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Abstract—Metric Temporal Logic (MTL) is a generalisation of
Linear Temporal Logic in which the Until and Since modalities
are annotated with intervals that express metric constraints.
A result of Hirshfeld and Rabinovich shows that over the
reals, first-order logic with binary order relation < and unary
function +1 is strictly more expressive than MTL with integer-
valued constants. Indeed they show that no temporal logic whose
modalities are definable by formulas of bounded quantifier depth
can be expressively complete for FO(<, +1). In this paper we
show the surprising result that if we allow unary functions +q,
q ∈ Q, in first-order logic and correspondingly allow rational
constants in MTL, then the two logics have the same expressive
power. This gives the first generalisation of Kamp’s theorem
to the quantitative setting. The proof of this result involves a
generalisation of Gabbay’s notion of separation to the metric
setting.

I. INTRODUCTION

A foundation of the linear-time approach to specification
and verification is that temporal properties can be expressed
in the Monadic Logic of Order (FO(<)): first-order logic
with binary order relation < and uninterpreted monadic pred-
icates. For discrete-time systems one considers interpretations
over the integers (Z, <), and for continuous-time systems
one considers interpretations over the reals (R, <).Temporal
properties can also be specified in Linear Temporal Logic
(LTL): temporal logic with the modalities Until and Since.
A celebrated result of Kamp [1] is that LTL has the same
expressiveness as FO(<) over both (Z, <) and (R, <). Thus
we can benefit from the appealing variable-free syntax and
elementary decision procedures of LTL, while retaining the
expressiveness of first-order logic.

Over the reals FO(<) cannot express metric properties, such
as, “every request is followed by a response within one time
unit”. This motivates the introduction of the Monadic Logic of
Order and Metric (FO(<,+Q)), which augments FO(<) with a
family of unary function symbols +q, q ∈ Q. Correspondingly,
there have been a variety of proposals of quantitative temporal
logics, with modalities definable in FO(<,+Q). In most cases,
these temporal logics can be seen as quantitative extensions of
LTL. However until now there has been no fully satisfactory
counterpart of Kamp’s theorem in the quantitative setting.

The best-known quantitative temporal logic is Metric Tem-
poral Logic (MTL), introduced over 20 years ago in [2].
MTL arises by annotating the temporal modalities of LTL
with intervals with rational endpoints, representing metric con-
straints. Since the MTL operators are definable in FO(<,+Q),

it is immediate that one can translate MTL into FO(<,+Q).
The main result of this paper shows the converse, that MTL
is expressively complete for FO(<,+Q). The generality of
allowing rational constants is crucial for our main results:
our translation from FO(<,+Q) to MTL does not preserve
the granularity of timing constraints. Indeed, it is known that
MTL with integer constants is not expressively complete for
the fragment of FO(<,+Q) with only the +1 function [3,
Theorem 7].

Two key ideas underlying the proof of expressive com-
pleteness are boundedness and separation. Given N ∈ N
a FO(<,+Q) formula ϕ(x) is N -bounded if all quantifiers
are relativised to the interval (x − N, x + N). Exploiting
a normal form for FO(<), due to Gabbay, Pneuli, Shelah
and Stavi [4], we show how to translate bounded FO(<,+Q)
formulas into MTL. Extending this translation to arbitrary
FO(<,+Q) formulas requires an appropriate metric analog of
Gabbay’s notion of separation [5].

Gabbay [5] shows that every LTL formula can be equiva-
lently rewritten as a Boolean combination of formulas, each of
which depends only on the past, present or future. This seem-
ingly innocuous separation property has several far-reaching
consequences; in particular, it is a key lemma in an inductive
translation from FO(<) to LTL. We prove an analogous result
for MTL: every MTL formula can be equivalently rewritten
as a Boolean combination of formulas, each of which is either
bounded (i.e., refers to the near present) or refers to the distant
future or distant past. Crucially, while the distant past and
distant future are disjoint, they are both allowed to overlap
with near present, unlike in Gabbay’s result. We exploit our
result in like manner to Gabbay to give an inductive translation
of FO(<,+Q) to MTL. Here it is vital that we already have a
translation of bounded FO(<,+Q) formulas to MTL.

Related Work

A more elaborate quantitative extension of LTL is Timed
Propositional Temporal Logic (TPTL), which expresses timing
constraints using variables and freeze-quantification [6]. From
the respective definitions of the logics the following inclusions
in expressiveness are straightforward:

MTL ⊆ TPTL ⊆ FO(<,+Q) .

TPTL was shown to be expressively complete for FO(<,+Q)
(over R) in [7]. Notwithstanding this result, we regard the
result in the present paper as the first fully satisfactory analog



of Kamp’s Theorem for FO(<,+Q). This is because TPTL
is a hybrid between first-order logic and temporal logic,
featuring variables and quantification in addition to temporal
modalities [8].

The expressiveness of quantitative temporal logics has also
been investigated in [9], [3]. These papers focus on decidable
logics which cannot express punctual metric constraints, such
as “every request is followed by a response in exactly one
time unit”. Also they work with timing constraints of a fixed
granularity. The main results present a hierarchy of decidable
temporal logics with counting modalities and characterise their
expressiveness in terms of fragments of FO(<,+1).

Yet another approach to expressive completeness is taken
in our previous work [10]. This paper considers the frag-
ment of FO(<,+Q) with only the +1 function. Likewise it
restricts to MTL formulas in which intervals have integer
endpoints. Recall that in this setting expressive completeness
fails over unbounded domains such as (R, <) and (R≥0, <).
However [10] shows that expressive completeness holds over
each bounded time domain ([0, N), <). While some of the
ideas from [10] are used in the present paper, our results differ
significantly. Even the fact that MTL is expressively complete
for bounded FO(<,+1) formulas over an unbounded time do-
main crucially uses the fact that we allow fractional constants.

II. DEFINITIONS AND MAIN RESULTS

A. First-order logic

Formulas of the Monadic Logic of Order and Metric
(FO(<,+Q)) are first-order formulas over a signature with a
binary relation symbol <, an infinite collection of unary pred-
icate symbols P1, P2, . . ., and an infinite family of unary func-
tion symbols +q, q ∈ Q. Formally, the terms of FO(<,+Q)
are generated by the grammar t ::= x | t + q, where x is a
variable and q ∈ Q. Formulas of FO(<,+Q) are given by the
following syntax:

ϕ ::= true | Pi(t) | t < t | ϕ ∧ ϕ | ¬ϕ | ∃xϕ ,

where x denotes a variable and t a term.
We consider interpretations of FO(<,+Q) over the real

line1, R, with the natural interpretations of < and +q. It
follows that a structure for FO(<,+Q) is determined by an
interpretation of the monadic predicates.

Of particular importance is FO(<,+1), the fragment of
FO(<,+Q) that omits all the +q functions except +1. For
simplicity, when considering formulas of FO(<,+1) we will
often use standard arithmetical notation as a shorthand, for
example,

x− y > 2 ≡ (y + 1) + 1 < x .

B. Metric Temporal Logic

Given a set P of atomic propositions, the formulas of
Metric Temporal Logic (MTL) are built from P using Boolean

1Our results carry over to subintervals of R, such as the non-negative reals
R≥0.

connectives and time-constrained versions of the until and
since operators U and S as follows:

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | ϕ UI ϕ | ϕ SI ϕ ,

where p ∈ P and I ⊆ (0,∞) is an interval with endpoints in
Q ∪ {∞}.

Intuitively, the meaning of ϕ1 UI ϕ2 is that ϕ2 will hold
at some time in the interval I , and until then ϕ1 holds. More
precisely, the semantics of MTL are defined as follows. A
signal is a function f : R→ 2P . Given a signal f and r ∈ R,
we define the satisfaction relation f, r |= ϕ by induction over
ϕ as follows:
• f, r |= p iff p ∈ f(r),
• f, r |= ¬ϕ iff f, r 6|= ϕ,
• f, r |= ϕ1 ∧ ϕ2 iff f, r |= ϕ1 and f, r |= ϕ2,
• f, r |= ϕ1 UI ϕ2 iff there exists t > r such that t−r ∈ I ,
f, t |= ϕ2 and f, u |= ϕ1 for all z, r < u < t,

• f, r |= ϕ1 SI ϕ2 iff there exists t < r such that r−t ∈ I ,
f, t |= ϕ2 and f, u |= ϕ1 for all u, t < u < r.

LTL can be seen as a restriction of MTL with only the
interval I = (0,∞). Indeed, if I = (0,∞) then we omit
the annotation I in the corresponding temporal operator since
the constraint is vacuous. We also use arithmetic expressions
to denote intervals. For example, we write U<3 for U(0,3)

and U=1 for U{1}. We say the UI and SI operators are
bounded if I is bounded, otherwise we say that the operators
are unbounded.

We introduce the defined connectives 3Iϕ := true UI

ϕ (ϕ will be true at some point in interval I) and -3Iϕ :=
true SI ϕ (ϕ was true at some point in interval I). We also
have the dual connectives 2Iϕ := ¬3I¬ϕ (ϕ will be at all
times in interval I) and -2I := ¬ -3I¬ϕ (ϕ was true at all times
in interval I).

C. Expressive Equivalence

Given a set P = {P1, . . . , Pm} of monadic predicates, a
signal f : R → 2P defines an interpretation of each Pi,
where Pi(r) if and only if Pi ∈ f(r). As observed earlier,
this is sufficient to define the model-theoretic semantics of
FO(<,+Q), enabling us to relate the semantics of FO(<,+Q)
and MTL.

Let ϕ(x) be a FO(<,+Q) formula with one free variable
and ψ an MTL formula. We say ϕ and ψ are equivalent if for
all signals f and r ∈ R:

f, r |= ϕ(x)⇐⇒ f, r |= ψ.

Example 1. Consider the following formula, which says that
P will be true at two points within the next time unit:

ϕ(x) := ∃y ∃z ((x < y < z < x+ 1) ∧ P (y) ∧ P (z)) .

It was shown in [3] that ϕ cannot be expressed in MTL using
only integer constants2. To see this, consider the signal f in
which the predicate P is true exactly at the points 2n

3 , n ∈ N.

2In fact [3] did not consider so-called punctual operators, i.e., singleton
constraining intervals. But their argument goes through mutatis mutandis.



It can be shown by induction that for every MTL formula
with integer constants there exists t > 0 such that from t
onwards the formula has the same truth value on f as one of
the predicates true, false, P , ¬P , 3=1P . On the other hand,
for n even, ϕ is continuously true on the interval (n, n + 1

3 )
and false on the boundary of the interval.

As observed in [11], we can, however, express ϕ(x) in MTL
by using fractional constants. The idea is to consider three
cases according to whether P is true twice in the interval
(x, x+ 1

2 ], twice in the interval [x+ 1
2 , x+ 1), or once each

in (x, x+ 1
2 ) and (x+ 1

2 , x+1). We are thus led to define the
MTL formula

ϕ† := 3(0, 12 )(P ∧3(0, 12 )P )∨
3=1( -3(0, 12 )(P ∧ -3(0, 12 )P ))∨
(3(0, 12 )P ∧3( 1

2 ,1)
P ) ,

which is equivalent to ϕ.

The following is straightforward.

Proposition 2. For every MTL formula ϕ there is an equiva-
lent FO(<,+Q) formula ϕ∗(x).

Our main result is the converse:

Theorem 3. For every FO(<,+Q) formula ϕ(x) there is an
equivalent MTL formula ϕ†.

As we now explain, by a simple scaling argument it suffices
to prove Theorem 3 in the special case that ϕ is an FO(<,+1)-
formula. Let f be a signal and r ∈ Q>0. We define the signal
r.f by r.f(s) := f( sr ). Given either a FO(<,+Q)-formula
ϕ(x) or an MTL-formula ϕ, we say that the formula ϕr is a
scale of ϕ by r ∈ Q>0, if for all signals f and all s ∈ R,

f, s |= ϕ ⇐⇒ r.f, rs |= ϕr .

It is straightforward that FO(<,+Q) and MTL are both closed
under scaling: in each case the required formula ϕr is obtained
by multiplying all constants occurring in ϕ by r.

Now we show how to deduce expressive completeness of
MTL for FO(<,+Q) from the fact that MTL is at least as
expressive as the fragment FO(<,+1). Given an FO(<,+Q)-
formula ϕ(x), pick r such that ϕr is a FO(<,+1)-formula and
translate ϕr to an equivalent MTL formula ψ. Then rescaling
ψ by 1/r, we obtain an MTL formula ψ1/r that is equivalent
to the original formula ϕ.

We will see later that the translation from FO(<,+1) to
MTL already involves temporal operators whose constraining
intervals have fractional endpoints, as suggested by Example 1.

III. SYNTACTIC SEPARATION OF MTL

In [12], Gabbay et al showed that LTL formulas over
Dedekind complete domains are equivalent to Boolean com-
binations of formulas that depend exclusively on one of the
past, present, or future. We state this result as it applies to
continuous domains (the formulation in the discrete setting is
slightly more straightforward). To state the result we recall

the right-limit modality K+ and left-limit modality K−,
respectively defined as:

K+ϕ := ¬(¬ϕ U true) K−ϕ := ¬(¬ϕ S true) .

The formula K+ϕ states that ϕ is true arbitrarily close in the
future and K−ϕ asserts that ϕ is true arbitrarily close in the
past.

Theorem 4 ([12]). Over Dedekind complete domains, every
LTL formula is equivalent to a Boolean combination of:
• atomic formulas,
• formulas of the form ϕ1 U ϕ2 such that ϕ1 and ϕ2 use

only U and K−,
• formulas of the form ϕ1 S ϕ2 such that ϕ1 and ϕ2 use

only S and K+.

Note that the three classes of formulas in Theorem 4 respec-
tively refer to the present, future and past. In this section we
derive an analogous result for MTL. We show that every MTL
formula can be written as a Boolean combination of bounded,
distant future and distant past formulas. Just as Gabbay et al
used syntactic forms for future and past representations, our
plan is to use natural forms for bounded, distant future and
distant past formulas. Crucially, the distant future and distant
past are allowed to overlap with the bounded present, unlike
in Gabbay’s result.

Given an MTL formula ϕ, we define the future-reach fr(ϕ)
and past-reach pr(ϕ) inductively as follows:
• fr(p) = pr(p) = 0 for all propositions p,
• fr(true) = pr(true) = 0,
• fr(¬ϕ) = fr(ϕ), pr(¬ϕ) = pr(ϕ),
• fr(ϕ ∧ ψ) = max{fr(ϕ), fr(ψ)},
• pr(ϕ ∧ ψ) = max{pr(ϕ), pr(ψ)},
• If n = inf(I) and m = sup(I):

– fr(ϕ UI ψ) = m+ max{fr(ϕ), fr(ψ)},
– pr(ϕ SI ψ) = m+ max{pr(ϕ), pr(ψ)},
– fr(ϕ SI ψ) = max{fr(ϕ), fr(ψ)− n},
– pr(ϕ UI ψ) = max{pr(ϕ), pr(ψ)− n}.

Intuitively the future-reach indicates how much of the future is
required to determine the truth of an MTL formula, and like-
wise for the past reach. Note that if ϕ contains an unbounded
U operator then fr(ϕ) = ∞ and likewise if ϕ contains an
unbounded S operator, pr(ϕ) =∞.

We say an MTL formula is syntactically separated if it is
a Boolean combination of the following
• 3=Nϕ where pr(ϕ) < N − 1,
• -3=Nϕ where fr(ϕ) < N − 1,
• ϕ where all intervals occurring in U and S operators are

bounded.
We call formulas of the third kind above bounded. Note that
formulas with no occurrences of UI and SI are included in
the definition of bounded formulas.

Theorem 5. Every MTL formula is equivalent to one which
is syntactically separated.

To prove Theorem 5 our strategy is as follows:



Step 1. Remove all unbounded U and S operators from
within the scope of bounded operators.

Step 2. Treating bounded formulas as atoms, apply Theo-
rem 4 to remove unbounded U operators from the
scope of unbounded S operators and vice versa.

Step 3. Divide the top-level unbounded operators into for-
mulas bounded by N and formulas at least N away
for sufficiently large N to separate these formulas.
This step may also place unbounded operators within
the scope of bounded operators, but still maintains
the separation of unbounded U and unbounded S
operators. Using Step 1, and observing that this does
not introduce any new unbounded operators, we can
move these unbounded operators to the top level and
recursively apply the division to completely separate
the formula.

Step 0. Translation to Normal Form: We first introduce a
normal form for MTL formulas. An MTL formula is said to
be in normal form if the following all hold:

(i) The formula is written using the Boolean operators and
the temporal connectives U(0,γ), S(0,γ), 2(0,γ), -2(0,γ),
where γ ∈ Q≥0 ∪ {∞}, and 3=q and -3=q , where q ∈
Q≥0;

(ii) In any subformula ϕ1 UI ϕ2 or ϕ1 SI ϕ2, the outermost
connective of ϕ1 is not conjunction and the outermost
connective of ϕ2 is not disjunction;

(iii) No temporal operator occurs in the scope of 3=q or -3=q;
(iv) Negation is only applied to propositional variables and

bounded temporal operators.
We can transform an MTL formula into an equivalent

normal form as follows. To satisfy (i) we eliminate connectives
UI and SI in which the interval I does not have left endpoint
0 using the equivalences

ϕ U(p,q) ψ ←→ 2(0,p)ϕ ∧3=p

(
ϕ ∧ (ϕ U(0,q−p) ψ)

)
ϕ S(p,q) ψ ←→ -2(0,p)ϕ ∧ -3=p

(
ϕ ∧ (ϕ S(0,q−p) ψ)

)
and corresponding equivalences for left-closed and right-
closed intervals.

To satisfy (ii) we use the equivalences

ϕ UI (ψ ∨ θ) ←→ (ϕ UI ψ) ∨ (ϕ UI θ)
(ϕ ∧ ψ) UI θ ←→ (ϕ UI θ) ∧ (ψ UI θ)

and their corresponding versions for SI ,

ϕ SI (ψ ∨ θ) ←→ (ϕ SI ψ) ∨ (ϕ SI θ)
(ϕ ∧ ψ) SI θ ←→ (ϕ SI θ) ∧ (ψ SI θ) .

To satisfy (iii) we use the equivalences

3=q(ϕ ∧ ψ) ←→ 3=qϕ ∧3=qψ

3=q(¬ϕ) ←→ ¬3=qϕ

3=q(ϕ UI ψ) ←→ 3=qϕ UI 3=qψ

3=q(ϕ SI ψ) ←→ 3=qϕ SI 3=qψ

and the corresponding equivalences for -3=q to distribute 3=q

and -3=q across all other operators.

To satisfy (iv) we observe that the K+ and K− operators
can be defined as bounded formulas, viz.

K+(ϕ)↔ ¬(¬ϕ U<1 true) K−(ϕ)↔ ¬(¬ϕ S<1 true) .

Then we use the equivalences

¬(ϕ U ψ) ←→ 2¬ψ ∨K+(¬ϕ) ∨
(¬ψ U (¬ψ ∧ (¬ϕ ∨K+(¬ϕ))))

¬2ϕ ←→ true U ¬ϕ

and their corresponding past versions to rewrite any subfor-
mula in which negation is applied to an unbounded temporal
operator.

Step 1. Extracting unbounded until and since

Our goal in this subsection is the following lemma.

Lemma 6. Every MTL formula ϕ is equivalent to one in which
no unbounded temporal operator occurs within the scope of a
bounded temporal operator.

The proof of this lemma relies on Proposition 7, whose
proof is straightforward.

Proposition 7. For all q ∈ Q≥0, the following equivalences
and their temporal duals hold over all signals.

(i)

θ U<q

(
(ϕ U ψ) ∧ χ

)
l

θ U<q

(
(ϕ U<q ψ) ∧ χ

)
∨((

θ U<q (2<qϕ ∧ χ)
)
∧ 3=q(ϕ U ψ)

)

(ii)

θ U<q (2ϕ ∧ χ)

l(
θ U<q (2<qϕ ∧ χ)

)
∧3=q2ϕ

(iii)

θ U<q

(
(ϕ S ψ) ∧ χ

)
l

θ U<q

(
(ϕ S<q ψ) ∧ χ

)
∨((

θ U<q ( -2<qϕ ∧ χ)
)
∧ ϕ S ψ

)

(iv)

θ U<q ( -2ϕ ∧ χ)

l(
θ U<q ( -2<qϕ ∧ χ)

)
∧ -2ϕ



(v)

(
(ϕ U ψ) ∨ χ

)
U<q θ

l(
(ϕ U<q ψ) ∨ χ

)
U<q θ ∨[(

(ϕ U<q ψ) ∨ χ
)
U<q (2<qϕ)

∧3<qθ ∧ 3=n(ϕ U ψ)
]

(vi)

(
(2ϕ) ∨ χ

)
U<q θ

l

χ U<q θ ∨(
χ U<q (2<qϕ) ∧ 3<qθ ∧ 3=n(2ϕ)

)

(vii)

(
(ϕ S ψ) ∨ χ

)
U<q θ

l(
(ϕ S<q ψ) ∨ χ

)
U<q θ ∨[(

-2<qϕ ∨ (ϕ S<q ψ) ∨ χ
)
U<q θ ∧ (ϕ S ψ)

]

(viii)

(
-2ϕ ∨ χ

)
U<q θ

l

χ U<q θ ∨[(
( -2<qϕ ∨ χ) U<q θ

)
∧ -2ϕ

]
.

Proof of Lemma 6.: Define the unbounding depth ud(ϕ) of
an MTL formula ϕ to be the modal depth of ϕ, counting only
unbounded temporal operators. Thus we have

ud(ϕ1 UI ϕ2) =
{

max(ud(ϕ1), ud(ϕ2)) I bounded
max(ud(ϕ1), ud(ϕ2)) + 1 otherwise

with similar clauses for the other temporal operators.
Now suppose that ϕ is an MTL formula in normal form in

which some unbounded temporal operator occurs within the
scope of a bounded temporal operator. Then some subformula
of ϕ (or its temporal dual) matches the top side of one of
the equivalences in Proposition 7. Pick such a subformula ψ
with maximum unbounding depth ud(ψ) and replace it with
the bottom side ψ′ of the corresponding equivalence. Notice
that all subformulas of ψ′ whose outermost connective is a
bounded temporal operator other than 3=q and -3=q have
unbounding depth strictly less than ud(ψ). Finally rewrite ψ′

to to normal form, in particular pushing the newly introduced
3=q and -3=q operators inward. Notice that this last step does
not increase the maximum unbounding depth.

This rewriting process must eventually terminate, yielding
a formula in which no unbounded operator remains within the

scope of a bounded operator.

Step 2. Extracting since from until and vice-versa

Now suppose we have an MTL formula in which no
unbounded temporal operator occurs within the scope of a
bounded operator. If we replace each bounded subformula θ
with a new proposition Pθ, the resulting formula is now an
LTL formula equivalent to our original formula for suitable
interpretations of the Pθ. From Theorem 4 we know that this
formula is equivalent to a Boolean combination of:
• atomic formulas,
• formulas of the form ϕ2 U ϕ1 such that ϕ1 and ϕ2 use

only U and K−,
• formulas of the form ϕ2 S ϕ1 such that ϕ1 and ϕ2 use

only S and K+.
Recalling from Step 0 that we can express the operators

K+ and K− using bounded operators, and also replacing
each proposition Pθ with its associated bounded formula θ,
we obtain:

Lemma 8. Every MTL formula is equivalent to a Boolean
combination of:
• bounded formulas,
• formulas that use arbitrary UI but only bounded SI ,
• formulas that use arbitrary SI but only bounded UI

Step 3. Completing the separation

Now suppose we have an MTL formula θ that does not
contain unbounded S. We prove by induction on the number of
unbounded U operators that θ is equivalent to a syntactically
separated formula. Clearly if θ contains no unbounded U op-
erators then it is bounded and therefore syntactically separated.
Otherwise, by applying Lemma 6 and observing that it does
not introduce unbounded U operators, we may assume that
θ = ϕ U ψ where ϕ and ψ have strictly fewer unbounded
U operators than θ. As θ does not contain unbounded S
operators, pr(θ) is finite, so choose N > pr(θ) + 1. Next
we apply the following equivalence

ϕ U ψ ←→ ϕ U<N ψ∨
(
2<Nϕ∧3=N (ψ∨(ϕ∧ϕ U ψ))

)
.

Now pr(ψ∨ (ϕ∧ϕ U ψ)) = pr(θ) < N − 1, and the subfor-
mulas ϕ U<N ψ and 2<Nϕ have strictly fewer unbounded U
operators than θ, so by the induction hypothesis the formula
on the right hand side of the above equivalence is equivalent
to one that is syntactically separated, completing the inductive
step. Similarly S formulas that do not contain unbounded U
operators are equivalent to syntactically separated formulas.
Applying these observations to Lemma 8 gives our main result,
which we repeat here for completeness.

Theorem 5. Every MTL formula is equivalent to a Boolean
combination of:
• 3=Nϕ where pr(ϕ) < N − 1,
• -3=Nϕ where fr(ϕ) < N − 1, and
• ϕ where all intervals I occurring in UI and SI operators

are bounded.



IV. EXPRESSIVE COMPLETENESS ON BOUNDED FORMULAS

In this section we show expressive completeness of MTL
for a fragment of FO(<,+1) consisting of bounded formulas,
i.e., formulas ϕ(x) that refer only to a bounded interval around
x.

Given terms t2 and t2, define Bet(t1, t2) to consist of
FO(<,+1) formulas in which

(i) each subformula ∃z ψ has the form ∃z ((t1 ≤ z <
t2) ∧ χ), i.e., each quantifier is relativized to the half-
open interval between t1 (inclusive) and t2 (exclusive);

(ii) in each atomic subformula P (t) the term t is a bound
occurrence of a variable.

Clauses (i) and (ii) ensure that a formula in Bet(t1, t2) only
refers to the values of monadic predicates on points in the half-
open interval [t1, t2). We say that a formula ϕ(x) in Bet(x−
N, x+N) is N -bounded and that ϕ(x) in Bet(x, x+ 1) is a
unit formula.

Observe that in a unit formula the only essential use of
the +1 function is in specifying the range of the quantified
variables. More precisely, we have the following proposition,
where ψ[t/y] denotes the formula obtained by substituting
term t for all free occurrences of variable y in ψ:

Proposition 9. For any unit formula ϕ(x) there is an FO(<)
formula ψ ∈ Bet(x, y) such that ϕ is equivalent to ψ[(x +
1)/y].

Proof. We show that all uses of the +1 function in ϕ other
than to specify the range of quantified variables can be
eliminated.

Let u, v be bound variables and k1, k2 ∈ N. Since u, v
range over an open interval of length 1 an inequality of the
form u+k1 < v+k2 can be replaced by (i) u < v, if k1 = k2;
(ii) true, if k1 < k2; and (iii) false otherwise. Likewise an
equality of the form u+k1 = v+k2 can be replaced by u = v
if k1 = k2, and false otherwise.

The main result of this section is:

Theorem 10. For every N -bounded formula ϕ(x) there exists
an equivalent MTL formula ϕ†.

In [10] it was shown that MTL is expressively complete
for FO(<,+1) on bounded domains of the form [0, N). Theo-
rem 10 is subtly different from that result, which used the
definability of the point 0 in a crucial way. In particular,
unlike [10], in the present setting we require MTL opera-
tors whose constraining intervals have fractional endpoints to
achieve expressive completeness.

The proof of Theorem 10 has the following structure:
Step 1. By introducing extra predicates, we rewrite each N -

bounded formula as a Boolean combination of unit
formulas and atoms.

Step 2. Using a normal form of Gabbay, Pnueli, Shelah,
and Stavi [4] (see also Hodkinson [13]) we give a
translation of unit formulas to MTL. This step reveals
a connection between the granularity of MTL and the
quantifier depth of the unit formulas.

Step 3. We complete the translation by removing the new
predicate symbols introduced in Step 1.

Step 1. Translation to unit formulas and atoms

We translate an N -bounded formula ϕ(x) into a formula
ϕ(x) that is a Boolean combination of unit formulas and
atoms.

Let ϕ(x) mention monadic predicates P1, . . . , Pm. For each
predicate Pi we introduce an indexed family of new predicates
P ji , where −N ≤ j < N . Intuitively, P ji (y) stands for Pi(y+
j). Formally, given a signal f that interprets the Pi we define
a signal f that interprets the P ji by

P ji ∈ f(r)⇐⇒ Pi ∈ f(r + j)

for all r ∈ R.
Next we define a formula ϕ such that f, r |= ϕ if and only

if f, r |= ϕ. To obtain ϕ we recursively replace every instance
of a subformula

∃y ((x−N ≤ y < x+N) ∧ ψ)

in ϕ by the formula

∃y
(
(x ≤ y < x+1)∧(ψ[(y−N)/y]∨. . .∨ψ[(y+(N−1))/y])

)
.

Having carried out these substitutions, we use simple arith-
metic to rewrite every term in ϕ as z+k, where z is a variable
and k ∈ Z is an integer constant. Every use of monadic
predicates in ϕ now has the form Pi(z+k), for −N ≤ k < N .
Replace every such predicate by P ki (z).

After the above operations the resulting formula is a
Boolean combination of unit formulas and atomic formulas.

Step 2. Translating unit formulas to MTL

In the next stage of the proof we show how to translate unit
formulas into equivalent MTL formulas. Critical to this step is
the following definition and lemma from [4]. Lemma 11 is the
main technical lemma in the expressive completeness proof of
MTL for FO(<) in [4].

A decomposition formula δ(x, y) is any formula of the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧
{ϕi(zi) : 0 ≤ i < n}

∧
∧
{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n}

where ϕi and ψi are LTL formulas regarded as unary predi-
cates.

Lemma 11 ([4]). Over any domain with a complete linear
order, every FO(<) formula ψ(x, y) in Bet(x, y) is equivalent
to a Boolean combination of decomposition formulas δ(x, y).

Recall from Proposition 9 that any unit formula θ(x) there
exists an MTL formula ψ ∈ Bet(x, y) such that ψ[(x+ 1)/y]
is equivalent to θ(x). Thus, in light of Lemma 11, to translate
unit formulas to MTL it suffices to consider unit formulas
of the form δ[(x + 1)/y] where δ(x, y) is a a decomposition
formula.



Proposition 12. Let δ(x, y) be a decomposition formula and
consider the unit formula θ(x) = δ[(x+ 1)/y]. Then there is
an MTL formula equivalent to θ(x).

Proof. We proceed by induction on the number n of existential
quantifiers in δ(x, y).

Base case.: Let δ(x, y) = ϕ(x)∧∀u (x < u < y → ψ(u)),
where ϕ and ψ are LTL formulas. Clearly the MTL formula
ϕ ∧2(0,1)ψ is equivalent to δ[(x+ 1)/y].

Inductive case.: Let δ(x, y) have the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧
{ϕi(zi) : 0 ≤ i < n}

∧
∧
{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n} .

Consider the unit formula θ(x) := δ[(x+1)/y]. The idea is
to define MTL formulas αk, βk, 0 ≤ k < 2n, whose disjunc-
tion is equivalent to θ. The definition of these formulas is based
on a case analysis of the values of the existentially quantified
variables z1, . . . , zn−1 in δ, similar to the idea of Example 1.
To this end, consider the following 2n half-open subintervals
of [x, x+1): [x, x+ 1

2n ), [x+ 1
2n , x+ 2

2n ), . . . , [x+ 2n−1
2n , x+1).

We identify three mutually exclusive cases according to the
distribution of the zi among these intervals:

1) {z1, . . . , zn−1} ⊆ [x+ k
2n , x+ k+1

2n ) for some k < n;
2) {z1, . . . , zn−1} ⊆ [x + k

2n , x + k+1
2n ) for some k, n ≤

k < 2n;
3) There exists k, 1 ≤ k < 2n, and l, 1 ≤ l < n − 1, such

that zl < x + k
2n ≤ zl+1 (i.e., z1, . . . , zn−1 are not all

contained in a single interval).

a) Case 1.: Assume that k < n and consider the
following MTL formula:

αk := ϕ0 ∧ ψ1 U[ k
2n ,

k+1
2n )

(ϕ1 ∧ (ψ2 U(0, 1
2n )

(ϕ2 ∧ (ψ3 U(0, 1
2n )

. . .

(ϕn−2 ∧ (ψn−1 U(0, 1
2n )

(ϕn−1 ∧2(0, 1
2n )ψn)) · · · )

∧ 2( k+1
2n ,1)ψn .

By construction, if αk holds at a point x then the formulas
ϕ0, ψ1, ϕ1, . . . , ϕn−1, ψn hold in sequence along the interval
[x, x + 1). In particular, ψn holds on the interval starting
at the time that the subformula 2(0, 1

2n )ψn begins to hold
and extending to time x + 1 ( thanks to the “overlapping”
subformula 2( k+1

2n ,1)ψn). Thus αk implies θ. Conversely, if θ
holds with the existentially quantified variables z1, . . . , zn−1

all lying in the interval (x + k
2n , x + k+1

2n ), then clearly αk
also holds.

b) Case 2.: Suppose that n ≤ k < 2n and consider the
following MTL formula:

αk := 3=1

[
ψn S( 2n−k−1

2n , 2n−k
2n )

(ϕn−1 ∧ (ψn−1 S(0, 1
2n )

(ϕn−2 ∧ (ψn−2 S(0, 1
2n )

. . .

(ϕ2 ∧ (ψ2 S(0, 1
2n )

(ϕ1 ∧ -2(0, 1
2n )ψ1)) · · · )

]
∧ 2(0, k

2n )ψ1 ∧ ϕ0 .

The definition of αk is according to similar principles as in
Case 1. If it holds at a point x then the sequence of past opera-
tors ensures that the formulas ψn, ϕn−1, ψn−1, . . . , ϕ1, ψ1, ϕ0

hold in sequence, backward from x+1 to x. Thus αk implies
θ. Conversely, if θ holds with the existentially quantified vari-
ables z1, . . . , zn−1 all lying in the interval [x+ k

2n , x+ k+1
2n ),

n ≤ k < 2n, then clearly αk also holds.
c) Case 3.: Suppose that zl < x + k

2n ≤ zl+1 for some
k, 1 ≤ k < 2n, and l, 1 ≤ l < n− 1.

The idea is, for each choice of l, to decompose θ into a
property σl holding on the interval [x, x+ k

2n ) and a property
τl holding on the interval [x+ k

2n , x+ 1). We then apply the
induction hypothesis to transform σl and τl to equivalent MTL
formulas. To this end, define

σl(x) := ∃z0 . . . ∃zl+1(x = z0 < · · · < zl+1 = x+ k
2n )

∧
∧
{ϕi(zi) : 0 ≤ i ≤ l}

∧
∧
{∀u((zi−1 < u < zi)→ ψi(u)) : 1 ≤ i ≤ l + 1}

and

τl(x) := ∃zl . . . ∃zn(x = zl < · · · < zn = x+ 2n−k
2n )

∧
∧
{ϕi(zi) : l + 1 ≤ i < n}

∧
∧
{∀u((zi−1 < u < zi)→ ψi(u)) : l < i ≤ n} .

We can turn σl into an equivalent MTL formula σ∗l by the
following sequence of transformations: scale by 2n

k to obtain a
unit formula, apply the induction hypothesis to transform the
unit formula to an equivalent MTL formula, finally scale the
resulting MTL formula by k

2n . We likewise transform τl into
an equivalent MTL formula τ∗l .

We now define

βk :=
∨

1≤l<n−1

(
σ∗l ∧3= k

2n

(
(ψl+1 ∧ τ∗l ) ∨ (ϕl+1 ∧ τ∗l+1)

))
.

From the definition of σl it is clear that βk matches θ on
[x, x + k

2n ). For the remaining interval [x + k
2n , x + 1) we

distinguish between two cases: if x + k
2n < zl+1, then

3= k
2n

(ψl+1 ∧ τ∗l ) agrees with θ; and if x + k
2n = zl+1 then

3= k
2n

(ϕl+1 ∧ τ∗l+1) agrees with θ. Thus βk implies θ. Con-
versely if θ holds with the existentially variables z1, . . . , zn−1

satisfying the conditions of Case 3 then one of the disjuncts,
and hence βk, must hold.



Step 3. Completing the translation

After Step 2 we have an MTL formula equivalent to the
formula ϕ(x) obtained in Step 1. It remains only to eliminate
the extra predicates introduced in Step 1. To this end, for each
predicate P and j ≥ 0, replace P j by 3=jP , and for j < 0
replace P j by -3=jP . Finally we obtain an MTL formula ϕ†

equivalent to the original N -bounded formula ϕ(x).

Theorem 10. For every N -bounded FO(<,+1) formula ϕ(x)
there exists an equivalent MTL formula ϕ†.

V. EXPRESSIVE COMPLETENESS OF MTL

Our next step towards proving the expressive completeness
of MTL is to show that it is able to express all of FO(<,+1).

Lemma 13. For every FO(<,+1) formula ϕ(x) there is an
equivalent MTL formula ϕ†.

Proof. The proof is by induction on the quantifier depth n of
ϕ.

Base case, n = 0.: All atoms are of the form Pi(x), x = x,
x < x, x + 1 = x. We replace these by Pi, true, false,
false respectively and obtain an MTL formula which is clearly
equivalent to ϕ.

Inductive case.: Without loss of generality we may as-
sume ϕ = ∃x.ψ(x, y) where ψ(x, y) has quantifier depth
n − 1. We would like to remove x from ψ, so to this
end we take a disjunction over all possible choices for γ :
{P1(x), . . . Pm(x)} → {true, false} and use γ to determine
the value of Pi(x) in each disjunct.So x appears only in
atoms of the form x = z, x < z, x > z, x + 1 = z,
x = z + 1. We now introduce new monadic propositions
P=, P<, P>, P+ and P− and replace each of the atoms
containing x with the suitable proposition. That is, x = z
becomes P=(z), x < z becomes P<(z) and so on. This
yields a formula ψ′(y) in which x does not occur, and, with
suitable interpretations of the new propositions, is equivalent
to ψ(x, y). By the induction hypothesis there is an equivalent
MTL formula, ψ† with suitable propositional atoms for the
introduced propositions. Now ϕ = ∃yψ† is clearly equivalent
to

ϕ′ = -3ψ† ∨ ψ† ∨3ψ†

for suitable interpretations of {P=, P<, P>, P+, P−}. By The-
orem 5 ϕ′ is equivalent to a Boolean combination of formulas

(I) 3=Nϕ where pr(ϕ) < N − 1,
(II) -3=Nϕ where fr(ϕ) < N − 1, and

(III) ϕ where all intervals occurring in U and S operators
are bounded.

Now in formulas of type (I) above we know the intended value
of each of the propositional variables P=, P<, P>, P+, P−:
they are all false except P> which is true. So we can replace
these propositional atoms by true and false as appropriate
and obtain an equivalent MTL formula which does not mention
the new variables. Likewise we know the value of each of
propositional variables in formulas of type (II): all are false

except P< which is true; so we can again obtain an equivalent
MTL formula which does not mention the new variables. It
remains to deal with each of the bounded formulas, γ. From
Proposition 2, there exists a formula γ∗(x) in FO(<,+Q), with
predicates from {P=, P<, P>, P+, P−}, which is equivalent to
γ. It is not difficult to see that as γ is bounded, there is an N
such that γ∗ is N -bounded. We now unsubstitute each of the
introduced propositional variables. That is, replace in γ∗(x) all
occurrences of P=(z) with z = x, all occurrences of P<(z)
with x < z etc. The result is an equivalent formula γ+ ∈
FO(<,+Q) which is still N -bounded as we have not removed
any constraints on the variables of γ∗. From Theorem 10, it
follows that there exists an MTL formula δ that is equivalent
to γ+, i.e. equivalent to γ.

VI. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kamp, “Tense logic and the theory of linear order,” Ph.D. dissertation,
University of California, 1968.

[2] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, 1990.

[3] Y. Hirshfeld and A. Rabinovich, “Expressiveness of metric modalities
for continuous time,” Logical Methods in Computer Science, vol. 3,
no. 1, 2007.

[4] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “On the temporal
basis of fairness,” in Proceedings of POPL. ACM Press, 1980.

[5] D. M. Gabbay, “Expressive functional completeness in tense logic,” in
Aspects of Philosophical Logic, U. Monnich, Ed. Reidel, 1981, pp.
91–117.

[6] R. Alur and T. A. Henzinger, “A really temporal logic,” Journal of the
ACM, vol. 41, no. 1, pp. 181–204, 1994.

[7] R. Holla and D. Vankadaru, “On the expressiveness of tptl in the
pointwise and continuous semantics,” 2007, unpublished manuscript.

[8] T. A. Henzinger, “Half-order modal logic: How to prove real-time
properties,” in PODC, 1990, pp. 281–296.

[9] Y. Hirshfeld and A. Rabinovich, “Timer formulas and decidable metric
temporal logic,” Inf. Comput., vol. 198, no. 2, 2005.

[10] J. Ouaknine, A. Rabinovich, and J. Worrell, “Time-bounded verifica-
tion,” in CONCUR, ser. Lecture Notes in Computer Science, vol. 5710.
Springer, 2009, pp. 496–510.

[11] P. Bouyer, F. Chevalier, and N. Markey, “On the expressiveness of tptl
and mtl,” in FSTTCS, ser. Lecture Notes in Computer Science, vol. 3821.
Springer, 2005, pp. 432–443.

[12] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds, Temporal
Logic: Mathematical Foundations and Computational Aspects, volume
1. Oxford: Clarendon Press, 1994.

[13] I. M. Hodkinson, “Expressive completeness of until and since over
dedekind complete linear time,” in Modal logic and process algebra,
A. Ponse, M. de Rijke, and Y. Venema, Eds. CSLI Stanford, 1995, pp.
171–185.


