## Mangrove Forests and Sedimentary Processes on the South Coast of São Paulo State (Brazil)

# M. Cunha-Lignon<sup>†</sup><sup>‡</sup>, C. Coelho-Jr.<sup>∞</sup>, R. Almeida<sup>‡</sup>, R. Menghini<sup>‡</sup>, F. Correa<sup>\*</sup>, Y. Schaeffer-Novelli<sup>‡</sup>, G. Cintrón-Molero<sup>β</sup> and F. Dahdouh-Guebas<sup>†×</sup>

 <sup>†</sup>Complexity & Dynamics of Tropical Systems
Université Libre de Bruxelles – ULB,
<sup>×</sup>Plant Biology and
Nature Management,
Vrije Universiteit
Brussel – VUB,
1050, Belgium
marilia.cunha@ulb.ac.be
fdahdouh@ulb.ac.be ‡Instituto Oceanográfico Univ. de São Paulo SP, 05508-900, Brazil menghini@usp.br renato.almeida@bioma brasil.org novelliy@usp.br <sup>∞</sup>Depto. de Biologia Univ. de Pernambuco PE, 52041-050, Brazil clemente.coelhojr@bioma brasil.org

\*CEPENE/ICMBio PE, 55578-000, Brazil fabio.correa@bioma brasil.org

Portugal

<sup>β</sup>U.S. Fish and Wildlife Service VA, 22203-1622 USA gil\_cintron@fws.gov



### ABSTRACT

Cunha-Lignon, M.; Coelho-Jr., C.; Almeida, R.; Menghini, R.; Correa, F.; Schaeffer-Novelli, Y.; Cintrón-Molero, G. & Dahdouh-Guebas, F., 2009. Mangrove Forests and Sedimentary Processes on the South Coast of São Paulo State (Brazil). Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), 405 – 409. Lisbon, Portugal, ISSN 0749-0258.

Mangrove structure and distribution is conditioned by geomorphic processes. This paper describes the response of mangroves to sedimentary processes at the Cananéia-Iguape Coastal System on the south coast of São Paulo State (Brazil), between latitudes 24°40'S and 25°20'S. Within six study areas 41 plots were established along 14 transects. Plot size varied according to stem density from  $2m \times 2m$  to  $20m \times 20m$ . Here mangroves are strongly coupled to sedimentary processes, forming discrete architectural elements within particular depositional environments or topographic settings. These sedimentary structures and progradation environments are colonized by *Laguncularia racemosa*, associated with the smooth cordgrass *Spartina alterniflora*. *Rhizophora mangle* occurs typically near creeklets where tidal flooding is more frequent. Where tidal influence is restricted *Avicennia schaueriana* becomes dominant. Erosive margins are dominated by *A. schaueriana* or *R. mangle*. Single linkage cluster analysis yields three groups (A, B and C), with high levels of similarity, providing support to the classification of the data into two broad landform categories: depositional and erosive. Group A includes plots with the least structural development (nominal stem diameter d<sub>n</sub> between 1.05 and 4.61cm). Group B is composed of stems of intermediate diameter (4.99 cm  $\leq d_n \leq 5.63$ cm). Group C plots have the largest structural development (5.50 cm  $\leq d_n \leq 11.10$ cm). The structure of mangroves (dominance and structural development) reflects responses to geomorphology and habitat change.

ADITIONAL INDEX WORDS: coastal ecosystem, geomorphology, Cananéia-Iguape Coastal System

#### **INTRODUCTION**

Mangrove ecosystems show close links between geomorphology and vegetation assemblages and can change over time as landforms accrete or erode as a direct response to coastal sedimentary processes (Souza Filho et al., 2006). Mangrove forests develop distinct spatial patterns depending on geomorphological and environmental settings. In sedimentary systems, close relationships exist between propagule transport, tidal hydrodynamics, sediment transport and geomorphology (Bryce et al, 2003; Di Nitto et al., 2008).

According to Lugo and Snedaker (1974) mangrove ecosystems are self-maintaining coastal landscape units that are responsive to

long-term geomorphological processes and are open to continuous interactions with contiguous ecosystems at regional scale.

In Brazil, the local variability in mangrove species associations their dominance in a given environment is predominantly determined by the characteristics of the landforms that can be colonized by each species (Schaeffer-Novelli et al., 1990a).

The purpose of this paper is to describe the response of mangroves to sedimentary processes at the Cananéia-Iguape Coastal System on the south coast of São Paulo State (Brazil).

#### Study Area

The Cananéia-Iguape Coastal System (Figure 1) is located on the southern reach of the coast of São Paulo State, southeastern Brazil, between latitudes 24°40'S and 25°20'S. This coastal system has three main islands (Cardoso, Cananéia and Comprida), that are separated by meandering channels. These channels show a hydrodynamic pattern influenced by tidal currents and freshwater inputs to the system. Intense erosion occurs on the concave margins and sediment deposition takes place on the convex margins of the Cananéia Channel (Tessler and Mahiques, 1998).

The summers are wet and winters are considerably dry. Maximum precipitation rates occur from January through March (monthly average of 266.9mm) and the minimum rates occur from July to August (monthly average of 95.3mm). The average annual rainfall over a 29-year period has is 2,300mm. The average annual temperature is 23.8°C, the highest monthly average is 27.8°C (February), and the lowest is July (19.8°C). Tides are semidiurnal and mean tidal amplitude is 0.82m.

Six study sites were chosen considering the spectrum of depositional and erosive forms in the Cananéia-Iguape Coastal System: Pai Matos Island, Baguaçu, Nóbrega, Sítio Grande, Cabeçuda Island and Sacová Island (Figure 1).

#### METHODS

Within six study areas 41 plots were established along 14 transects. Primary transects were located along depositional gradients of sedimentary successions. Where appropriate, one or more secondary transects, with plots located on the extremities, were lied out perpendicular to the primary transects. These plots were in contact with the river or estuary, areas submitted to sedimentary processes. Plot size varied according to stem density from  $2m \times 2m$  to  $20m \times 20m$ , according to methodology proposed by Cintrón and Schaeffer-Novelli (1984). We identified transects and plots using a code representing the study site name (PM = Pai Matos, BA = Baguaçu; NO = Nóbrega; SG = Sítio Grande; CA = Cabeçuda Island and SA = Sacová Island), followed by the plot number (P1, P2, P3, etc...). The number of transects and plots per site is given in the results table.



Figure 1. Location of the Cananéia-Iguape Coastal System, on the southern coast of the State of São Paulo, and the study sites: 1. Pai Matos Island; 2. Baguaçu; 3. Nóbrega; 4. Sítio Grande; 5. Cabeçuda Island; and 6. Sacová Island

Once field data had been collected, the average height,  $d_n$  (diameter at or close to normal stem form, suggested by Husch et al., 1982), basal area, basal area dominance, and trunk density were assessed. The live basal area (m<sup>2</sup>.ha<sup>-1</sup>) was classified according to diameter classes ( $d_n < 2.5$ cm;  $2.5 \le d_n \le 10$ cm; and  $d_n \ge 10$ cm), proposed by Cintrón and Schaeffer-Novelli (1984). Topography was taken at 1 meter interval along all transects in the mangrove, using a communicating vessels system.

A cluster analysis (UPGMA), using Statistica software, was applied to the data collected. The parameters adopted were  $d_n$  and mean height values.

#### RESULTS

The distribution of species along transects revealed spatial patterns of structural development;  $d_n$  and mean height increase and density decrease progressively (Table 1).

Forests with low structural development are characterized by *Laguncularia racemosa* with low  $d_n$  ( $\leq 2.5$ cm), low mean height values (1.28±0.16 to 3.32±0.96m, such as plots BAP1 and BAP3, respectively) and high density (67,200 to 38,000 stems.ha<sup>-1</sup>, such as plots SGP1 and PMP1). We observed a high number of live trunks in low live basal area class ( $\leq 2.5$ cm), such as plots BAP1, BAP2 and NOP1.

Forests with intermediate structural development are dominated by *L. racemosa* and/or *R. mangle* and present intermediate values, such as plots PMP2, PMP5, SGP2, CAP1, CAP2, SAP1, and SAP2 (Table 1).

In contrast, forests with high structural development are characterized by *Rhizophora mangle* and/or *Avicennia schaueriana* with high  $d_n$  ( $\geq 10.0$ cm), high mean height values (4.16±2.35 to 5.58±2.91m, such as plots SAP4 and PMP4), and a low density (2,925 to 4,700 stems.ha<sup>-1</sup>, such as plots PMP4 and PMP6). These plots had high number of living trunks in the high living basal area class ( $\geq 10.0$ cm), such as plots PMP4, PMP6 and SAP4 (Table 1).

Mangroves are strongly coupled to sedimentary processes, forming discrete architectural elements within particular depositional environments or microtopography settings.

Depositional surfaces and progradation environments are colonized by *L. racemosa*, which has a low structural development and is associated with smooth cordgrass (*Spartina alterniflora*) as observed in depositional areas of Pai Matos Island, Baguaçu, Nóbrega and Sítio Grande (PMP1, BAP1, BAP2, NOP1, NOP2, SGP1 and SGP2).

In the eroding sites, as in some areas of Pai Matos Island and Sítio Grande, large *R. mangle* and/or *A. schaueriana* were found, such as plots PMP6 and SGP5 (Table 1 and Figure 3). Landscape positions as well as topography are critical factors influencing establishment patterns and zonation of mangrove species. Within creeklets, *R. mangle* occurs in areas with frequent tidal inundation, such as plots CAP3 and BAP8 (Figure 2). However, where tidal influence is restricted *A. schaueriana* becomes dominant, such as plots PMP4, BAP5, SAP4 (Table 1 and Figure 2).

Table 1: Structural parameters per plot in the mangrove sites studied.  $d_n = nominal stem diameter; stdev = standard deviation.$  Species: R.man: Rhizophora mangle; L.rac: Laguncularia racemosa; A.sch: Avicennia schaueriana. Study sites : PM = Pai Matos, BA = Baguaçu; NO = Nóbrega, SG = Sítio Grande, CA = Cabeçuda Island and SA = Sacová Island. --- denotes an absence.

| Plot  | Mean d <sub>n</sub> | Height          | Density                   | Basal Area Contribution (%) |        |       | Live Basal Area (m <sup>2</sup> .ha <sup>-1</sup> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
|-------|---------------------|-----------------|---------------------------|-----------------------------|--------|-------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|       | (cm)                | $\pm$ stdev (m) | (stems.ha <sup>-1</sup> ) | R.man                       | L.rac  | A.sch | d <sub>n</sub> <2                                   | $.5 \ 2.5 \le d_n \le$ | $(10 \ d_n \ge 10)$ |
| PMP1  | 2.13                | 2.02±0.62       | 38,000                    |                             | 95.77  | 4.23  | 4.65                                                | 7.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| PMP2  | 5.47                | 3.9±2.68        | 8,300                     | 26.97                       | 71.06  | 1.97  | 0.40                                                | 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.66                |
| PMP3  | 9.33                | 5.42±2.59       | 4,000                     | 29.69                       | 28.31  | 41.99 | 0.19                                                | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.86               |
| PMP4  | 11.10               | 5.58±.91        | 2,925                     | 14.30                       | 2.78   | 82.92 | 0.20                                                | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.02               |
| PMP5  | 5.04                | 3.54±1.78       | 23,500                    | 0.74                        | 99.26  |       | 1.77                                                | 14.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.48               |
| PMP6  | 10.41               | 4.51±2.63       | 4,700                     | 30.59                       | 25.22  | 44.19 | 0.15                                                | 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.98               |
| BAP1  | 1.05                | 1.28±0.16       | 160,000                   |                             | 99.10  | 0.90  | 13.93                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| BAP2  | 1.42                | 1.54+-0.48      | 112,000                   | 8.16                        | 90.32  | 1.51  | 15.98                                               | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| BAP3  | 2.41                | 3.32±0.96       | 67,500                    | 11.34                       | 85.49  | 3.17  | 7.65                                                | 13.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| BAP4  | 4.61                | 4.50±1.24       | 31,200                    | 0.17                        | 81.92  | 17.91 | 1.02                                                | 34.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.60                |
| BAP5  | 6.35                | 7.60±2.25       | 5,733                     | 5.58                        | 19.61  | 74.80 | 0.36                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.54               |
| BAP6  | 6.39                | 6.72±1.16       | 8,400                     | 90.51                       |        | 9.49  | 0.05                                                | 17.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.86                |
| BAP7  | 3.69                | 4.90±1.06       | 21,400                    | 86.14                       | 0.52   | 13.34 | 0.71                                                | 11.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.90                |
| BAP8  | 5.55                | 6.81±0.81       | 18,444                    | 100.00                      |        |       |                                                     | 25.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| BAP9  | 4.47                | 5.01±1.33       | 18,800                    | 65.83                       | 34.17  |       | 0.31                                                | 16.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| BAP10 | 2.74                | 3.71±1.31       | 43,200                    | 71.79                       | 28.21  |       | 3.57                                                | 13.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| BAP11 | 5.50                | 6.46±0.88       | 14,200                    | 96.81                       | 3.19   |       | 0.17                                                | 20.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| NOP1  | 1.63                | 1.91±0.56       | 85,556                    | 3.90                        | 96.10  |       | 11.92                                               | 4.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| NOP2  | 2.16                | 2.93±0.93       | 106,667                   | 31.49                       | 67.60  | 0.92  | 8.26                                                | 13.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| NOP3  | 4.01                | 3.93±1.65       | 26,000                    | 72.14                       | 27.86  |       | 1.13                                                | 22.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| NOP4  | 4.34                | 4.78±2.21       | 22,800                    | 42.61                       | 36.46  | 20.93 | 0.87                                                | 16.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.63                |
| NOP5  | 6.26                | 3.60±3.37       | 7,200                     | 84.39                       | 0.24   | 15.37 | 0.75                                                | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.51               |
| SGP1  | 2.29                | 2.45±0.75       | 67,200                    | 44.91                       | 40.37  | 14.71 | 8.04                                                | 14.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| SGP2  | 3.12                | 3.37±0.97       | 72,133                    | 18.82                       | 64.55  | 16.62 | 5.68                                                | 36.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| SGP3  | 3.76                | 4.13±1.03       | 13,281                    | 100.00                      |        |       | 0.58                                                | 13.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| SGP4  | 7.63                | 7.62±2.79       | 8,200                     | 100.00                      |        |       | 0.07                                                | 28.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.17                |
| SGP5  | 8.23                | 5.77±2.21       | 6,100                     | 58.87                       | 28.33  | 12.80 | 0.31                                                | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.66               |
| SGP6  | 6.58                | 6.31±2.39       | 10,900                    | 98.04                       |        | 1.96  | 0.32                                                | 25.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.77                |
| CAP1  | 4.99                | 3.38±1.23       | 8,733                     | 11.46                       | 74.14  | 14.40 | 0.44                                                | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.66                |
| CAP2  | 3.92                | 3.24±1.28       | 17,200                    | 14.92                       | 85.08  |       | 1.07                                                | 14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| CAP3  | 8.07                | 5.43±2.14       | 4,100                     | 98.36                       | 1.64   |       | 0.15                                                | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.53               |
| CAP4  | 3.44                | 2.91±0.95       | 13,611                    | 16.31                       | 83.69  |       | 1.66                                                | 9.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| CAP5  | 3.95                | 2.83±0.59       | 13,061                    |                             | 100.00 |       | 0.46                                                | 10.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| CAP6  | 2.88                | 2.28±0.77       | 27,200                    | 2.77                        | 97.23  |       | 1.80                                                | 13.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| CAP7  | 5.45                | 3.65±1.66       | 14,429                    | 0.39                        | 99.61  |       | 0.71                                                | 15.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.95                |
| CAP8  | 5.08                | 3.44±1.42       | 12.245                    | 46.53                       | 53.47  |       | 0.91                                                | 12.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.45                |
| CAP9  | 3.65                | 2.81±1.22       | 20,204                    | 62.96                       | 37.04  |       | 2.26                                                | 12.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.05                |
| SAP1  | 5.63                | 4.06±1.42       | 6.181                     | 100.00                      |        |       | 0.20                                                | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.16                |
| SAP2  | 5 63                | 3.28±2.23       | 7 156                     | 36.92                       | 63 08  |       | 0.50                                                | 7 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.00                |
| SAP3  | 6 74                | 5.34±2.54       | 4,400                     | 100.00                      |        |       | 0.29                                                | 5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.24                |
| SAP4  | 10.96               | 4.16±2.35       | 3,778                     | 23.51                       |        | 76.49 | 0.15                                                | 5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.26               |



Figure 2. Topography from Baguaçu (transect 1: T1) and Sítio Grande (transect 3: T3) study sites, with location of the plots. We draw the attention to BAP5 (restricted tidal influence, area dominated by *A. schaueriana*), BAP7 and BAP8 (creeklet areas dominated by *R. mangle*) in Baguaçu, and to SGP5 (erosional area dominated by a mixed mangrove forest) in Sítio Grande.

#### ANALYSIS

Single linkage cluster analysis yields three groups (A, B and C), with high levels of similarity, providing support to the classification of the data into two broad landform categories: depositional and erosive. Group A includes plots with the least structural development ( $d_n$  between 1.05 and 4.61cm). Group B is composed of stems of intermediate size ( $d_n$  ranging from 4.99 to 5.63cm). Group C plots have the largest structural development ( $d_n$  between 5.50 and 11.10cm) (Figure 3 and Table 1).

#### DISCUSSION

According to Schaeffer-Novelli et al. (1990b), in the Cananéia-Iguape Coastal System, the spatial arrangement of mangroves appear to be a response to underlying topographic and edaphic conditions and constraints imposed by climatic and hydrologic factors. This study highlights that the structural developments of mangrove forests reflects responses to geomorphology as well as habitat change due to the progressive development (maturation) and successional change. Knight et al. (2008) similarly described patterns of tidal flooding within a mangrove forest, in relation with zonation and succession.

The results of the present research indicate that mangrove



Figure 3. Cluster analysis, considering mean nominal stem diameter  $(d_n)$  and mean height values. Clusters A, B and C represent plots with low, intermediate and high structural development, respectively.

forest zonation is a response to depositional and erosive processes and topography, and corroborate the model suggested by Dias-Brito and Zaninetti (1979), in which *L. racemosa* colonizes depositional areas and forms new forest.

In contrast, Lugo (2002) demonstrated that *R. mangle* can be both a pioneer species and a dominant element in a mature forest, as observed by us in the Sítio Grande. The results from our other sites confirm a zonation of mangroves like in French Guiana, with *L. racemosa* in young mangrove areas and *Avicennia* spp. and *Rhizophora* spp. in mature mangrove areas (Fromard et al., 1998).

Our results may prove an invaluable input to simulation models resulting in predictions and in explanations of the processes that control and regulate mangrove forest dynamics (Berger et al., 2008). According to the model developed by Twilley et al. (1999) constraints at higher levels along with mechanisms at lower levels affect bottom-up forest development. Berger et al. (2008) add that such models help mangrove management. Our study indeed implies that sedimentary processes may be site-specific and merit special attention not only in research, but also when conserving and managing mangroves in Brazil and elsewhere.

#### CONCLUSION

The mangrove forests structure reflects the different development stages of the sedimentary facies in the coastal system, submitted to the distinct subsidiary energies.

In the Cananéia-Iguape Coastal System, *L. racemosa*, with low structural development (low  $d_n$ , low height and high density values), dominates in the depositional sites, always associated to the smooth cordgrass *S. alterniflora*. While *R. mangle* and *A. schaueriana*, with high structural development (high  $d_n$ , high height and low density values), dominate in erosive sites.

*R. mangle* occurs, preferentially, in creeklet areas, under important inundation frequency, due to the low level microtopography. *A. schaueriana* colonizes in the high microtopography areas, submitted to a low influence by the tides.

#### LITERATURE CITED

Berger, U.; Rivera-Monroy, V.H.; Doyle, T.W.; Dahdouh-Guebas, F.; Duke, N.C.; Fontalvo-Herazo, M.L.; Hidelbrandt, H; Koedam, N.; Mehlig, U.; Piou, C. and Twilley, R.R., 2008. Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests. *Aquatic Botany*, 89: 260-274.

Bryce, S.; Larcombe, P. and Ridd, P.V., 2003. Hydronamic and geomorphological controls on suspended sediment transport in mangrove

creek system, a case study: Cocoa Creek, Townsville, Australia. *Estuaries, Coastal and Shelf Science*, 56: 415-431.

- Cintrón, G. and Schaeffer-Novelli, Y., 1984. Methods for studying mangrove structure. *In*: SNEDAKER, S.C. AND SNEDAKER, J.G. (eds.), *The mangrove ecosystem: research methods*. UNESCO, Paris, France, pp. 91-113.
- Dias-Brito, D. and Zaninetti, L., 1979. Étude géobotanique comparative de trois mangroves du littoral brésilien: Acupe (Bahia), Guaratiba (RJ) et Iguape (São Paulo). Notes du Laboratoire de Paléontologie, Université de Genève, 4 (6): 57-65.
- Di Nitto, D.; Dahdouh-Guebas, F.; Kairo, J.G.; Decleir, H. and Koedam, N., 2008. Digital terrain modelling to investigate the effects of sea level rise on mangrove propagule establishment. *Marine Ecology Progress Series* 356: 175-188.
- Fromard, F.; Puig, H.; Mougin, E.; Marty, G.: Betoulle, J.L. and Cadamuro, L., 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. *Oecologia*, 115: 39-53.
- Husch, B; Miller, C.I. and Beers, T.W., 1982. Forest Mensuration. John Wiley & Sons, N.Y., 402p.
- Knight, J.M.; Dale, P.E.R.; Dunn, R.J.K.; Broadbent, G.J. and Lemckert, C.J., 2008. Patterns of tidal flooding within a mangrove forest: Coombabah Lake, Southeast Queensland, Australia. *Estuarine, Coastal* and Shelf Science, 76: 580-593.
- Lugo, A.E., 2002. Conserving Latin American and Caribbean mangroves: issues and challenges. *Madera y Bosques*. Número especial: 5-25.
- Lugo, A.E. and Snedaker, S.C., 1974. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5: 39-64.
- Schaeffer-Novelli, Y.; Cintrón-Molero, G.; Adaime, R.R. and Camargo, T.M., 1990a. Variability of mangrove ecosystems along the Brazilan coast. *Estuaries*, 13 (2): 204-219.
- Schaeffer-Novelli, Y.; Mesquita, H.S.L. and Cintrón-Molero, G., 1990b. The Cananéia Lagoon Estuarine System, São Paulo, Brasil. *Estuaries*, 13, (2): 193-203.
- Souza Filho, P.W.M.S.; Martins, E.S.F. and Costa, F.R., 2006. Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat, Brazilian Amazon: a remote sensing data approach. *Ocean & Coastal Management*, 49: 462-475.
- Tessler, M.G. and Mahiques, M.M., 1998. Erosional and depositional processes on the Southern Coast of the State of Sao Paulo: a case study of Cananeia-Iguape System. *An. Acad. Bras. Ci.*, 70 (2): 267-275.
- Twilley, R.R.; Rivera-Monroy, V.H.; Chen, R. and Botero, L., 1999. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. *Marine Pollution Bulletin*, 37 (8-12): 404-419.

#### ACKNOLEDGEMENT

This study was undertaken with the financial supports of the Fundação de Amparo à Pesquisa do Estado de São Paulo (Process 99/08224-6), the Ramsar Convention (Wetlands for the Future Project, WFF/99/BRA/3) and the Agence Universitaire de la Francophonie (AUF).