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Synthesis

? ∥ Environment |= Specification

: Generate a system from a specification
Implementing a specification
Inputs In Outputs Out

Specification
S ⊆ In × Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Implementation
M : In → Out

∀ ∃

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out
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Synthesis

Inputs In Outputs Out

S class of specifications S ⊆ In × Out

I class of implementations M : In → Out

M fulfils S, written M |= S, if for all i ∈ In, (i,M(i)) ∈ S

Synthesis Problem for S and I

Input: S ∈ S
Output: • M ∈ I

s. t. M |= S if it exists
• No otherwise
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Reactive Synthesis

In = Σω Out = Γω

Reactive systems

Environment System
Signal σ ∈ Σ

Signal γ ∈ Γ

Interaction ⇝ σ1γ1σ2γ2σ3γ3 . . .

Specification S ⊆ (Σ · Γ)ω in a high-level formalism (MSO, LTL)

Implementation = finite-state machine = reactive system
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Running Example

• Server and clients
• Everytime a client makes a request, it must eventually be

granted
: G(req ⇒ F(grt))

ω-Automata

wi

wo

po

pi

s
req grant

_ ¬ grant __

A Universal co-Büchi Automaton checking that every client is eventually
satisfied. 4



How to Solve Reactive Synthesis?

: Convert the MSO specification to an ω-automaton
: Solve a game on this automaton

ω-regular games

0

0

1

1

2

¬ req _

req

¬ grant _
grant

req

¬ req

A parity game corresponding to G(req ⇒ F(grt)). 5



Models for Reactive Systems

Winning strategies in parity games are positional
Synchronous Sequential Transducers

req | grant

¬ req | ¬ grant

• Automata with outputs
• Deterministically outputs a letter on reading a letter
• All states are accepting
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Reactive Synthesis

Theorem (Büchi and Landweber 1969)
The synthesis problem from MSO specifications to Sequential
Transducers is non-elementary (but decidable).

Proof steps
: Convert the MSO formula to an ω-automaton
: Solve a game on this automaton

Theorem [folklore]
The synthesis problem from Universal ω-Automata to Synchronous
Sequential Transducers is ExpTime-c.

Theorem (Pnueli and Rosner 1989)
The synthesis problem from LTL specifications to Sequential
Transducers is 2-ExpTime-c.
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Limitations

Observations
: Input and output alphabets are assumed to be finite sets
: Large alphabets require additional techniques

Back to our running example
• Set C = {1, . . . , n} of users
• Σ = {req1, . . . , reqn,¬req} and Γ = {grt1, . . . , grtn,¬grt}
• Now, each user has a specific request
• Every request of client i is eventually granted:

∧
1≤i≤n

G
(

reqi → F
(
grti

))

: We consider the case where C is infinite and has some structure.
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Objectives of the thesis

Main goal
Lift existing synthesis techniques to infinite alphabets

: Models for specifications and implementations

: Decidability and complexity of synthesis procedures

: Theoretical study of transducers over infinite alphabets
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How to Represent Executions? Data Words

• Data domain D = (D,R,C): infinite set of data with
predicates and constants
: e.g. (N,=), (Q, <), (N, <, 0)

• Σ finite alphabet of labels
• Data words: sequences of pairs (a, d) ∈ Σ× D

1 4 2 2 3 1 5 3 …
req ¬grt req grt req grt ¬req grt …

• Σ = {req, grt,¬req,¬grt}
• D = (N,=)
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Extending Automata to Data Words

Register Automata (Kaminski and Francez 1994)
Finite automata with a finite set
R of registers

• Store data
• Test register content

Transitions q σ,φ,A−−−→ q′

• σ ∈ Σ: label
• φ ∈ QF(R, ⋆): test
• A ⊆ R: assignment

wi

wo

po

pi

si
req, ⊤, {r} grt, ⋆ = r, ∅

_, _, _ ¬grt,⊤,∅
grt, ⋆ ̸= r,∅

_, _, ∅_, _, _

An URA checking that every request is eventually granted.
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Synchronous Sequential Register Transducers

• Transitions q i,φ | A,o,r−−−−−−→ q′
• i input letter, o output letter
• φ test over ⋆
• A registers assigned ⋆

• r register whose content is output
• Sequentiality: tests are mutually exclusive

req,⊤ | {r}, grt, r

¬req,⊤ | ∅,¬grt, r

A register transducer immediately satisfying each user.
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Outline

Part I: Reactive Synthesis

: Specifications: synchronous register automata
: Implementations: synchronous sequential register transducers
: Decidability border + compromise expressivity vs complexity

Part II: Computability

: Specifications: non-deterministic asynchronous register
transducers

: Implementations: any algorithm
: Theory of asynchronous register transducers

13



Reactive Synthesis over Data Words



Synthesis of Register Transducers

S: specification register automata

I: synchronous sequential register transducers
Unbounded Synthesis Problem

Input: S a register automaton
Output: • M a synchronous sequential register transducer

such that M |= S if it exists
• No otherwise

Theorem
The unbounded synthesis problem is undecidable for S given as a
Universal Register Automaton with ≥ 3 registers,
already over (D,=).
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Register-Bounded Synthesis of Register Transducers

S: specification register automata

I: synchronous sequential register transducers with k registers
Register-Bounded Synthesis Problem

Input: S a register automaton, k a number of registers
Output: • M a synchronous sequential register transducer

with k registers (and arbitrarily many states)
such that M |= S if it exists

• No otherwise

Theorem
The register-bounded synthesis problem for S given as a Universal
Register Automaton is in 2-ExpTime over (D,=) and (Q, <).
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Reduction to the Finite Alphabet Case

Action Sequences
• Input actions: tests φ ∈ QF(Rk, ⋆) Rk = {r1, . . . , rk}

• Output actions: (A, r) ∈ 2Rk × Rk p i,φ|A,o,r−−−−−→ q
• Action sequence α = a1a2 . . .

Comp(α) = {w ∈ Dω | α can be performed on reading w}

Example
Sequence α ⋆ ̸= r1, r2 ({r1}, r1) ⋆ ̸= r1, r2 ({r2}, r1) ⋆ = r1

Word w 1 1 2 1 1
Registers (0,0) (1,0) (1,0) (1,2) (1,2)

: w = 11211 ∈ Comp(α)
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Reduction to the Finite Alphabet Case

Action Sequences
• Input actions: tests φ ∈ QF(Rk, ⋆) Rk = {r1, . . . , rk}

• Output actions: (A, r) ∈ 2Rk × Rk p i,φ|A,o,r−−−−−→ q
• Action sequence α = a1a2 . . .

Comp(α) = {w ∈ Dω | α can be performed on reading w}

Example
Sequence α′ ⋆ ̸= r1, r2 ({r1}, r1) ⋆ = r1, r2 ({r2}, r1) ⋆ = r1

Word w 1 1 ?
Registers (0,0) (1,0) (1,0)

: α′ is not feasible
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The Case of Universal Specifications

Transfer Theorem
S is realisable by a sequential register transducer with k registers
iff WS,k = {α | Comp(α) ⊆ S} is realisable by a (register-free)
sequential transducer.

: WS,k is ω-regular for S URA

WS,k =
(
lab

(
LSc,k

))c

where LSc,k = {w ⊗ α | w ∈ Comp(α) ∩ Sc}

: Reduces to ω-regular synthesis

Theorem
The register-bounded synthesis problem for S given as a Universal
Register Automaton is in 2-ExpTime over (D,=) and (Q, <).
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Results

URA DRA NRA test-free NRA
Register-bounded

synthesis
2ExpTime 2ExpTime Undecidable (k ≥ 1) 2ExpTime

Unbounded
Synthesis

Undecidable ExpTime-c Undecidable Open

DRA

NRA URA

⊋ ⊊

dual
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The Case of Deterministic Specifications: (N, <)

Theorem
The unbounded synthesis problem for S given as a Deterministic
Register Automaton over (N, <) is undecidable.

: Simulate counting using antagonism between the players

Non-regular behaviours

⊤, {rM}

r < ⋆ < rM, {r}

⋆ = 0, {r}
0

value

execution

rM

r

: The set of feasible action words is not regular
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The Case of Deterministic Specifications: (N, <)

Theorem
The unbounded synthesis problem for S given as a one-sided
Deterministic Register Automaton over (N, <) is ExpTime-c.

: Target finite-memory implementations
⇝ regular approximation is enough.
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Summary

URA DRA NRA test-free NRA
Register-bounded

synthesis
2ExpTime 2ExpTime Undecidable (k ≥ 1) 2ExpTime

Unbounded
Synthesis

Undecidable ExpTime-c Undecidable Open

Decidability picture over (D,=) and (Q, <)

• Generalises to oligomorphic data domains
• Over (N, <), only the unbounded synthesis for one-sided DRA

is known to be decidable

Related publications
• E., Filiot and Reynier (CONCUR 2019 and LMCS 2021). “Synthesis of

Data Word Transducers”

• E., Filiot and Khalimov (STACS 2021). “Church Synthesis on Register
Automata over Linearly Ordered Data Domains”
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Closely Related Works

Synthesis from register automata

• Khalimov, Maderbacher, and Bloem 2018

• Khalimov and Kupferman 2019

• Ehlers, Seshia, and Kress-Gazit 2014

Synthesis from automata with arithmetic
Faran and Kupferman 2020

Synthesis from Logic of Repeating Values
Figueira, Majumdar, and Praveen 2020

Synthesis over timed automata
D’Souza and Madhusudan 2002
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Computability over Data Words



Asynchronicity

: It can be worth waiting for additional input before outputting
something

: Growing body of research on generalised transducers

Asynchronous Register Transducers

p q
a, φ | A,

possibly empty︷ ︸︸ ︷
(b0, r0) . . . (bk, rk)
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Asynchronicity

Theorem (Carayol and Löding 2015)
The synthesis problem from non-deterministic (register-free)
asynchronous transducers to sequential ones is undecidable.

: Relax finite-memory requirement ⇝ computable
implementations.
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Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output
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Computability

Three tape deterministic Turing machine

• Read-only one-way input tape
• Two-way working tape
• Write-only one-way output tape

M computes f : Dω → Dω if for all x ∈ dom(f),
M writes f(x) in the limit
Theorem (Filiot and Winter 2021)
The synthesis problem of computable functions from
non-deterministic asynchronous transducers over a finite alphabet
is undecidable.

: Restrict to functional specifications, i.e. specifications that
define functions.

26
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Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

: Definable by a non-deterministic register transducer
(in the manuscript)

: Computable, not by a sequential transducer

Co-example

fagain : dw 7→

{
w if d /∈ w
dω otherwise

1

2 3

4 5

⊤ | {
r1}, ε

⊤ | {r1}, ε

⋆ = r1 | ε

⋆ = r1 | r1

⋆ ̸= r1 | {r2}, r2

⋆ ̸= r1 | r1 ⊤ | r1

A register
transducer defining
fagain

27
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Continuity

Cantor distance

For u, v ∈ Dω, d(u, v) =
{

0 if u = v
2−|u∧v|otherwise

u ∧ v: longest common prefix ℓ of u and v

ℓ

u[l]

v[l]

̸=

. . . u

. . . v

Continuous function
f : Dω → Dω is continuous if:

lim
n∞

f(xn) = f(lim
n∞

(xn))
28



Computability over finite alphabets

Theorem (Dave et al. 2019)
Let f : Σω → Σω be a function definable by a non-deterministic
transducer over a finite alphabet. Then f is continuous iff it is
computable.

Theorem (Dave et al. 2019)
Computability of functions defined by nondeterministic transducers
is decidable in PTime.

29
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Computability and Continuity

Computability
f : Dω → Dω computable: deterministic Turing machine that
outputs f(x) in the limit.

Continuity

lim
n∞

f(xn) = f(lim
n∞

(xn))

Computability ⇒ Continuity
Deterministic machine: when reading head is at position k, the
output only depends on the k first letters.

• The other implication does not always hold.

30
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Continuity and computability

Theorem
A function defined by a non-deterministic register transducer over
oligomorphic domains or (N, <) is computable iff it is continuous.

Computability ⇒ Continuity is proved as before.

Continuity ⇒ Computability: requires to determine the next letter.
Next-letter problem

Input: u, v ∈ D∗

Output: d ∈ D s.t. ∀y ∈ Dω s.t. u · y ∈ dom(f),
v · d ⪯ f(u · y) if it exists
No otherwise

Theorem
For functions defined by register transducers over oligomorphic
domains or (N, <), deciding computability is PSpace-complete.
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Summary

: Continuity ≡ computability for functions defined by
non-deterministic register transducers, over a large class of domains

: This is decidable.

Related publications
• E., Filiot and Reynier (FoSSaCS 2020). “On Computability of Data Word

Functions Defined by Transducers”

• E., Filiot, Lhote and Reynier (submitted to LMCS). “Computability of
Data-Word Transductions over Different Data Domains”
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Perspectives

Reactive Synthesis

• Good-for-games register automata
• Register-bounded synthesis over (N, <, 0)
• Synthesis from logical formalisms: FO2[<p,∼], FO2[<p, <d]

Computability

• Generalise to other data domains and two-way models
• Lift the functionality requirement: automatic specifications

Going Further

• Explore other formalisms than register automata
• Minimisation and learning of non-deterministic transducers
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