 |  |  |  |  |
 |
|
Microtechniques [Microtechnologies] (BEAMS MicroTech)
Faculté des Sciences appliquées/école polytechnique - Electromécanique (unité ULB671)

|
Les recherches en microtechnologie portent sur l'étude de la miniaturisation des fonctions mécaniques : guidage, actionnement, étanchéité, préhension et assemblage. Le domaine d'expertise principal concerne la modélisation et la simulation numérique des effets des forces de surface, prédominantes à l'échelle de la miniaturisation. Les champs applicatifs principaux sont le micro-assemblage et l'administration de médicament. The researches in microtechnologies aim at studying the miniaturization of mechanical functions: guiding, actuation, valves, gripping and assembly. The main domain of expertise is the modeling and simulation of surface forces which play a role of the utmost importance due to the scaling. Main applicative fields are microassembly and drug delivery. [The researches in microtechnologies aim at studying the miniaturization of mechanical functions: guiding, actuation, valves, gripping and assembly. The main domain of expertise is the modeling and simulation of surface forces which play a role of the utmost importance due to the scaling. Main applicative fields are microassembly and drug delivery.]
|

coordonnées

|  | 

|

responsable

|  | 
Prof. Pierre LAMBERT

|

composition

|  | 
Aline DE GREEF Cyrille LENDERS Michel PIEROBON Marion SAUSSE-LHERNOULD Jean-Baptiste VALSAMIS

|

projets

|  | 
Momie 1 : Méthodes et Outils pour le MIcro-assemblagE Financement [Momie 1 : Methods and tools for micro-assembly]
L'objectif de cette collaboration est de définir des méthodes (modélisation, stratégies de miniaturisation, démarche de conception de produits miniaturisés) et des outils (modèles, simulations, plateformes d'expériences) pour le micro-assemblage et la micromanipulation. Deux voies complémentaires ont été proposées par le service de mécanique analytique et CFAO de l'ULB (modélisation des effets de surface à échelle microscopique) et le laboratoire de robotique de Paris de l'université Paris VI (utilisation de l'adhésion comme vecteur ou support de la manipulation - aspects expérimentaux). Le propos de ce projet est d'unifier ces 2 voies parallèles de développement pour répondre aux besoins applicatifs. L'objectif générique de ce projet est le développement de stratégies de micromanipulation conduisantes à la conception et la fabrication de prototypes de micropréhenseurs. [Methods and tools for micro-assembly]
Vannes pour la microfluidique [Microvalves for microfluidics applications]
La microfluidique étudie l'utilisation de fluides à l'échelle microscopique. Pour pouvoir être mise en oeuvre, le design de nouveaux composants est nécessaire. A cause des effets d'échelle, le comportement des fluides n'est pas identique au niveau microscopique et au niveau macroscopique. Les effets visqueux deviennent prépondérant et d'autre phénomènes comme les tensions de surfaces ne peuvent plus être négligés. La modélisation des principes physiques qui entrent en jeux permet de mieux appréhender la conception des dispositifs. Actuellement, ce projet est consacré à l'étude de vannes pour la microfluidique. [Microfluidics is the study of fluids behaviour at the microscale level. The design of new components is required to allow the use of microfluidics. Indeed, because of the scaling effect, the behaviour of fluids is different at microscale than at macroscale. Viscous effects are dominating and other phenomenon such as surface tensions may not be neglected anymore. The modelling of the physics is useful to better design the devices. At present, this project is devoted to the study of microvalves for microfluidics applications.]
Mini Micro Nano Project [Mini Micro Nano Project]
A new field of interest is the use of metallic materials in MEMS applications because of their interesting mechanical and wear properties. The objective of the Mini Micro Nano Project is to create a center of excellence in the field of micromechanical engineering with the cooperation of three ULB partners: the CAD-CAM, the Structural and Material Computational Mechanics and the Industrial Chemistry departments. The nanoscale world obeys to different rules than the macroscopic one. Due to the extreme down-scaling many practical problems are encountered in microhandling of small parts. These problems must be studied and solved in order to be able to design and produce reliable micromechanical tools. The CAD-CAM department is in charge of the development of a tool for surface interactions to be able to take into account the surface forces (that are of the outmost importance at nanoscale) for manipulator design and for the development of handling strategies. At small scales the behavior of materials changes significantly with respect to the bulk material at macro-scale, which leaves many unanswered questions. The Structural and Material Computational Mechanics Department is responsible for modeling the mechanical response of materials at nanoscale using appropriate theories to pass from the bulk material parameters to the nanoscale behavior. The previous tasks need inputs from special experiments. The practical research results must also be validated later on. The Industrial Chemistry Department brings its expertise in experimental characterization of materials and performs thorough chemical and physical characterization of materials and surfaces. The project will span five years, with the participation of three PhD students attached to the fore-mentioned three departments during four years and one post-doctoral fellow for the last two years. [A new field of interest is the use of metallic materials in MEMS applications because of their interesting mechanical and wear properties. The objective of the Mini Micro Nano Project is to create a center of excellence in the field of micromechanical engineering with the cooperation of three ULB partners: the CAD-CAM, the Structural and Material Computational Mechanics and the Industrial Chemistry departments. The nanoscale world obeys to different rules than the macroscopic one. Due to the extreme down-scaling many practical problems are encountered in microhandling of small parts. These problems must be studied and solved in order to be able to design and produce reliable micromechanical tools. The CAD-CAM department is in charge of the development of a tool for surface interactions to be able to take into account the surface forces (that are of the outmost importance at nanoscale) for manipulator design and for the development of handling strategies. At small scales the behavior of materials changes significantly with respect to the bulk material at macro-scale, which leaves many unanswered questions. The Structural and Material Computational Mechanics Department is responsible for modeling the mechanical response of materials at nanoscale using appropriate theories to pass from the bulk material parameters to the nanoscale behavior. The previous tasks need inputs from special experiments. The practical research results must also be validated later on. The Industrial Chemistry Department brings its expertise in experimental characterization of materials and performs thorough chemical and physical characterization of materials and surfaces. The project will span five years, with the participation of three PhD students attached to the fore-mentioned three departments during four years and one post-doctoral fellow for the last two years.]
Neofor
Technological platform for advanced pulmonary delivery of Active Pharmaceutical Ingredients [Technological platform for advanced pulmonary delivery of Active Pharmaceutical Ingredients]

|

publications

|  | 

|

theses

|  | 
Vincent VANDAELE, Contactless handling for micro-assembly: acoustic levitation, 2008
Marion SAUSSE-LHERNOULD, Theoretical and experimental study of electrostatic forces applied to micromanipulation: influence of surface topography, 2008
Alexandre CHAU, Theoretical and experimental study of capillary condensation and of its possible use in micro-assembly - Etude théorique et expérimentale des forces dues à la condensation capillaire, 2007
Pierre LAMBERT, A Contribution to Microassembly: a Study of Capillary Forces as a gripping Principle, 2004

|

collaborations

|  | 
Prof. Jacques Jacot, EPFL, Laboratoire de Production Microtechnique, Lausanne, Suisse
Prof. Stéphane Régnier, UPMC, Laboratoire de Robotique de Paris, Paris, France
Prof. Nicolas Chaillet, Laboratoire d'Automatique de Besançon, Besançon, France
Prof. Marcel Tichem, TU Delft, Delft, Pays-Bas
Sjef van Gastel, Assembléon, Veldhoven, Pays-Bas

|

prix

|  | 
Emerald Literati Award (Pierre Lambert)

|

savoir-faire/équipements

|  | 
Logiciels de CAO (CATIA), de prototypage (Matlab), de simulation multiphysique (Comsol) Capteurs de déplacement sans contact (6mm de course, précision de 200nm / 1 mm de course et 10nm de précision) Caméra haute cadence (100kH) Caméra CCD Axe nanométrique (course de 200µm, répétabilité 10nm) Banc de mesure de forces jusqu'à 10µN (limite basse)

|

mots clés compréhensibles déclarés

|  | 
forces de surface micro-assemblage micromécanique miniaturisation modélisation

|

disciplines et mots clés déclarés

|  | 
Sciences biomédicales Sciences de l'ingénieur
electrospray etats de surface forces électrostatiques microfluidique micromanipulation microvalve modélisation

|

codes technologiques DGTRE

|  | 
Automatisation, robotique, techniques et régularisation Biomécanique, cybernétique Instrumentation Mécanique appliquée, hydraulique, technologie du vide, vibrations, acoustique appliquée Technologie médicale

|
|