Euler method. At the same time a stochastic generator was activated for each patch independently in order to determine the times of the initiation of the disturbances. The time unit of integration was of the order of magnitude of \( \tau/100 \), and the population was defined as extinct when its numbers remained negligibly small (less than \( 1 \times 10^{-7} \) of the initial population size) for a period equal to \( \tau \). Each simulation experiment was iterated 100 times and the average time to extinction was estimated for that population-environment set (for the use of the average time to extinction as a measure of success, see e.g., Ludwig, 1978; Hanson and Tuckwell, 1981).

---

**Fig. 2.** Average extinction time of the population, \( \bar{T} \), is plotted as a function of \( \tau/\delta \) for different values of disturbance frequency. \( d = 1, \lambda = 0.05, \mu = 0.01, \sigma = 0.01, \tau = 90, \delta = 18-90, I = 50, E = 100, N = 1, \psi = 0.22 - 0.4 \). Each point in the graph is an average of 100 simulations of Eq. (2) with the telegraphic noise superimposed.

**Fig. 3.** As in Fig. 2, but \( d = 0.3 \).

---

3. Results

Figures 2–6 show simulation results of population dynamics in a single homogeneous patch whose initial population size is \( I \) and its environmental limiting factor is \( E \) (Eq. 2) (\( I \) and \( E \) were kept constant in all simulations; \( \delta \) and \( \tau \) were kept constant in all simulations except when stated otherwise).

Figure 2 and Figure 3 show how the time to extinction of the population is affected by the duration of disturbance \( \delta \), its frequency \( \psi \) and its magnitude \( \Delta \). We expected the extinction time to be some decreasing function of \( \delta \), since a larger \( \delta \), for fixed \( \psi \) and \( \tau \), corresponds to a higher proportion of time under inhospitable conditions. Contrary to our expectations, however, when \( \Delta = 1 \), simulation results consistently show a minimum in the average extinction time for \( \tau/\delta = 2 \). Additional minima occur for \( \tau/\delta = 3, 4, 5, ... \) when the frequency of disturbance \( \psi \) is not too small. Decreasing magnitude of the disturbance increases the average extinction time for all values of \( \tau/\delta \).
Fig. 4. The influence of the juvenile mortality rate on the extinction time of the population. Average extinction time $T$ is plotted as a function of $\tau/\delta$ for different values of $\mu'$. $\lambda = 1$, $\varphi = 0.05$. Other parameters as in Fig. 2.

Still, the general nonmonotonic pattern is preserved when $\lambda$ varies between 1.0 and 0.3, with additional less significant maxima emerging with decreasing $\lambda$ (Fig. 3). Having the same "macro" effect, with a slightly less complex general behaviour, we kept $\lambda = 1$ in all simulation experiments whose description follows hereafter.

In Figure 4 we varied juvenile mortality $\mu'$ while keeping the frequency of disturbance constant. The nonmonotonic dependence of the average extinction time on the relation $\tau/\delta$ appears to be independent of the juvenile mortality rate. However the maxima are much less pronounced when juvenile mortality is large. Variation in $\lambda$ (not shown here) has a similar effect: the general pattern of the extinction time curve is preserved but the nonmonotonic behaviour is less significant when $\lambda$ is small. Variation in adult mortality $\mu$ has practically no effect on the general pattern.

Figure 5 shows simulation results with a Gaussian variance about $\delta$. In

Fig. 5. Gaussian variance about $\delta$ is introduced in the simulations. The pattern of change in extinction time as a function of $\delta$ is influenced by variance about $\delta$ when $\sigma$ is relatively large. $\lambda = 1$, $\varphi = 0.1$. Other parameters as in Fig. 2.

Fig. 6. As in Fig. 5 for variance about $\tau$. 
Fig. 6, δ is again constant while a Gaussian variance is introduced now about τ. Simulations show that when variance about δ or τ is not too large (σ ≤ δ/7 or σ ≤ τ/7), the system still has a clear minimum in the average time to extinction for τ/δ = 2, and a clear maximum for τ/δ → 1. The minima in the average extinction time for τ/δ = 3, 4, 5,..., are slightly less prominent when σ is relatively large and when σ ≥ δ/4 or σ ≥ τ/5, average extinction time is low over the whole range of τ/δ, with no distinguishable extrema.

In order to study the effect of spatial heterogeneity of the habitat on the persistence of the population, the original habitat is divided into N patches with various distances between them. The initial population size and the environmental limiting factor for each individual patch are now I/N and E/N, and as was mentioned above, disturbance occur independently in each patch. Simulation results, (Fig. 7) show a large increase in extinction time with increasing number of patches for all values of τ/δ. However the general pattern of a nonmonotonic dependence of the extinction time on τ/δ is preserved when increasing the number of patches. Simulation results for various values of the drift coefficient (not presented here) show that strong drift reduces the average extinction time in general but has no qualitative effect on the pattern of its dependence on the relation τ/δ.

4. Discussion

Analysis of the basic deterministic model (Eq. 2) shows that the conditions for existence and stability of the two stationary states are not qualitatively different from those of the simple logistic equation. The only difference between the original logistic equation and its present time delay version, is that in the latter, damped oscillations are superimposed on the normal logistic growth (Fig. 1). In contrast to models in which the time delay appears in the density dependent term (Hutchinson, 1948; May 1974), the system presented here is intrinsically stable.

Environmental uncertainty in the form of a multiplicative telegraphic noise was superimposed on the basic deterministic equations. From the simulation results it appears that the time to extinction is not a monotonically decreasing function of the duration of disturbance. Rather, there appears to be a resonance effect, by which when the frequency of disturbance is large, the chances of persistence are minimized for τ/δ = n (n = 1, 2, 3,...) and maximized for τ/δ → n.

This phenomenon, studied in detail elsewhere (Agur, in press) can be briefly explained as follows: when 1 < τ/δ ≤ 2, and Δ = 1, juveniles born in a given interval can be recruited to the adult population in the following interval only. Consequently for the population to become extinct it suffices that one episode of recruitment is fully overlapped by a disturbance. As the probability of initiation of a new disturbance is constant over time, the chances that such an overlap will occur increase with increasing "wasted time" between the end of one disturbance and the beginning of the following recruitment episode. In the region 1 < τ/δ ≤ 2, the fraction of "wasted time" is maximized for τ/δ = 2. It follows that extinction probability in this region is maximized, and the average extinction time is minimized, for τ/δ = 2. In the same spirit one can show that when the frequency of disturbance is large, extinction chances in the region 2 < τ/δ ≤ 3 are maximized for τ/δ = 3, etc.

Extinction for Δ < 1 is realized through multiple repetitions of the sequence which causes extinction for Δ = 1. Hence, although extinction time increases with decreasing Δ, the value of Δ has no effect on the probability of occurrence of this sequence. It should be mentioned that we have no analytic explanation for the additional maxima which appear in the region 1 < τ/δ ≤ 2 for Δ < 1.

It is suggested here that the time to extinction of a single isolated patch,
mined by the duration of disturbance in the location of recruitment. Hence increased dispersal of larvae, bearing no advantage of its own, may sometimes be a side effect of adaption that enables larvae to buffer local extinction of the benthic animals, caused by disturbances that prevent recruitment during a relatively long period.

5. CONCLUSIONS

Our model is characterized by the description of the population dynamics in a harshly varying environment as being an outcome of two processes: the population process determined by the resistant stage, and the environmental process determined by the durations of alternating harsh and favourable episodes. The special synchronization phenomenon that appears in the results is expected to be manifested when variance in \(r/\delta\) is relatively small and when the intrinsic growth rate and the frequency of disturbance are relatively large. The counterintuitive character of our theoretical results may render them able to explain some as yet mysterious life history strategies. Thus it seems worthwhile to examine such strategies on the background of a quantified environmental pattern.

6. APPENDIX: STABILITY ANALYSIS OF EQUATION (2)

In the stability analysis of Eq. (2) we show that the first stationary state \(x' = 0\) is unstable and that the other one \(x' = 1 - \mu/\lambda'\), is locally stable. The latter has a biological significance only if \(\lambda' > \mu\). The linearized equation around \(x' = 0\) is

\[
d\delta x'/dt = \lambda' \delta x'(t - \tau) - \mu \delta x'.
\]  
(A1)

The characteristic equation for the eigenvalues \(\omega = \omega_i + i \omega_r\) of (A1) is

\[
\omega_r = \lambda' \exp(-\omega_r \tau) \cos(\omega_r \tau) = \mu \\
\omega_i = -\lambda' \exp(-\omega_r \tau) \sin(\omega_r \tau).
\]  
(A2)

It is easy to see that for the choice \(\omega_i = 0\) there exists a solution of (A2) with \(\omega_r > 0\), hence instability of \(x' = 0\). Note that this particular solution of (A2), has no oscillations near the stationary state and represents the fastest growth rate (see also Fig. 1).

The linearized equation around \(x' = 1 - \mu/\lambda'\) is

\[
d\delta x'/dt = \mu \delta x'(t - \tau) - \lambda' \delta x'.
\]  
(A3)

The characteristic equation is then

\[
\omega_r = \mu \exp(-\omega_r \tau) \cos(\omega_r \tau) - \lambda' \\
\omega_i = -\mu \exp(-\omega_r \tau) \sin(\omega_r \tau).
\]  
(A4)

Employing the condition \(\lambda' > \mu\) one sees immediately from the first equation in (A4) that every solution of (A4) satisfies \(\omega_r < 0\), hence local stability of \(x' = 1 - \mu/\lambda'\).

ACKNOWLEDGMENTS

We are much obliged to Z. Arstein, R. Lefever, S. A. Levin, G. Nicolis, L. A. Segel, and R. R. Vance for helpful comments on the manuscript.

REFERENCES


