Magnetic Resonance Imaging and Biomedical Nanotechnology MEDI-H506

Taught in: english
Second term

Content

Magnetic resonance imaging

Basis of nuclear magnetic resonance and Bloch equations. MRI Image and contrast formation. Fourier MRI. Relationship between sampling in the Fourier space and features in the final image. Fourier sampling schemes Signal to noise ratio and artefacts in MRI. MRI of coherent and incoherent motions, angiography, diffusion, functionnal MRI, Echo train imaging. Parallel imaging Simultaneous multislice imaging. Practical demonstrations in Erasme Hospital

close

Objectives (and/or specific learning outcomes

Introduction to the physical principles of magnetic resonance imaging (MRI)

After the course the student should be able to

1. identify and analyse a MRI Sequence

2. understanding the Fourier signal sampling and the link between Fourier space and Image space

3. To realise a MRI acquisition, taking into account SNR, artefcts, duration and spatial resolution

4. to understand the differences between spin Echo and gradient echo sequences

5. To calculate the expected signal by solving the Bloch equations, including train echo physics chemical shift and diffusion

6. to understand the principles of parallel imaging, simultaneous multislice excitation

close

Teaching method and learning activities

Course material(s)

Yes

Slides in English, syllabus partly English Partly French

close

Contribution to the programme profile

This teaching unit contributes to the following competences:

This teaching unit contributes to the following competences:

Understanding the physical basis of image formation in MRI

Being able to use MRI for human, animal or in vitro imaging

Being able to further develop MRI sequences and methods

Understanding biomedical nanotechnologies.

  • Mesurer les grandeurs physiques liées au vivant, tant morphologique que fonctionnel

  • Traiter et analyser des signaux de toute nature, 1D, image, vidéo, en particulier ceux issus des dispositifs médicaux

  • Se représenter les mécanismes biologiques fondamentaux depuis la biochimie de la cellule jusqu’au fonctionnement des principaux systèmes de la physiologie humaine

  • Traduire les contraintes du vivant dans le langage de l’ingénieur, anticiper l’impact d’un développement sur le vivant (choix des matériaux, des procédés, etc.)

  • Gérer, explorer et analyser les données médicales (dossier médical, imagerie, génomique, statistiques)

close

Assessment

Method(s) of assessment

oral exam

Construction of the mark (including the weighting of the various partial marks)

geometry mean

Assessment language

MRI=English, Franch or Dutch

close

Programmes proposing this course at the Brussels School of Engineering

MA-IRCB
Master of science in Biomedical Engineering, Spécialisée - bloc 2
Optional course, 5 credits [Lecture: 48h, Practical work: 12h] - second term
MA-IRCB
Master of science in Biomedical Engineering, Spécialisée - bloc 2
Optional course, 5 credits [Lecture: 48h, Practical work: 12h] - second term
MA-IRCB
Master of science in Biomedical Engineering, Spécialisée - bloc 2
Optional course, 5 credits [Lecture: 48h, Practical work: 12h] - second term
close