Expressive Completeness for Metric Temporal Logic

Paul Hunter, Joël Ouaknine, and James Worrell
Department of Computer Science
University of Oxford
United Kingdom OX1 3QD
{paul.hunter, joel.ouaknine, james.worrell}@cs.ox.ac.uk

Abstract—Metric Temporal Logic (MTL) is a generalisation of Linear Temporal Logic in which the Until and Since modalities are annotated with intervals that express metric constraints. A result of Hirschfeld and Rabinovich shows that over the reals, first-order logic with binary order relation < and unary function +1 is strictly more expressive than MTL with integer-valued constants. Indeed they show that no temporal logic whose modalities are definable by formulas of bounded quantifier depth can be expressively complete for FO(<, +1). In this paper we show the surprising result that if we allow unary functions +q, q ∈ Q, in first-order logic and correspondingly allow rational constants in MTL, then the two logics have the same expressive power. This gives the first generalisation of Kamp’s theorem to the quantitative setting. The proof of this result involves a generalisation of Gabbay’s notion of separation to the metric setting.

I. INTRODUCTION

A foundation of the linear-time approach to specification and verification is that temporal properties can be expressed in the Monadic Logic of Order (FO(<)): first-order logic with binary order relation < and uninterpreted monadic predicates. For discrete-time systems one considers interpretations over the integers (Z, <), and for continuous-time systems one considers interpretations over the reals (R, <). Temporal properties can also be specified in Linear Temporal Logic (LTL): temporal logic with the modalities Until and Since. A celebrated result of Kamp [1] is that LTL has the same expressiveness as FO(<) over both (Z, <) and (R, <). Thus we can benefit from the appealing variable-free syntax and elementary decision procedures of LTL, while retaining the expressiveness of first-order logic.

Over the reals FO(<) cannot express metric properties, such as, “every request is followed by a response within one time unit”. This motivates the introduction of the Monadic Logic of Order and Metric (FO(<, +Q)), which augments FO(<) with a family of unary function symbols +q, q ∈ Q. Correspondingly, there have been a variety of proposals of quantitative temporal logics, with modalities definable in FO(<, +Q). In most cases, these temporal logics can be seen as quantitative extensions of LTL. However until now there has been no fully satisfactory counterpart of Kamp’s theorem in the quantitative setting.

The best-known quantitative temporal logic is Metric Temporal Logic (MTL), introduced over 20 years ago in [2]. MTL arises by annotating the temporal modalities of LTL with intervals with rational endpoints, representing metric constraints. Since the MTL operators are definable in FO(<, +Q), it is immediate that one can translate MTL into FO(<, +Q). The main result of this paper shows the converse, that MTL is expressively complete for FO(<, +Q). The generality of allowing rational constants is crucial for our main results: our translation from FO(<, +Q) to MTL does not preserve the granularity of timing constraints. Indeed, it is known that MTL with integer constants is not expressively complete for the fragment of FO(<, +Q) with only the +1 function [3, Theorem 7].

Two key ideas underlying the proof of expressive completeness are boundedness and separation. Given N ∈ N a FO(<, +Q) formula ϕ(x) is N-bounded if all quantifiers are relativised to the interval (x − N, x + N). Exploiting a normal form for FO(<), due to Gabbay, Pnueli, Shelah and Stavi [4], we show how to translate bounded FO(<, +Q) formulas into MTL. Extending this translation to arbitrary FO(<, +Q) formulas requires an appropriate metric analog of Gabbay’s notion of separation [5].

Gabbay [5] shows that every LTL formula can be equivalently rewritten as a Boolean combination of formulas, each of which depends only on the past, present or future. This seemingly innocuous separation property has several far-reaching consequences; in particular, it is a key lemma in an inductive translation from FO(<) to LTL. We prove an analogous result for MTL: every MTL formula can be equivalently rewritten as a Boolean combination of formulas, each of which is either bounded (i.e., refers to the near present) or refers to the distant future or distant past. Crucially, while the distant past and distant future are disjoint, they are both allowed to overlap with near present, unlike in Gabbay’s result. We exploit our result in like manner to Gabbay to give an inductive translation of FO(<, +Q) to MTL. Here it is vital that we already have a translation of bounded FO(<, +Q) formulas to MTL.

Related Work

A more elaborate quantitative extension of LTL is Timed Propositional Temporal Logic (TPTL), which expresses timing constraints using variables and freeze-quantification [6]. From the respective definitions of the logics the following inclusions in expressiveness are straightforward:

MTL ⊆ TPTL ⊆ FO(<, +Q).

TPTL was shown to be expressively complete for FO(<, +Q) (over R) in [7]. Notwithstanding this result, we regard the result in the present paper as the first fully satisfactory analog
of Kamp’s Theorem for FO(<,+\mathbb{Q}). This is because TPTL is a hybrid between first-order logic and temporal logic, featuring variables and quantification in addition to temporal modalities [8].

The expressiveness of quantitative temporal logics has also been investigated in [9], [3]. These papers focus on decidable logics which cannot express punctual metric constraints, such as “every request is followed by a response in exactly one time unit”. Also they work with timing constraints of a fixed granularity. The main results present a hierarchy of decidable temporal logics with counting modalities and characterise their expressiveness in terms of fragments of FO(<,+1).

Yet another approach to expressiveness is taken in our previous work [10]. This paper considers the fragment of FO(<,+\mathbb{Q}) with only the +1 function. Likewise it restricts to MTL formulas in which intervals have integer endpoints. Recall that in this setting expressiveness fails over unbounded domains such as (\mathbb{R},<) and (\mathbb{R}_{>0},<). However [10] shows that expressiveness holds over each bounded time domain ([0,N],<). While some of the ideas from [10] are used in the present paper, our results differ significantly. Even the fact that MTL is expressively complete for bounded FO(<,+1) formulas over an unbounded time domain crucially uses the fact that we allow fractional constants.

II. DEFINITIONS AND MAIN RESULTS

A. First-order logic

Formulas of the Monadic Logic of Order and Metric (FO(<,+\mathbb{Q}))) are first-order formulas over a signature with a binary relation symbol <, an infinite collection of unary predicate symbols P1, P2, . . . , and an infinite family of unary function symbols +q, q ∈ \mathbb{Q}. Formally, the terms of FO(<,+\mathbb{Q}) are generated by the grammar t ::= x | t + q, where x is a variable and q ∈ \mathbb{Q}. Formulas of FO(<,+\mathbb{Q}) are given by the following syntax:

\[\varphi ::= \text{true} \mid P_i(t) \mid t < t \mid \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi, \]

where x denotes a variable and t a term.

We consider interpretations of FO(<,+\mathbb{Q}) over the real line\(^1\), \mathbb{R}, with the natural interpretations of < and +q. It follows that a structure for FO(<,+\mathbb{Q}) is determined by an interpretation of the monadic predicates.

Of particular importance is FO(<,+1), the fragment of FO(<,+\mathbb{Q}) that omits all the +q functions except +1. For simplicity, when considering formulas of FO(<,+1) we will often use standard arithmetical notation as a shorthand, for example,

\[x - y > 2 \equiv (y + 1) + 1 < x. \]

B. Metric Temporal Logic

Given a set P of atomic propositions, the formulas of Metric Temporal Logic (MTL) are built from P using Boolean connectives and time-constrained versions of the until and since operators U and S as follows:

\[\varphi ::= \text{true} \mid p \mid \varphi \land \varphi \mid \neg \varphi \mid \varphi \ U \varphi \mid \varphi \ S \varphi, \]

where p ∈ P and I ⊆ (0,∞) is an interval with endpoints in \mathbb{Q} ∪ \{∞\}.

Intuitively, the meaning of \varphi_1 \ U \varphi_2 is that \varphi_2 will hold at some time in the interval I, and until then \varphi_1 holds. More precisely, the semantics of MTL are defined as follows. A signal is a function f : \mathbb{R} → 2^P. Given a signal f and r ∈ \mathbb{R}, we define the satisfaction relation f, r |= \varphi by induction over \varphi as follows:

- f, r |= p iff p ∈ f(r),
- f, r |= \neg \varphi iff f, r \not|= \varphi,
- f, r |= \varphi_1 \land \varphi_2 iff f, r \not|= \varphi_1 and f, r \not|= \varphi_2,
- f, r |= \varphi_1 \ U \varphi_2 iff there exists t > r such that t - r ∈ I, f, t |= \varphi_2 and f, u |= \varphi_1 for all z, r < u < t,
- f, r |= \varphi_1 \ S \varphi_2 iff there exists t < r such that r - t ∈ I, f, t |= \varphi_2 and f, u |= \varphi_1 for all u, t < u < r.

MTL can be seen as a restriction of MTL with only the interval I = (0,∞). Indeed, if I = (0,∞) then we omit the annotation I in the corresponding temporal operator since the constraint is vacuous. We also use arithmetic expressions to denote intervals. For example, we write U_{<3} for U_{0,3} and U_{=1} for U_{1,1}. We say the U_i and S_i operators are bounded if I is bounded, otherwise we say that the operators are unbounded.

We introduce the defined connectives \Diamond_i \varphi ::= \text{true} \ U_i \varphi (\varphi will be true at some point in interval I) and \Box_i \varphi ::= \text{true} \ S_i \varphi (\varphi was true at some point in interval I). We also have the dual connectives \Diamond_i \varphi ::= \neg \Box_i \neg \varphi (\varphi will be at all times in interval I) and \Box_i \varphi ::= \neg \Diamond_i \neg \varphi (\varphi was true at all times in interval I).

C. Expressive Equivalence

Given a set P = \{P_1, . . . , P_m\} of monadic predicates, a signal f : \mathbb{R} → 2^P defines an interpretation of each P_i, where P_i(r) if and only if P_i ∈ f(r). As observed earlier, this is sufficient to define the model-theoretic semantics of FO(<,+\mathbb{Q}), enabling us to relate the semantics of FO(<,+\mathbb{Q}) and MTL.

Let \varphi(x) be a FO(<,+\mathbb{Q}) formula with one free variable and \psi an MTL formula. We say \varphi and \psi are equivalent if for all signals f and r ∈ \mathbb{R}:

f, r \models \varphi(x) \iff f, r \models \psi.

Example 1. Consider the following formula, which says that P will be true at two points within the next time unit:

\[\varphi(x) ::= \exists y \exists z ((x < y < z < x + 1) \land P(y) \land P(z)). \]

It was shown in [3] that \varphi cannot be expressed in MTL using only integer constants\(^2\). To see this, consider the signal f in which the predicate P is true exactly at the points \frac{2n}{3}, n ∈ \mathbb{N}.

\(^1\)Our results carry over to subintervals of \mathbb{R}, such as the non-negative reals \mathbb{R}_{\geq 0}.

\(^2\)In fact [3] did not consider so-called punctual operators, i.e., singleton constraining intervals. But their argument goes through mutatis mutandis.
It can be shown by induction that for every MTL formula with integer constants there exists \(t > 0 \) such that from \(t \) onwards the formula has the same truth value on \(f \) as one of the predicates \(\text{true}, \text{false}, P, \neg P, \sigma_{=1} P \). On the other hand, for \(n \) even, \(\varphi \) is continuously true on the interval \((n, n + \frac{1}{3})\) and false on the boundary of the interval.

As observed in [11], we can, however, express \(\varphi(x) \) in MTL by using fractional constants. The idea is to consider three cases according to whether \(P \) is true twice in the interval \((x, x + \frac{1}{3}]\), twice in the interval \([x + \frac{1}{3}, x + 1)\), or once each in \((x, x + \frac{1}{3})\) and \((x + \frac{1}{3}, x + 1)\). We are thus led to define the MTL formula
\[
\varphi^1 := \diamond (0, \frac{1}{2}) (P \land \diamond (0, \frac{1}{2}) P) \lor \\
\diamond =1 (\diamond (0, \frac{1}{2}) (P \land \diamond (0, \frac{1}{2}) P)) \lor \\
(\diamond (0, \frac{1}{2}) P \land \diamond (\frac{1}{2}, 1) P),
\]
which is equivalent to \(\varphi \).

The following is straightforward.

Proposition 2. For every MTL formula \(\varphi \) there is an equivalent FO\((<,+,Q)\) formula \(\varphi^*(x) \).

Our main result is the converse:

Theorem 3. For every FO\((<,+,Q)\) formula \(\varphi(x) \) there is an equivalent MTL formula \(\varphi^1 \).

As we now explain, by a simple scaling argument it suffices to prove Theorem 3 in the special case that \(\varphi \) is an FO\((<,+,1)\)-formula. Let \(f \) be a signal and \(r \in \mathbb{Q}_{>0} \). We define the signal \(r.f \) by \(r.f(s) := f\left(\frac{s}{r}\right) \). Given either a FO\((<,+,Q)\)-formula \(\varphi(x) \) or an MTL-formula \(\varphi \), we say that the formula \(\varphi^r \) is a scale of \(\varphi \) by \(r \in \mathbb{Q}_{>0} \), if for all signals \(f \) and all \(s \in \mathbb{R} \),
\[
f, s \models \varphi \iff r.f, r.s \models \varphi^r.
\]
It is straightforward that FO\((<,+,Q)\) and MTL are both closed under scaling: in each case the required formula \(\varphi^r \) is obtained by multiplying all constants occurring in \(\varphi \) by \(r \).

Now we show how to deduce expressive completeness of MTL for FO\((<,+,Q)\) from the fact that MTL is at least as expressive as the fragment FO\((<,+,1)\). Given an FO\((<,+,Q)\)-formula \(\varphi(x) \), pick \(r \) such that \(\varphi^r \) is a FO\((<,+,1)\)-formula and translate \(\varphi^r \) to an equivalent MTL formula \(\psi \). Then rescaling \(\psi \) by \(1/r \), we obtain an MTL formula \(\psi^1/r \) that is equivalent to the original formula \(\varphi \).

We will see later that the translation from FO\((<,+,1)\) to MTL already involves temporal operators whose constraining intervals have fractional endpoints, as suggested by Example 1.

III. **SYNTACTIC SEPARATION OF MTL**

In [12], Gabbay et al. showed that LTL formulas over Dedekind complete domains are equivalent to Boolean combinations of formulas that depend exclusively on one of the past, present, or future. We state this result as it applies to continuous domains (the formulation in the discrete setting is slightly more straightforward). To state the result we recall the right-limit modality \(K^+ \) and left-limit modality \(K^- \), respectively defined as:
\[
K^+ \varphi := \neg (\neg \varphi \ U \text{true}) \quad K^- \varphi := \neg (\neg \varphi \ S \text{true}).
\]
The formula \(K^+ \varphi \) states that \(\varphi \) is true arbitrarily close in the future and \(K^- \varphi \) asserts that \(\varphi \) is true arbitrarily close in the past.

Theorem 4 ([12]). Over Dedekind complete domains, every LTL formula is equivalent to a Boolean combination of:

- atomic formulas,
- formulas of the form \(\varphi_1 \ U \varphi_2 \) such that \(\varphi_1 \) and \(\varphi_2 \) use only \(U \) and \(K^- \),
- formulas of the form \(\varphi_1 \ S \varphi_2 \) such that \(\varphi_1 \) and \(\varphi_2 \) use only \(S \) and \(K^+ \).

Note that the three classes of formulas in Theorem 4 respectively refer to the present, future and past. In this section we derive an analogous result for MTL. We show that every MTL formula can be written as a Boolean combination of bounded, distant future and distant past formulas. Just as Gabbay et al. used syntactic forms for future and past representations, our plan is to use natural forms for bounded, distant future and distant past formulas. Crucially, the distant future and distant past are allowed to overlap with the bounded present, unlike in Gabbay’s result.

Given an MTL formula \(\varphi \), we define the future-reach \(fr(\varphi) \) and past-reach \(pr(\varphi) \) inductively as follows:

- \(fr(p) = pr(p) = 0 \) for all propositions \(p \),
- \(fr(\text{true}) = pr(\text{true}) = 0 \),
- \(fr(\neg \varphi) = fr(\varphi), \quad pr(\neg \varphi) = pr(\varphi) \),
- \(fr(\varphi \land \psi) = \max\{fr(\varphi), fr(\psi)\} \),
- \(pr(\varphi \land \psi) = \max\{pr(\varphi), pr(\psi)\} \),
- If \(n = \inf(I) \) and \(m = \sup(I) \):
 - \(fr(\varphi \ U_I \psi) = m + \max\{fr(\varphi), fr(\psi)\} \),
 - \(pr(\varphi \ S_I \psi) = m + \max\{pr(\varphi), pr(\psi)\} \),
 - \(fr(\varphi \ S_I \psi) = \max\{fr(\varphi), fr(\psi) - n\} \),
 - \(pr(\varphi \ U_I \psi) = \max\{pr(\varphi), pr(\psi) - n\} \).

Intuitively the future-reach indicates how much of the future is required to determine the truth of an MTL formula, and likewise for the past reach. Note that if \(\varphi \) contains an unbounded \(U \) operator then \(fr(\varphi) = \infty \) and likewise if \(\varphi \) contains an unbounded \(S \) operator, \(pr(\varphi) = \infty \).

We say an MTL formula is **syntactically separated** if it is a Boolean combination of the following

- \(\diamond =N \varphi \) where \(pr(\varphi) < N - 1 \),
- \(\diamond =N \varphi \) where \(fr(\varphi) < N - 1 \),
- \(\varphi \) where all intervals occurring in \(U \) and \(S \) operators are bounded.

We call formulas of the third kind above **bounded**. Note that formulas with no occurrences of \(U_I \) and \(S_I \) are included in the definition of bounded formulas.

Theorem 5. Every MTL formula is equivalent to one which is syntactically separated.

To prove Theorem 5 our strategy is as follows:
Step 0. Translation to Normal Form: We first introduce a normal form for MTL formulas. An MTL formula is said to be in *normal form* if the following all hold:

1. The formula is written using the Boolean operators and the temporal connectives $U_{(0,\gamma)}$, $S_{(0,\gamma)}$, $\square_{(0,\gamma)}$, $\blacksquare_{(0,\gamma)}$, where $\gamma \in \mathbb{Q}_{\geq 0} \cup \{\infty\}$, and $\Diamond =_q$ and $\Box =_q$, where $q \in \mathbb{Q}_{\geq 0}$;
2. In any subformula $\varphi_1 U_{I} \varphi_2$ or $\varphi_1 S_{I} \varphi_2$, the outermost connective of φ_1 is not conjunction and the outermost connective of φ_2 is not disjunction;
3. No temporal operator occurs in the scope of $\Diamond =_q$ or $\Box =_q$;
4. Negation is only applied to propositional variables and bounded temporal operators.

We can transform an MTL formula into an equivalent normal form as follows. To satisfy (i) we eliminate connectives U_I and S_I in which the interval I does not have left endpoint 0 using the equivalences

$\varphi U_{(p,q)} \psi \iff \square_{(0,p)} \varphi \land \Diamond_{p} (\varphi \land (\varphi U_{(0,q-p)} \psi))$

$\varphi S_{(p,q)} \psi \iff \square_{(0,p)} \varphi \land \Diamond_{p} (\varphi \land (\varphi S_{(0,q-p)} \psi))$

and corresponding equivalences for left-closed and right-closed intervals.

To satisfy (ii) we use the equivalences

$\varphi U_{I} (\psi \lor \theta) \iff (\varphi U_{I} \psi) \lor (\varphi U_{I} \theta)$

$(\varphi \land \psi) U_{I} \theta \iff (\varphi U_{I} \theta) \land (\psi U_{I} \theta)$

and their corresponding versions for S_I,

$\varphi S_{I} (\psi \lor \theta) \iff (\varphi S_{I} \psi) \lor (\varphi S_{I} \theta)$

$(\varphi \land \psi) S_{I} \theta \iff (\varphi S_{I} \theta) \land (\psi S_{I} \theta)$.

To satisfy (iii) we use the equivalences

$\Diamond =_q (\varphi \land \psi) \iff \Diamond =_q \varphi \land \Diamond =_q \psi$

$\Diamond =_q (\neg \varphi) \iff \neg \Diamond =_q \varphi$

$\Diamond =_q (\varphi U_{I} \psi) \iff \Diamond =_q \varphi U_{I} \Diamond =_q \psi$

$\Diamond =_q (\varphi S_{I} \psi) \iff \Diamond =_q \varphi S_{I} \Diamond =_q \psi$

and the corresponding equivalences for $\Box =_q$ to distribute $\Box =_q$ and $\Diamond =_q$ across all other operators.

To satisfy (iv) we observe that the K^+ and K^- operators can be defined as bounded formulas, viz.

$K^+(\varphi) \iff \neg (\neg \varphi U_{<1} \text{true})$

$K^-(\varphi) \iff \neg (\neg \varphi S_{<1} \text{true})$.

Then we use the equivalences

$\neg (\varphi U \psi) \iff \Box \neg \psi \lor K^+(\neg \varphi) \lor (\neg \psi U \neg (\neg \psi \land \neg \varphi \lor K^+(\neg \varphi)))$

$\neg \Box \varphi \iff \text{true} U \neg \varphi$

and their corresponding past versions to rewrite any subformula in which negation is applied to an unbounded temporal operator.

Step 1. Extracting unbounded until and since

Our goal in this subsection is the following lemma.

Lemma 6. Every MTL formula φ is equivalent to one in which no unbounded temporal operator occurs within the scope of a bounded temporal operator.

The proof of this lemma relies on Proposition 7, whose proof is straightforward.

Proposition 7. For all $q \in \mathbb{Q}_{\geq 0}$, the following equivalences and their temporal duals hold over all signals.

1. $\theta U <_{q} ((\varphi U \psi) \land \chi) \iff (\theta U <_{q} (\varphi U \psi)) \land (\theta U <_{q} (\psi U \chi))$

2. $\theta U <_{q} (\Box \varphi \land \chi) \iff (\theta U <_{q} (\Box <_{q} \varphi \land \chi)) \land (\Box <_{q} \varphi)$

3. $\theta U <_{q} ((\varphi S \psi) \land \chi) \iff (\theta U <_{q} (\Box <_{q} \psi \land \chi)) \land (\varphi S \psi)$

4. $\theta U <_{q} (\Box \varphi \land \chi) \iff (\theta U <_{q} (\Box <_{q} \varphi \land \chi)) \land (\Box \varphi)$
Now suppose we have an MTL formula in which no unbounded temporal operator occurs within the scope of a bounded operator. If we replace each bounded subformula \(\theta \) with a new proposition \(P_\theta \), the resulting formula is now an LTL formula equivalent to our original formula for suitable interpretations of the \(P_\theta \). From Theorem 4 we know that this formula is equivalent to a Boolean combination of:

- atomic formulas,
- formulas of the form \(\varphi_2 U \varphi_1 \) such that \(\varphi_1 \) and \(\varphi_2 \) use only \(U \) and \(K^- \),
- formulas of the form \(\varphi_2 S \varphi_1 \) such that \(\varphi_1 \) and \(\varphi_2 \) use only \(S \) and \(K^+ \).

Recalling from Step 0 that we can express the operators \(K^+ \) and \(K^- \) using bounded operators, and also replacing each proposition \(P_\theta \) with its associated bounded formula \(\theta \), we obtain:

Lemma 8. Every MTL formula is equivalent to a Boolean combination of:

- bounded formulas,
- formulas that use arbitrary \(U_I \) but only bounded \(S_I \),
- formulas that use arbitrary \(S_I \) but only bounded \(U_I \),

Step 3. Completing the separation

Now suppose we have an MTL formula \(\theta \) that does not contain unbounded \(S \). We prove by induction on the number of unbounded \(U \) operators that \(\theta \) is equivalent to a syntactically separated formula. Clearly if \(\theta \) contains no unbounded \(U \) operators then it is bounded and therefore syntactically separated. Otherwise, by applying Lemma 6 and observing that it does not introduce unbounded \(U \) operators, we may assume that \(\theta = \varphi U \psi \) where \(\varphi \) and \(\psi \) have strictly fewer unbounded \(U \) operators than \(\theta \). As \(\theta \) does not contain unbounded \(S \) operators, \(pr(\theta) \) is finite, so choose \(N > pr(\theta) + 1 \). Next we apply the following equivalence

\[
\varphi U \psi \leftrightarrow \varphi U < N \psi \lor (\Box < N \varphi \land \Diamond = N (\psi \lor (\varphi \land U \psi))).
\]

Now \(pr(\psi \lor (\varphi \land U \psi)) = pr(\theta) < N - 1 \), and the subformulas \(\varphi U < N \psi \) and \(\Box < N \varphi \) have strictly fewer unbounded \(U \) operators than \(\theta \), so by the induction hypothesis the formula on the right hand side of the above equivalence is equivalent to one that is syntactically separated, completing the inductive step. Similarly \(S \) formulas that do not contain unbounded \(U \) operators are equivalent to syntactically separated formulas. Applying these observations to Lemma 8 gives our main result, which we repeat here for completeness.

Theorem 5. Every MTL formula is equivalent to a Boolean combination of:

- \(\Diamond = N \varphi \) where \(pr(\varphi) < N - 1 \),
- \(\Diamond = N \varphi \) where \(fr(\varphi) < N - 1 \), and
- \(\varphi \) where all intervals \(I \) occurring in \(U_I \) and \(S_I \) operators are bounded.
IV. EXPRESSIVE COMPLETENESS ON BOUNDED FORMULAS

In this section we show expressive completeness of MTL for a fragment of FO(<,+1) consisting of *bounded formulas*, i.e., formulas \(\varphi(x) \) that refer only to a bounded interval around \(x \).

Given terms \(t_2 \) and \(t_2 \), define \(\text{Bet}(t_1,t_2) \) to consist of FO(<,+1) formulas in which

(i) each subformula \(\exists z \psi \) has the form \(\exists z \ ((t_1 \leq z < t_2) \land \chi) \), i.e., each quantifier is relativized to the half-open interval between \(t_1 \) (inclusive) and \(t_2 \) (exclusive);

(ii) in each atomic subformula \(P(t) \) the term \(t \) is a bound occurrence of a variable.

Clauses (i) and (ii) ensure that a formula in \(\text{Bet}(t_2,t_2) \) only refers to the values of monadic predicates on points in the half-open interval \([t_1,t_2) \). We say that a formula \(\varphi(x) \) in \(\text{Bet}(x < N, x + N) \) is *N-bounded* and that \(\varphi(x) \) in \(\text{Bet}(x,x + 1) \) is a *unit formula*.

Observe that in a unit formula the only essential use of the +1 function is in specifying the range of the quantified variables. More precisely, we have the following proposition, where \(\psi[t/y] \) denotes the formula obtained by substituting term \(t \) for all free occurrences of variable \(y \) in \(\psi \):

Proposition 9. For any unit formula \(\varphi(x) \) there is an FO(<) formula \(\psi \in \text{Bet}(x,y) \) such that \(\varphi \) is equivalent to \(\psi[(x + 1)/y] \).

Proof. We show that all uses of the +1 function in \(\varphi \) other than to specify the range of quantified variables can be eliminated.

Let \(u,v \) be bound variables and \(k_1,k_2 \in \mathbb{N} \). Since \(u,v \) range over an open interval of length 1 an inequality of the form \(u+k_1 < v+k_2 \) can be replaced by (i) \(u < v \), if \(k_1 = k_2 \); (ii) \(\text{true} \), if \(k_1 < k_2 \); and (iii) \(\text{false} \) otherwise. Likewise an equality of the form \(u+k_1 = v+k_2 \) can be replaced by \(u = v \) if \(k_1 = k_2 \), and \(\text{false} \) otherwise. \(\Box \)

The main result of this section is:

Theorem 10. For every \(N \)-bounded formula \(\varphi(x) \) there exists an equivalent MTL formula \(\varphi^1 \).

In [10] it was shown that MTL is expressively complete for FO(<,+1) on bounded domains of the form \([0,N)\). Theorem 10 is subtly different from that result, which used the definability of the point \(0 \) in a crucial way. In particular, unlike [10], in the present setting we require MTL operators whose constraining intervals have fractional endpoints to achieve expressiveness completeness.

The proof of Theorem 10 has the following structure:

Step 1. By introducing extra predicates, we rewrite each \(N \)-bounded formula as a Boolean combination of unit formulas and atoms.

Step 2. Using a normal form of Gabbay, Pnueli, Shelah, and Stavi [4] (see also Hodkinson [13]) we give a translation of unit formulas to MTL. This step reveals a connection between the granularity of MTL and the quantifier depth of the unit formulas.

Step 3. We complete the translation by removing the new predicate symbols introduced in Step 1.

Step 1. Translation to unit formulas and atoms

We translate an \(N \)-bounded formula \(\varphi(x) \) into a formula \(\varphi(x) \) that is a Boolean combination of unit formulas and atoms.

Let \(\varphi(x) \) mention monadic predicates \(P_1,\ldots,P_m \). For each predicate \(P_i \) we introduce an indexed family of new predicates \(P_i^j \), where \(-N \leq j < N \). Intuitively, \(P_i^j(y) \) stands for \(P_i(y+j) \). Formally, given a signal \(f \) that interprets the \(P_i \) we define a signal \(P_i \) by

\[P_i^j \in \overline{f}(r) \iff P_i \in f(r+j) \]

for all \(r \in \mathbb{R} \).

Next we define a formula \(\overline{f} \) such that \(f, r \models \varphi \) if and only if \(f, r \models \overline{f} \). To obtain \(\overline{f} \) we recursively replace every instance of a subformula

\[\exists y ((x - N \leq y < x + N) \land \psi) \]

in \(\varphi \) by the formula

\[\exists y ((x \leq y < x + 1) \land \psi(y-N)/y) \lor \ldots \lor \psi((y+(N-1))/y)) \].

Having carried out these substitutions, we use simple arithmetic to rewrite every term in \(\varphi \) as \(z + k \), where \(z \) is a variable and \(k \in \mathbb{Z} \) is an integer constant. Every use of monadic predicates in \(\varphi \) now has the form \(P_i(z+k) \), for \(-N \leq k < N \). Replace every such predicate by \(P_i^k(z) \).

After the above operations the resulting formula is a Boolean combination of unit formulas and atomic formulas.

Step 2. Translating unit formulas to MTL

In the next stage of the proof we show how to translate unit formulas into equivalent MTL formulas. Critical to this step is the following definition and lemma from [4]. Lemma 11 is the main technical lemma in the expressive completeness proof of MTL for FO(<) in [4].

A decomposition formula \(\delta(x,y) \) is any formula of the form

\[x < y \land \exists z_0 \ldots \exists z_n (x = z_0 < \cdots < z_n = y) \land \bigwedge \{ \varphi_i(z_i) : 0 \leq i < n \} \land \bigwedge \{ \forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 0 < i \leq n \} \]

where \(\varphi_i \) and \(\psi_i \) are LTL formulas regarded as unary predicates.

Lemma 11 ([4]). Over any domain with a complete linear order, every FO(<) formula \(\psi(x,y) \in \text{Bet}(x,y) \) is equivalent to a Boolean combination of decomposition formulas \(\delta(x,y) \).

Recall from Proposition 9 that any unit formula \(\theta(x) \) there exists an MTL formula \(\varphi \in \text{Bet}(x,y) \) such that \(\varphi[(x + 1)/y] \) is equivalent to \(\theta(x) \). Thus, in light of Lemma 11, to translate unit formulas to MTL it suffices to consider unit formulas of the form \(\delta[(x + 1)/y] \) where \(\delta(x,y) \) is a decomposition formula.
Proposition 12. Let \(\delta(x, y) \) be a decomposition formula and consider the unit formula \(\theta(x) = \delta((x+1)/y) \). Then there is an MTL formula equivalent to \(\theta(x) \).

Proof. We proceed by induction on the number \(n \) of existential quantifiers in \(\delta(x, y) \).

Base case.: Let \(\delta(x, y) = \varphi(x) \land \forall u (x < u < y \rightarrow \psi(u)) \), where \(\varphi \) and \(\psi \) are LTL formulas. Clearly the MTL formula \(\varphi \land \Box_{(0,1)} \psi \) is equivalent to \(\delta((x+1)/y) \).

Inductive case.: Let \(\delta(x, y) \) have the form

\[
x < y \land \exists z_0 \ldots \exists z_n (x = z_0 < \cdots < z_n = y)
\]

\[
\land \left\{ \varphi_i(z_i) : 0 \leq i < n \right\}
\]

\[
\land \left\{ \forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 0 < i \leq n \right\}.
\]

Consider the unit formula \(\theta(x) := \delta((x+1)/y) \). The idea is to define MTL formulas \(\alpha_k, \beta_k, 0 \leq k < 2n \), whose disjunction is equivalent to \(\theta \). The definition of these formulas is based on a case analysis of the values of the existentially quantified variables \(z_1, \ldots, z_{n-1} \) in \(\delta \), similar to the idea of Example 1. To this end, consider the following 2\(n \) half-open subintervals of \([x, x+1)\): \([x, x + \frac{k}{2n})\) and \([x + \frac{k}{2n}, x + \frac{k+1}{2n})\). We identify three mutually exclusive cases according to the distribution of the \(z_i \) among these intervals:

1) \(\{ z_1, \ldots, z_{n-1} \} \subseteq \left[x + \frac{k}{2n}, x + \frac{k+1}{2n} \right) \) for some \(k < n \);
2) \(\{ z_1, \ldots, z_{n-1} \} \subseteq \left[x + \frac{k}{2n}, x + \frac{k+1}{2n} \right) \) for some \(k, n \leq k < 2n \);
3) There exists \(k, 1 \leq k < 2n \) and \(l, 1 \leq l < n - 1 \), such that \(z_l < x + \frac{k}{2n} \leq z_{l+1} \) (i.e., \(z_1, \ldots, z_{n-1} \) are not all contained in a single interval).

a) Case 1.: Assume that \(k < n \) and consider the following MTL formula:

\[
\alpha_k := \varphi_0 \land \psi_1 \lor \left\{ \varphi_i \lor \psi_i \lor \psi_{i+1}, 0 \leq i < n \right\}.
\]

By construction, if \(\alpha_k \) holds at a point \(x \) then the formulas \(\varphi_0, \varphi_1, \varphi_2, \ldots, \varphi_{n-1}, \psi_n \) hold in sequence along the interval \([x, x + 1)\). In particular, \(\psi_n \) holds on the interval starting at the time that the subformula \(\Box_{(0,1/2)} \psi_n \) begins to hold and extending to time \(x + 1 \) (thanks to the “overlapping” subformula \(\Box_{(k+1)/2n} \psi_n \)). Thus \(\alpha_k \) implies \(\theta \). Conversely, if \(\theta \) holds with the existentially quantified variables \(z_1, \ldots, z_{n-1} \) all lying in the interval \([x + \frac{k}{2n}, x + \frac{k+1}{2n})\), then clearly \(\alpha_k \) also holds.

b) Case 2.: Suppose that \(n \leq k < 2n \) and consider the following MTL formula:

\[
\alpha_k := \Box_{\sum_{i=1}^{n} k_i} \left(\psi_n S_{\frac{2k}{2n}, \frac{k}{2n}} \right)
\]

The definition of \(\alpha_k \) is according to similar principles as in Case 1. If it holds at a point \(x \) then the sequence of past operators ensures that the formulas \(\psi_n, \psi_{n-1}, \psi_{n-2}, \ldots, \psi_1, \psi_0 \) hold in sequence, backward from \(x + 1 \) to \(x \). Thus \(\alpha_k \) implies \(\theta \). Conversely, if \(\theta \) holds with the existentially quantified variables \(z_1, \ldots, z_{n-1} \) all lying in the interval \([x + \frac{k}{2n}, x + \frac{k+1}{2n})\), \(n \leq k < 2n \), then clearly \(\alpha_k \) also holds.

c) Case 3.: Suppose that \(z_l < x + \frac{k}{2n} \leq z_{l+1} \) for some \(k, 1 \leq k < 2n \), and \(l, 1 \leq l < n - 1 \).

The idea is, for each choice of \(l \), to decompose \(\theta \) into a property \(\sigma_l \) holding on the interval \([x, x + \frac{k}{2n})\) and a property \(\tau_l \) holding on the interval \([x + \frac{k}{2n}, x + 1)\). Then we apply the induction hypothesis to transform \(\sigma_l \) and \(\tau_l \) to equivalent MTL formulas. To this end, define

\[
\sigma_l(x) := \exists z_0 \ldots \exists z_{l+1} (x = z_0 \cdots < z_{l+1} = x + \frac{k}{2n})
\]

\[
\land \left\{ \varphi_i(z_i) : 0 \leq i \leq l \right\}
\]

\[
\land \left\{ \forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 1 \leq i \leq l + 1 \right\}
\]

and

\[
\tau_l(x) := \exists z_0 \ldots \exists z_n (x = z_0 \ldots < z_n = x + \frac{2n-k}{2n})
\]

\[
\land \left\{ \varphi_i(z_i) : l + 1 \leq i < n \right\}
\]

\[
\land \left\{ \forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : l < i \leq n \right\}.
\]

We can turn \(\sigma_l \) into an equivalent MTL formula \(\sigma^*_l \) by the following sequence of transformations: scale by \(\frac{2n}{2n} \) to obtain a unit formula, apply the induction hypothesis to transform the unit formula to an equivalent MTL formula, finally scale the resulting MTL formula by \(\frac{k}{2n} \). We likewise transform \(\tau_l \) into an equivalent MTL formula \(\tau^*_l \).

We now define

\[
\beta_k := \bigvee_{1 \leq i < n - 1} \left(\sigma_i^* \land \Box_{\frac{2k}{2n}} \left(\left((\psi_{1+} \land \tau^*_i) \lor (\psi_{1-} \land \tau^*_i) \right) \right) \right).
\]

From the definition of \(\sigma_i \) it is clear that \(\beta_k \) matches \(\theta \) on \([x, x + \frac{k}{2n})\). For the remaining interval \([x + \frac{k}{2n}, x + 1)\) we distinguish between two cases: if \(x + \frac{k}{2n} < z_{i+1} \), then \(\Box_{\frac{2k}{2n}} (\psi_{1+} \land \tau^*_i) \) agrees with \(\theta \); and if \(x + \frac{k}{2n} \geq z_{i+1} \) then \(\Box_{\frac{2k}{2n}} (\psi_{1-} \land \tau^*_i) \) agrees with \(\theta \). Thus \(\beta_k \) implies \(\theta \). Conversely if \(\theta \) holds with the existentially quantified variables \(z_1, \ldots, z_{n-1} \) satisfying the conditions of Case 3 then one of the disjuncts, and hence \(\beta_k \), must hold.
Step 3. Completing the translation

After Step 2 we have an MTL formula equivalent to the formula $\varphi(x)$ obtained in Step 1. It remains only to eliminate the extra predicates introduced in Step 1. To this end, for each predicate P and $j \geq 0$, replace P^j by $\diamondsuit_{\geq j} P$, and for $j < 0$ replace P^j by $\Box_{< j} P$. Finally we obtain an MTL formula φ' equivalent to the original N-bounded formula $\varphi(x)$.

Theorem 10. For every N-bounded $\text{FO}(<,+1)$ formula $\varphi(x)$ there exists an equivalent MTL formula φ'.

V. EXPRESSIVE COMPLETENESS OF MTL

Our next step towards proving the expressive completeness of MTL is to show that it is possible to express all of $\text{FO}(<,+1)$.

Lemma 13. For every $\text{FO}(<,+1)$ formula $\varphi(x)$ there is an equivalent MTL formula φ'.

Proof. The proof is by induction on the quantifier depth n of φ.

Base case, $n = 0$.: All atoms are of the form $P_i(x)$, $x = x$, $x < x$, $x + 1 = x$. We replace these by P_i, true, false, respectively and obtain an MTL formula which is clearly equivalent to φ.

Inductive case.: Without loss of generality we may assume $\varphi = \exists x. \psi(x,y)$ where $\psi(x,y)$ has quantifier depth $n - 1$. We would like to remove x from ψ, so to this end we take a disjunction over all possible choices for $\gamma : \{P_1(x), \ldots, P_m(x)\} \rightarrow \{\text{true}, \text{false}\}$ and use γ to determine the value of $P_i(x)$ in each disjunct. So x appears only in atoms of the form $x = z$, $x < z$, $x > z$, $x + 1 = z$, $x = z + 1$. We now introduce new monadic propositions P_\leq, P_\prec, P_\succ, P_+ and P_- and replace each of the atoms containing x with the suitable proposition. That is, if $x = z$ becomes $P_\leq(z)$, $x < z$ becomes $P_\prec(z)$ and so on. This yields a formula $\psi'(y)$ in which x does not occur, and, with suitable interpretations of the new propositions, is equivalent to $\psi(x,y)$. By the induction hypothesis there is an equivalent MTL formula, ψ' with suitable propositional atoms for the introduced propositions. Now $\varphi = \exists x. \psi(x,y)$ is clearly equivalent to

$$\varphi' = \exists x. \psi_1 \lor \psi_2 \lor \psi_3$$

for suitable interpretations of $\{P_\leq, P_\prec, P_\succ, P_+, P_-\}$. By Theorem 5 φ' is equivalent to a Boolean combination of formulas

(I) $\diamondsuit_{=N} \varphi$ where $pr(\varphi) < N - 1$,

(II) $\diamondsuit_{<N} \varphi$ where $fr(\varphi) < N - 1$, and

(III) φ where all intervals occurring in U and S operators are bounded.

Now in formulas of type (I) above we know the intended value of each of the propositional variables $P_\leq, P_\prec, P_\succ, P_+$; they are all false except P_\succ which is true. So we can replace these propositional atoms by true and false as appropriate and obtain an equivalent MTL formula which does not mention the new variables. Likewise we know the value of each of propositional variables in formulas of type (II): all are false except P_\prec which is true; so we can again obtain an equivalent MTL formula which does not mention the new variables. It remains to deal with each of the bounded formulas, γ. From Proposition 2, there exists a formula $\gamma^+(x)$ in $\text{FO}(<,+\mathbb{Q})$, with predicates from $\{P_\leq, P_\prec, P_\succ, P_+, P_-, \}$, which is equivalent to γ. It is not difficult to see that as γ is bounded, there is an N such that γ^+ is N-bounded. We now subdivide each of the introduced propositional variables. That is, replace in $\gamma^+(x)$ all occurrences of $P_\leq(z)$ with $z = x$, all occurrences of $P_\prec(z)$ with $x < z$ etc. The result is an equivalent formula $\gamma^+ \in \text{FO}(<,+\mathbb{Q})$ which is still N-bounded as we have not removed any constraints on the variables of γ^+. From Theorem 10, it follows that there exists an MTL formula δ that is equivalent to γ^+, i.e. equivalent to γ.

VI. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES