EndoGES - Electrostimulateur gastrique implanté par endoscopie [EndoGES - Gastric electrical stimulator designed to be endoscopically implanted]
L'électrostimulation gastrique (GES) est une discipline récente provenant des recherches en stimulation cardiaque. L'idée de la GES est d'altérer l'activité myoélectrique naturelle de l'estomac dans le but de restaurer ou de perturber son fonctionnement normal. La GES a déjà montré son potentiel thérapeutique dans deux maladies digestives - la gastroparésie et l'obésité morbide - et elle semble prometteuse pour traiter des maladies supplémentaires comme le reflux gastrique oesophagien.Bien que moins invasives que leurs contreparties chirurgicales comme le bypass dans le cas de l'obésité, les techniques de GES doivent encore être améliorées pour pouvoir réellement percer. Premièrement, les stimulateurs devraient être améliorés et adaptés aux courants et formes d'onde à appliquer à l'estomac. A cet effet, plusieurs topologies de sources de courant sont examinées dans le service, et plus spécialement les topologies sans capacité de bloquage, lesquelles permettent un niveau de miniaturisation adéquat.Deuxièmement, les stimulateurs devraient être implantés par voie endoluminale, pour réduire encore l'invasivité des procédures qui requièrent encore à l'heure actuelle la création d'une poche sous-cutanée. Cette nouvelle méthode demande une miniaturisation encore plus grande, mais aussi un packaging adéquat pour l'implant, lequel pourrait être attaché durablement à la paroi de l'estomac et résister à son environnement très acide. Notre service couvre également cet aspect. [Gastric electrical stimulation (GES) is a recent research field that has derived from cardiac pacing. The idea behind GES is to alter the natural myoelectrical activity of the stomach in order to either restore or disturb normal parameters. GES has already demonstrated therapeutic effects in two severe digestive conditions - gastroparesis and morbid obesity - and is promising to treat additional conditions (e.g., GERD).Although already less invasive than their chirurgical counterparts like the Roux-en-Y gastric bypass to treat morbid obesity, the GES procedures need to be improved to really break through. First, the stimulators themselves should be enhanced and adapted to the stomach currents and stimulation patterns. In that regard, several current delivery topologies are under investigation in our labs, especially the 'dc blocking capacitor free' that enable the sufficient level of miniaturization.Second, the stimulator should be implanted endoscopically, to further reduce the invasiveness of the procedure that currently implies placement of the stimulator in a subcutaneous pocket. This new method implies further miniaturization as well as a special packaging that can be safely attached to the stomach wall and that could resist its harsh environment. This research covers this aspect as well, as we are currently testing some new patent pending concepts.]
NEOFOR
Création d'une plate-forme technologique pour la délivrance pulmonaire avancée d'agents pharmacologiques [Technological platform for advanced pulmonary delivery of Active Pharmaceutical Ingredients]
Momie 1 : Méthodes et Outils pour le MIcro-assemblagE Financement [Momie 1 : Methods and tools for micro-assembly]
L'objectif de cette collaboration est de définir des méthodes (modélisation, stratégies de miniaturisation, démarche de conception de produits miniaturisés) et des outils (modèles, simulations, plateformes d'expériences) pour le micro-assemblage et la micromanipulation. Deux voies complémentaires ont été proposées par le service de mécanique analytique et CFAO de l'ULB (modélisation des effets de surface à échelle microscopique) et le laboratoire de robotique de Paris de l'université Paris VI (utilisation de l'adhésion comme vecteur ou support de la manipulation - aspects expérimentaux). Le propos de ce projet est d'unifier ces 2 voies parallèles de développement pour répondre aux besoins applicatifs. L'objectif générique de ce projet est le développement de stratégies de micromanipulation conduisantes à la conception et la fabrication de prototypes de micropréhenseurs. [Methods and tools for micro-assembly]
Vannes pour la microfluidique [Microvalves for microfluidics applications]
La microfluidique étudie l'utilisation de fluides à l'échelle microscopique. Pour pouvoir être mise en oeuvre, le design de nouveaux composants est nécessaire. A cause des effets d'échelle, le comportement des fluides n'est pas identique au niveau microscopique et au niveau macroscopique. Les effets visqueux deviennent prépondérant et d'autre phénomènes comme les tensions de surfaces ne peuvent plus être négligés. La modélisation des principes physiques qui entrent en jeux permet de mieux appréhender la conception des dispositifs. Actuellement, ce projet est consacré à l'étude de vannes pour la microfluidique. [Microfluidics is the study of fluids behaviour at the microscale level. The design of new components is required to allow the use of microfluidics. Indeed, because of the scaling effect, the behaviour of fluids is different at microscale than at macroscale. Viscous effects are dominating and other phenomenon such as surface tensions may not be neglected anymore. The modelling of the physics is useful to better design the devices. At present, this project is devoted to the study of microvalves for microfluidics applications.]
Mini Micro Nano Project [Mini Micro Nano Project]
A new field of interest is the use of metallic materials in MEMS applications because of their interesting mechanical and wear properties. The objective of the Mini Micro Nano Project is to create a center of excellence in the field of micromechanical engineering with the cooperation of three ULB partners: the CAD-CAM, the Structural and Material Computational Mechanics and the Industrial Chemistry departments. The nanoscale world obeys to different rules than the macroscopic one. Due to the extreme down-scaling many practical problems are encountered in microhandling of small parts. These problems must be studied and solved in order to be able to design and produce reliable micromechanical tools. The CAD-CAM department is in charge of the development of a tool for surface interactions to be able to take into account the surface forces (that are of the outmost importance at nanoscale) for manipulator design and for the development of handling strategies. At small scales the behavior of materials changes significantly with respect to the bulk material at macro-scale, which leaves many unanswered questions. The Structural and Material Computational Mechanics Department is responsible for modeling the mechanical response of materials at nanoscale using appropriate theories to pass from the bulk material parameters to the nanoscale behavior. The previous tasks need inputs from special experiments. The practical research results must also be validated later on. The Industrial Chemistry Department brings its expertise in experimental characterization of materials and performs thorough chemical and physical characterization of materials and surfaces. The project will span five years, with the participation of three PhD students attached to the fore-mentioned three departments during four years and one post-doctoral fellow for the last two years. [A new field of interest is the use of metallic materials in MEMS applications because of their interesting mechanical and wear properties. The objective of the Mini Micro Nano Project is to create a center of excellence in the field of micromechanical engineering with the cooperation of three ULB partners: the CAD-CAM, the Structural and Material Computational Mechanics and the Industrial Chemistry departments. The nanoscale world obeys to different rules than the macroscopic one. Due to the extreme down-scaling many practical problems are encountered in microhandling of small parts. These problems must be studied and solved in order to be able to design and produce reliable micromechanical tools. The CAD-CAM department is in charge of the development of a tool for surface interactions to be able to take into account the surface forces (that are of the outmost importance at nanoscale) for manipulator design and for the development of handling strategies. At small scales the behavior of materials changes significantly with respect to the bulk material at macro-scale, which leaves many unanswered questions. The Structural and Material Computational Mechanics Department is responsible for modeling the mechanical response of materials at nanoscale using appropriate theories to pass from the bulk material parameters to the nanoscale behavior. The previous tasks need inputs from special experiments. The practical research results must also be validated later on. The Industrial Chemistry Department brings its expertise in experimental characterization of materials and performs thorough chemical and physical characterization of materials and surfaces. The project will span five years, with the participation of three PhD students attached to the fore-mentioned three departments during four years and one post-doctoral fellow for the last two years.]