 |  |  |  |  |
 |
|
Analyse mathématique [Mathematical Analysis]
Faculté des Sciences - Mathématiques (unité ULB179)

|
L'unité s'intéresse à des problèmes aux limites ou aux conditions initiales pour des équations différentielles ordinaires et des équations aux dérivées partielles non linéaires. 1. Problèmes elliptiques linéaires et non linéaires : nous nous intéressons à la question de l'existence de solutions et à leurs propriétés qualitatives. Nous étudions par exemple l'équation de la courbure moyenne prescrite, des problèmes incluant le p-laplacien et l'existence d'états stationnaires pour l'équation de Schrödinger stationaire non linéaire. Concernant les propriétés qualitatives, nous tentons par exemple de déterminer quand les solutions d'un problème symétrique héritent des symétries du problème, le signe de la solution et le nombre précis de domaines nodaux des solutions. Nous avons ainsi pu mettre en évidence des ruptures de symétrie ou la préservation de symétries partielles. Une autre question qui nous occupe concerne le comportement asymptotique de solutions d'une famille de problèmes dépendant d'un paramètre, par exemple la limite semi-classique pour les états stationnaires de l'équation de Schrödinger non linéaire. D. BONHEURE : equation de Lane-Emden, courbure moyenne prescrite, équation de Schrödinger, systèmes hamiltoniens, symétries. J.-P. GOSSEZ:: exposants critiques, p-laplacien, problèmes spectraux non auto-adjoints, principe de l'antimaximum, spectre de Fucik, espaces d'Orlicz. E. LAMI DOZO: symétrie et brisure de symétrie, condition au bord non linéaire, spectre de Steklov des problèmes paraboliques périodiques. 2. Problèmes d'évolution : nous nous intéressons à des problèmes de Cauchy et à des problèmes mixtes, au comportement des solutions en temps grand, à la durée de vie et aux phénomènes d'explosion. Nous étudions en particulier les équations d'Euler des fluides compressibles non visqueux, les équations des fluides incompressibles non visqueux dans des domaines non lisses et d'autres équations aux dérivées partielles de la mécanique des fluides comme les modèles de courants atmosphériques et océaniques. A. DUTRIFOY: fluides incompressibles non visqueux, courants atmosphériques et océaniques, caractère bien posé et dynamique réduite simplifiée. P. GODIN: Equations hyperboliques non linéaires équations d'Euler des fluides co [This research group is working on boundary value problems and initial value problems for nonlinear ordinary and partial differential equations (ODEs and PDEs). 1. Linear and nonlinear elliptic PDEs: we investigate the existence and the qualitative properties of solutions. We consider for instance the prescribed mean curvature equation, problems including the p-laplacian and the existence of stationary states for the nonlinear Schrödinger equation. Concerning the qualitative properties, we try to understand when do a symmetric problem transfer those symmetries to the solutions. We were able for instance to prove symmetry breakings or partial symmetry of the solutions of variational semilinear elliptic problems. Another problem we are dealing with concerns the asymptotic behaviour of the solutions of a parameter dependent problem. For instance, we investigate the nonlinear Schrödinger equation in the semi-classical regime. D. BONHEURE : Lane-Emden equation, mean curvature equation, Schrödinger equation, Hamiltonian (elliptic) systems, symmetries. J.-P. GOSSEZ:: critical exponent, p-laplacian, non self-adjoint problems, antimaximum principle, Fucik spectrum, Orlicz spaces. E. LAMI DOZO: symmetries, nonlinear boundary conditions, Steklov spectrum and periodic parabolic problems. 2. Evolution problems : we look at Cauchy and mixed problems,at long time behaviour of the solutions, the lifespan and blow-up phenomena. We consider in particular the Euler equations of inviscid compressible fluids, the Euler equations of inviscid incompressible fluids and other PDEs from fluid mechanics including tmospheric and oceanic currents. A. DUTRIFOY: global solutions, non-smooth domains, well-posedness, simplified reduced dynamics. P. GODIN: Nonlinear hyperbolic partial differential equations, initial value problems and initial-boundary value problems.]
|

coordonnées

|  | 
Analyse mathématique [Mathematical Analysis] |
 | tel +32-2-650.58.48, fax +32-2-650.58.67, gossez@ulb.ac.be |
 | Campus de la Plaine, N-O 7ème étage |
 | CP214, boulevard du Triomphe, 1050 Bruxelles |

|

responsables

|  | 
Prof. Jean-Pierre GOSSEZ Prof. Paul GODIN Prof. Enrique LAMI DOZO

|

composition

|  | 
Denis BONHEURE Mabel CUESTA Ann DERLET Alexandre DUTRIFOY Ahmed LOULIT Humberto RAMOS

|

projets

|  | 

|

publications

|  | 

|

theses

|  | 
Alif M. '' Spectre de Fucik: problemes avec poids en dimension un et quelques remarques en dimension superieure '' Dir. J.-P.Gossez, 1999
Loulit A., « Inégalités avec poids et problèmes de continuation unique » - Dir. J.-P. Gossez, 1994
Alabidi A., ''Propagation et réflexion du front d'onde polarisé Hs pour des systèmes non linéaires'' - Dir. P. Godin, 1993
El Hachimi M., ''Etude de quelques problèmes elliptiques et paraboliques liés au p-laplacien'' - Dir. J.-P. Gossez, 1993
Cuesta M., « Etude de la résonnance et du spectre de Fucik des opérateurs Laplacien et p-Laplacien » - Dir. J.-P. Gossez, 1993
El Amrani M., « Etude de la propriété du point fixe pour les applications uniformément lipschitsiennes » - Dir. E. Lami Dozo, 1993
Touzani A., « Quelques résultats sur le Ap-laplacien avec poids indéfini » - Dir. E. Lami Dozo, 1992
Moussaoui M., « Questions d'existence dans les problèmes semi-linéaires elliptiques » - Dir. J.-P. Gossez, 1991
Benaouda A., « Création, propagation et réflexion des singularités dans des systèmes hyperboliques en dimension deux » - Dir. P. Godin, 1991
Benkirane A. ''Potentiel de Riesz et problemes elliptiques dans les espaces d' Orlicz''. Dir. J.-P.Gossez, 1988
Anane A. ''Etude des valeurs propres et de la resonance pour l operateur p-laplacien'' Dir. J.-P.Gossez, 1988
Amattat M. ''Problemes aux valeurs propres et bifurcations globales pour l operateur p-laplacien'' Dir. J.-P.Gossez, 1988
Addou A. ''Problemes aux limites non lineaires dans les espaces d Orlicz-Sobolev'' Dir. J.-P.Gossez, 1987
Houimdi Mohamed, ''La catégorie qbor des quotients bornologiques. Analyse fonctionnelle sur les espaces localement p-convexes (0 < p < or = 1) et application au calcul fonctionnel de Helton-Howe'' - Dir. L. Waelbroeck
Elidrissi Ahmed, ''Théorie de la catégorie des quotients d'espaces de Julia et applications'' - Dir. L. Waelbroeck
Azizieh C. ''A priori estimates, continuation methods and existence results for positive solutions of p-laplacian equations and systems'' Dir. J.-P.Gossez
Torne O. ''Symétrie et brisure de symétrie dans quelques problèmes elliptiques'' Dir. E.Lami Dozo.
Dutrifoy A. ''Existence et régularité de solutions du système d'Euler incompressible correspondant à divers types de données initiales'' Dir. P.Godin

|

collaborations

|  | 
Prof. De Thélin, Fleckinger, Université de Toulouse, Toulouse, France
Prof. Takac, Université de Rostock, Rostock, ALLEMAGNE (REP.FED.)
Prof. De Figueiredo, Université de Campinas, Campinas, Brésil
Prof. Omari, Fonda, Dobarro, Université de Trieste, Trieste, Italie
Prof. Manasevich, Université du Chili, Santiago, Chili
Prof.Lami Dozo, Mariani, Université de Buenos Aires, Buenos Aires, Argentine
Prof. Godoy, Paczka, Université de Cordoba, Cordoba, Argentine
Prof. Arias, Campos, Université de Granada, Granada, Espagne
Prof. Cuesta, Université du Littoral, Calais, France
Prof. Anane, Universite de Oujda, Oujda, Maroc
Prof. Mustonen, Universite de Oulu, Oulu, Finlande
Prof. Benkirane, Universite de Fes, Fes, Maroc
Prof. Clement, Universite de Delft, Delft, Pays-Bas
Prof. Ubilla, Universidad de Santiago de Chile, Santiago, Chili
Prof. Enrico Serra, Politecnico di Torino, Dep. matematica, Torino, Italie
Prof. Susanna Terracini, Universita di Milaon Bicocca, Dip. matematica applicata, Milano, Italie
Prof. Massimo Tarallo, Universita di Milaon statale, Dip. matematica, Milano, Italie
Prof. Anna Capietto, Universita di Torino, Dip. matematica, Torino, Italie
Prof. Pedro Torres, Universidad de Granada, Dep. matematica applicada, Granada, Espagne
Prof. Miguel Ramos and Luis Sanchez, Universidade de Lisboa, CMAF, Lisboa, Portugal
Prof. Maria-José Gomes, Universidade Nova de Lisboa, Dep. matematica, Caparica, Portugal
Prof. Ederson dos Santos, Universidade Federal de Sao Carlos, Dep. matematica, Sao Paulo, Brésil

|

prix

|  | 
Abstract and Applied Analysis (Membre Comité Rédaction) - Jean-Pierre GOSSEZ
Prix J. Deruyts (Académie Royale de Belgique, 1976) - Jean-Pierre GOSSEZ
Prix Agathon de Potter (Académie Royale de Belgique, 1981) - Jean-Pierre GOSSEZ
Prix Jacques Deruyts (1980) et Agathon de Potter (1997) de l'Académie Royale de Belgique - Paul GODIN
Prix A. De Potter de l'Académie Royale de Belgique (novembre 2005) - Denis BONHEURE
Prix de l'Académie Royale de Belgique (2005) : lauréat du concours annuel de la classe des sciences, groupe I (mathématiques) - Denis BONHEURE

|

savoir-faire/équipements

|  | 
Ouvrages divers en Analyse Mathématique

|

mots clés compréhensibles déclarés

|  | 
analyse non linéaire equations aux dérivées partielles équations hyperboliques et équations des fluides laplacien et p-laplacien valeurs propres avec poids

|

disciplines et mots clés déclarés

|  | 
Analyse fonctionnelle Analyse mathématique Astrophysique Equations différentielles et aux dérivées partielles Géométries différentielle et infinitésimale
analyse globale analyse non linéaire diffusion edp non linéaire equations hyperboliques non linéaires méthode variationnelle multiplicité des solutions non-résonance opérateurs non auto-adjoint p-laplacien principe de l'antimaximum principe de maximum problèmes elliptiques problèmes elliptiques quasi-linéaires schrödinger singularités spectre de Fucik sur-sous solutions systèmes elliptiques valeurs propres avec poids

|
|