Automatic Synthesis of Systems with Data

Léo Exibard Monday, September 6th, 2021

? \parallel Environment \models Specification

→ Generate a system from a specification

Implementing a specification Inputs In

Outputs Out

? \parallel Environment \models Specification

→ Generate a system from a specification

Implementing a specification Inputs In

Outputs Out

Synthesis

Inputs In

- ${\mathcal S}$ class of specifications ${\mathcal S}\subseteq {\mathsf{In}}\times{\mathsf{Out}}$
- $\mathcal I$ class of implementations $M: \mathsf{In} \to \mathsf{Out}$

M fulfils *S*, written $M \models S$, if for all $i \in In, (i, M(i)) \in S$

Synthesis Problem for ${\mathcal S}$ and ${\mathcal I}$

- Input: $S \in S$
- **Output:** $M \in \mathcal{I}$
 - s. t. $M \models S$ if it exists
 - No otherwise

$$n = \Sigma^{\omega}$$
 Out =

Reactive systems

Interaction $\rightsquigarrow \sigma_1 \gamma_1 \sigma_2 \gamma_2 \sigma_3 \gamma_3 \dots$

Specification $S \subseteq (\Sigma \cdot \Gamma)^{\omega}$ in a high-level formalism (MSO, LTL)

Implementation = finite-state machine = reactive system

 $\Gamma \omega$

Running Example

- Server and clients
- Everytime a client makes a request, it must eventually be granted
 - → $G(req \Rightarrow F(grt))$

ω -Automata

A Universal co-Büchi Automaton checking that every client is eventually satisfied.

How to Solve Reactive Synthesis?

- → Convert the MSO specification to an ω -automaton
- → Solve a game on this automaton
- ω -regular games

A parity game corresponding to $G(req \Rightarrow F(grt))$.

Models for Reactive Systems

Winning strategies in parity games are positional

Synchronous Sequential Transducers

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- All states are accepting

Reactive Synthesis

Theorem (Büchi and Landweber 1969)

The synthesis problem from MSO specifications to Sequential Transducers is non-elementary (but decidable).

Proof steps

- → Convert the MSO formula to an ω -automaton
- → Solve a game on this automaton

Theorem [folklore]

The synthesis problem from Universal ω -Automata to Synchronous Sequential Transducers is ExpTime-c.

Reactive Synthesis

Theorem (Büchi and Landweber 1969)

The synthesis problem from MSO specifications to Sequential Transducers is non-elementary (but decidable).

Proof steps

- → Convert the MSO formula to an ω -automaton
- → Solve a game on this automaton

Theorem [folklore]

The synthesis problem from Universal ω -Automata to Synchronous Sequential Transducers is ExpTime-c.

Theorem (Pnueli and Rosner 1989)

The synthesis problem from LTL specifications to Sequential Transducers is 2-ExpTime-c.

Limitations

Observations

- → Input and output alphabets are assumed to be finite sets
- → Large alphabets require additional techniques

Back to our running example

- Set $C = \{1, \ldots, n\}$ of users
- $\Sigma = {req_1, \dots, req_n, \neg req}$ and $\Gamma = {grt_1, \dots, grt_n, \neg grt}$
- Now, each user has a specific request
- Every request of client *i* is eventually granted:

$$\bigwedge_{1 \leq i \leq n} G\left(\mathsf{req}_i \to F(\mathsf{grt}_i)\right)$$

Limitations

Observations

- → Input and output alphabets are assumed to be finite sets
- → Large alphabets require additional techniques

Back to our running example

- Set $C = \{1, \ldots, n\}$ of users
- $\Sigma = {req_1, \dots, req_n, \neg req}$ and $\Gamma = {grt_1, \dots, grt_n, \neg grt}$
- Now, each user has a specific request
- Every request of client *i* is eventually granted:

$$\bigwedge_{1 \leq i \leq n} G\left(\mathsf{req}_i \to F(\mathsf{grt}_i)\right)$$

 \rightarrow We consider the case where C is *infinite* and has some *structure*. 8

Main goal

Lift existing synthesis techniques to infinite alphabets

- → Models for specifications and implementations
- → Decidability and complexity of synthesis procedures
- → Theoretical study of transducers over infinite alphabets

How to Represent Executions? Data Words

- Data domain D = (D, R, C): infinite set of data with predicates and constants
 - → e.g. (\mathbb{N} ,=), (\mathbb{Q} ,<), (\mathbb{N} ,<,0)
- Σ finite alphabet of *labels*
- Data words: sequences of pairs (a, d) ∈ Σ × D

- $\Sigma = \{req, grt, \neg req, \neg grt\}$
- $\mathcal{D} = (\mathbb{N}, =)$

Extending Automata to Data Words

Register Automata (Kaminski and Francez 1994) Finite automata with a finite set Transitions $q \xrightarrow{\sigma, \varphi, A} q'$ **R** of registers • $\sigma \in \Sigma$: label

- Store data
- Test register content

- - $\varphi \in QF(R, \star)$: test
 - $A \subseteq R$: assignment

An URA checking that every request is eventually granted.

Synchronous Sequential Register Transducers

- Transitions $q \xrightarrow{i, \varphi \mid A, o, r} q'$
 - *i* input letter, *o* output letter
 - φ test over \star
 - A registers assigned *
 - r register whose content is output
- Sequentiality: tests are mutually exclusive

A register transducer immediately satisfying each user.

Outline

Part I: Reactive Synthesis

- → Specifications: synchronous register automata
- → Implementations: synchronous sequential register transducers
- → Decidability border + compromise expressivity vs complexity

Part II: Computability

- → Specifications: non-deterministic asynchronous register transducers
- → Implementations: any algorithm
- → Theory of asynchronous register transducers

Reactive Synthesis over Data Words

- \mathcal{S} : specification register automata
- $\mathcal{I}:$ synchronous sequential register transducers

Unbounded Synthesis Problem

- **Input:** *S* a register automaton
- Output: M a synchronous sequential register transducer such that M ⊨ S if it exists
 - No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a Universal Register Automaton with \geq 3 registers, already over (\mathbb{D} ,=).

Register-Bounded Synthesis of Register Transducers

- \mathcal{S} : specification register automata
- \mathcal{I} : synchronous sequential register transducers with k registers

Register-Bounded Synthesis Problem

Input: *S* a register automaton, k a number of registers

- Output: M a synchronous sequential register transducer with k registers (and arbitrarily many states) such that M ⊨ S if it exists
 - No otherwise

Theorem

The register-bounded synthesis problem for *S* given as a Universal Register Automaton is in 2-EXPTIME over $(\mathbb{D}, =)$ and $(\mathbb{Q}, <)$.

Reduction to the Finite Alphabet Case

Action Sequences

- Input actions: tests $oldsymbol{arphi} \in \mathrm{QF}(R_k,\star)$
- Output actions: $(A, r) \in 2^{R_k} \times R_k$

• Action sequence $\alpha = a_1 a_2 \dots$

 $\mathsf{Comp}(\alpha) = \{ w \in \mathbb{D}^{\omega} \mid \alpha \text{ can be performed on reading } w \}$

Example

Sequence $\alpha \quad \star \neq r_1, r_2 \quad (\{r_1\}, r_1) \quad \star \neq r_1, r_2 \quad (\{r_2\}, r_1) \quad \star = r_1$ Word $w \quad 1 \qquad 1 \qquad 2 \qquad 1 \qquad 1$ Registers (0,0) (1,0) (1,0) (1,2) (1,2)

→ $w = 11211 \in \text{Comp}(\alpha)$

Reduction to the Finite Alphabet Case

Action Sequences

- Input actions: tests $oldsymbol{arphi} \in \mathrm{QF}(R_k,\star)$
- Output actions: $(A, r) \in 2^{R_k} \times R_k$

$$R_k = \{r_1, \dots, r_k\}$$
$$p \xrightarrow{i, \varphi \mid A, o, r} q$$

• Action sequence $\alpha = a_1 a_2 \dots$

 $\mathsf{Comp}(\alpha) = \{ w \in \mathbb{D}^{\omega} \mid \alpha \text{ can be performed on reading } w \}$

Example

- Sequence $\alpha \quad \star \neq r_1, r_2 \quad (\{r_1\}, r_1) \quad \star \neq r_1, r_2 \quad (\{r_2\}, r_1) \quad \star = r_1$ Word w' 1 1 1 1 1 1 Registers (0,0) (1,0) (1,0)
- \rightarrow w = 11111 is not compatible with α

Action Sequences

- Input actions: tests $\varphi \in \operatorname{QF}(R_k,\star)$
- Output actions: $(A, r) \in 2^{R_k} \times R_k$

$$R_k = \{r_1, \dots, r_k\}$$
$$p \xrightarrow{i, \varphi \mid A, o, r} q$$

• Action sequence $\alpha = a_1 a_2 \dots$

 $\mathsf{Comp}(\alpha) = \{ w \in \mathbb{D}^{\omega} \mid \alpha \text{ can be performed on reading } w \}$

Example

Sequence $\alpha' \quad \star \neq r_1, r_2 \quad (\{r_1\}, r_1) \quad \star = r_1, r_2 \quad (\{r_2\}, r_1) \quad \star = r_1$ Word $w \quad 1 \qquad 1 \qquad ?$ Registers (0,0) (1,0) (1,0)

→ α' is not feasible

Transfer Theorem

S is realisable by a sequential register transducer with k registers iff $W_{S,k} = \{ \alpha \mid \mathsf{Comp}(\alpha) \subseteq S \}$ is realisable by a (register-free) sequential transducer.

→ $W_{S,k}$ is ω -regular for S URA

 $W_{S,k} = \left(\mathsf{lab}\left(L_{S^{c},k} \right) \right)^{c}$

where $L_{S^c,k} = \{ w \otimes \alpha \mid w \in \mathsf{Comp}(\alpha) \cap S^c \}$

Transfer Theorem

S is realisable by a sequential register transducer with k registers iff $W_{S,k} = \{ \alpha \mid \mathsf{Comp}(\alpha) \subseteq S \}$ is realisable by a (register-free) sequential transducer.

→ $W_{S,k}$ is ω -regular for S URA

$$W_{S,k} = \left(\mathsf{lab}\left(L_{S^c,k} \right) \right)^c$$

where $L_{S^c,k} = \{ w \otimes \alpha \mid w \in \text{Comp}(\alpha) \cap S^c \}$

→ Reduces to ω -regular synthesis

Theorem

The register-bounded synthesis problem for *S* given as a Universal Register Automaton is in 2-EXPTIME over $(\mathbb{D}, =)$ and $(\mathbb{Q}, <)$.

Results

	URA	DRA	NRA	test-free NRA
Register-bounded synthesis	2ExpTime	2ExpTime	Undecidable $(k \ge 1)$	2ExpTime
Unbounded Synthesis	Undecidable	EXPTIME-c	Undecidable	Open

NRA — dual — URA C_x $\langle \varphi \rangle$ DRA

Theorem

The unbounded synthesis problem for S given as a Deterministic Register Automaton over $(\mathbb{N}, <)$ is undecidable.

 \rightarrow Simulate counting using antagonism between the players

Theorem

The unbounded synthesis problem for S given as a Deterministic Register Automaton over $(\mathbb{N}, <)$ is undecidable.

 \rightarrow Simulate counting using antagonism between the players

Non-regular behaviours

→ The set of feasible action words is not regular

Theorem

The unbounded synthesis problem for *S* given as a one-sided Deterministic Register Automaton over $(\mathbb{N}, <)$ is EXPTIME-c.

→ Target finite-memory implementations ~> regular approximation is enough.

	URA	DRA	NRA	test-free NRA
Register-bounded synthesis	2ExpTime	2ExpTime	Undecidable ($k \ge 1$)	2ExpTime
Unbounded Synthesis	Undecidable	EXPTIME-c	Undecidable	Open

Decidability picture over ($\mathbb{D},=)$ and ($\mathbb{Q},<)$

- Generalises to oligomorphic data domains
- Over (ℕ, <), only the unbounded synthesis for one-sided DRA is known to be decidable

Related publications

- E., Filiot and Reynier (CONCUR 2019 and LMCS 2021). "Synthesis of Data Word Transducers"
- E., Filiot and Khalimov (STACS 2021). "Church Synthesis on Register Automata over Linearly Ordered Data Domains"

Closely Related Works

Synthesis from register automata

- Khalimov, Maderbacher, and Bloem 2018
- Khalimov and Kupferman 2019
- Ehlers, Seshia, and Kress-Gazit 2014

Synthesis from automata with arithmetic

Faran and Kupferman 2020

Synthesis from Logic of Repeating Values Figueira, Majumdar, and Praveen 2020

Synthesis over timed automata D'Souza and Madhusudan 2002

Computability over Data Words

- → It can be worth waiting for additional input before outputting something
- \rightarrow Growing body of research on generalised transducers

Asynchronous Register Transducers

Theorem (Carayol and Löding 2015)

The synthesis problem from non-deterministic (register-free) asynchronous transducers to sequential ones is undecidable.

→ Relax finite-memory requirement ~→ computable implementations.

Example

Example

Three tape deterministic Turing machine

- Read-only one-way input tape
- Two-way working tape
- Write-only one-way output tape

 $M \text{ computes } f: \mathbb{D}^{\omega} \to \mathbb{D}^{\omega} \text{ if for all } x \in \text{dom}(f),$ M writes f(x) in the limit

Theorem (Filiot and Winter 2021)

The synthesis problem of *computable functions* from non-deterministic asynchronous transducers over a *finite alphabet* is undecidable.

Three tape deterministic Turing machine

- Read-only one-way input tape
- Two-way working tape
- Write-only one-way output tape

 $M \text{ computes } f: \mathbb{D}^{\omega} \to \mathbb{D}^{\omega} \text{ if for all } x \in \text{dom}(f),$

M writes f(x) in the limit

Theorem (Filiot and Winter 2021)

The synthesis problem of *computable functions* from non-deterministic asynchronous transducers over a *finite alphabet* is undecidable.

 \rightarrow Restrict to functional specifications, i.e. specifications that define functions.

Example

 $f_{\mathsf{swap}}: w_1 d_1 \# w_2 d_2 \# \cdots \mapsto d_1 w_1 \# d_2 w_2 \dots$

Example

 $f_{\mathsf{swap}}: w_1 d_1 \# w_2 d_2 \# \cdots \mapsto d_1 w_1 \# d_2 w_2 \dots$

- → Definable by a non-deterministic register transducer (in the manuscript)
- \rightarrow Computable, not by a sequential transducer

Continuity

Cantor distance

Continuous function

 $f: \mathbb{D}^{\omega} \to \mathbb{D}^{\omega}$ is continuous if:

$$\lim_{n\infty} f(x_n) = f(\lim_{n\infty} (x_n))$$

Theorem (Dave et al. 2019)

Let $f: \Sigma^{\omega} \to \Sigma^{\omega}$ be a function definable by a non-deterministic transducer over a *finite alphabet*. Then *f* is continuous iff it is computable.

Theorem (Dave et al. 2019)

Let $f: \Sigma^{\omega} \to \Sigma^{\omega}$ be a function definable by a non-deterministic transducer over a *finite alphabet*. Then *f* is continuous iff it is computable.

Theorem (Dave et al. 2019)

Computability of functions defined by nondeterministic transducers is decidable in $\mathrm{PTIME}.$

 $f: \mathbb{D}^{\omega} \to \mathbb{D}^{\omega}$ computable: deterministic Turing machine that outputs f(x) in the limit.

Continuity

$$\lim_{n\infty} f(x_n) = f(\lim_{n\infty} (x_n))$$

$\textbf{Computability} \Rightarrow \textbf{Continuity}$

Deterministic machine: when *reading* head is at position k, the output only depends on the k first letters.

 $f: \mathbb{D}^{\omega} \to \mathbb{D}^{\omega}$ computable: deterministic Turing machine that outputs f(x) in the limit.

Continuity

$$\lim_{n\infty} f(x_n) = f(\lim_{n\infty} (x_n))$$

$\textbf{Computability} \Rightarrow \textbf{Continuity}$

Deterministic machine: when *reading* head is at position k, the output only depends on the k first letters.

• The other implication does not always hold.

Theorem

A function defined by a non-deterministic register transducer over oligomorphic domains or $(\mathbb{N}, <)$ is computable iff it is continuous.

 $\label{eq:computability} Computability \Rightarrow Continuity is proved as before.$

 $\label{eq:Continuity} Computability: \ requires \ to \ determine \ the \ next \ letter.$

Next-letter problem

Input: $u, v \in \mathbb{D}^*$ Output: $d \in \mathbb{D}$ s.t. $\forall y \in \mathbb{D}^{\omega}$ s.t. $u \cdot y \in \text{dom}(f)$, $v \cdot d \preceq f(u \cdot y)$ if it existsNo otherwise

Theorem

A function defined by a non-deterministic register transducer over oligomorphic domains or $(\mathbb{N}, <)$ is computable iff it is continuous.

 $\label{eq:computability} Computability \Rightarrow Continuity is proved as before.$

 $\label{eq:Continuity} Computability: \ requires \ to \ determine \ the \ next \ letter.$

Next-letter problem

Input:	$u, v \in \mathbb{D}^*$
Output:	$d \in \mathbb{D}$ s.t. $\forall y \in \mathbb{D}^{\omega}$ s.t. $u \cdot y \in \operatorname{dom}(f)$,
	$v \cdot d \preceq f(u \cdot y)$ if it exists
	No otherwise

Theorem

For functions defined by register transducers over oligomorphic domains or $(\mathbb{N}, <)$, deciding computability is PSPACE-complete.

- → Continuity \equiv computability for functions defined by non-deterministic register transducers, over a large class of domains
- → This is decidable.

Related publications

- E., Filiot and Reynier (FoSSaCS 2020). "On Computability of Data Word Functions Defined by Transducers"
- E., Filiot, *Lhote* and Reynier (submitted to LMCS). "Computability of Data-Word Transductions over Different Data Domains"

Reactive Synthesis

- Good-for-games register automata
- Register-bounded synthesis over $(\mathbb{N},<,0)$
- Synthesis from logical formalisms: *FO*₂[<_p,~], *FO*₂[<_p,<_d]

Computability

- Generalise to other data domains and two-way models
- Lift the functionality requirement: automatic specifications

Going Further

- Explore other formalisms than register automata
- Minimisation and learning of non-deterministic transducers

Bibliography

Büchi, J. Richard and Lawrence H. Landweber (1969). "Solving Sequential Conditions by Finite-State Strategies". In: *Transactions of the American Mathematical Society* 138, pp. 295–311. ISSN: 00029947. DOI: 10.2307/1994916.
Carayol, Arnaud and Christof Löding (2015). "Uniformization in Automata Theory". In: Logic, Methodology and Philosophy of

Science - Proceedings of the 14th International Congress.

Bibliography ii

- Dave, Vrunda et al. (2019). "Deciding the Computability of Regular Functions over Infinite Words". In: CoRR abs/1906.04199. arXiv: 1906.04199.
- D'Souza, Deepak and P. Madhusudan (2002). "Timed Control Synthesis for External Specifications". In: STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings. Ed. by Helmut Alt and Afonso Ferreira. Vol. 2285. Lecture Notes in Computer Science. Springer, pp. 571–582. DOI: 10.1007/3-540-45841-7_47.
Ehlers, Rüdiger, Sanjit A. Seshia, and Hadas Kress-Gazit (2014). "Synthesis with Identifiers". In: Verification, Model Checking, and Abstract Interpretation - 15th International Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings. Ed. by Kenneth L. McMillan and Xavier Rival. Vol. 8318. Lecture Notes in Computer Science. Springer, pp. 415–433. DOI: 10.1007/978-3-642-54013-4_23.

Bibliography iv

- Faran, Rachel and Orna Kupferman (2020). "On Synthesis of Specifications with Arithmetic". In: SOFSEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings. Ed. by Alexander Chatzigeorgiou et al. Vol. 12011. Lecture Notes in Computer Science. Springer, pp. 161–173. DOI: 10.1007/978-3-030-38919-2_14.
- Figueira, Diego, Anirban Majumdar, and M. Praveen (2020)."Playing with Repetitions in Data Words Using Energy Games".In: Log. Methods Comput. Sci. 16.3.

- Filiot, Emmanuel and Sarah Winter (2021). "Continuous Uniformization of Rational Relations and Synthesis of Computable Functions". In: CoRR abs/2103.05674. arXiv: 2103.05674.
- Kaminski, Michael and Nissim Francez (1994). "Finite-memory automata". In: Theoretical Computer Science 134.2, pp. 329–363. ISSN: 0304-3975. DOI: https://doi.org/10.1016/0304-3975(94)90242-9.

Bibliography vi

Khalimov, Ayrat and Orna Kupferman (2019). "Register-Bounded Synthesis". In: 30th International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands. Ed. by Wan J. Fokkink and Rob van Glabbeek. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:16. DOI: 10.4230/LIPIcs.CONCUR.2019.25.

Khalimov, Ayrat, Benedikt Maderbacher, and Roderick Bloem (2018). "Bounded Synthesis of Register Transducers". In: Automated Technology for Verification and Analysis, 16th International Symposium, ATVA 2018, Los Angeles, October 7-10, 2018. Proceedings. Pnueli, A. and R. Rosner (1989). "On the Synthesis of a Reactive Module". In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '89. Austin, Texas, USA: ACM, pp. 179–190. ISBN: 0-89791-294-2. DOI: 10.1145/75277.75293.