
Automatic Synthesis of Systems with Data

Léo Exibard
Monday, September 6th, 2021

Synthesis

? ∥ Environment |= Specification

: Generate a system from a specification
Implementing a specification
Inputs In Outputs Out

Specification
S ⊆ In × Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Implementation
M : In → Out

∀ ∃

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

1

Synthesis

? ∥ Environment |= Specification

: Generate a system from a specification
Implementing a specification
Inputs In Outputs Out

Specification
S ⊆ In × Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Implementation
M : In → Out

∀ ∃

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

1

Synthesis

Inputs In Outputs Out

S class of specifications S ⊆ In × Out

I class of implementations M : In → Out

M fulfils S, written M |= S, if for all i ∈ In, (i,M(i)) ∈ S

Synthesis Problem for S and I

Input: S ∈ S
Output: • M ∈ I

s. t. M |= S if it exists
• No otherwise

2

Reactive Synthesis

In = Σω Out = Γω

Reactive systems

Environment System
Signal σ ∈ Σ

Signal γ ∈ Γ

Interaction ⇝ σ1γ1σ2γ2σ3γ3 . . .

Specification S ⊆ (Σ · Γ)ω in a high-level formalism (MSO, LTL)

Implementation = finite-state machine = reactive system

3

Running Example

• Server and clients
• Everytime a client makes a request, it must eventually be

granted
: G(req ⇒ F(grt))

ω-Automata

wi

wo

po

pi

s
req grant

_ ¬ grant __

A Universal co-Büchi Automaton checking that every client is eventually
satisfied. 4

How to Solve Reactive Synthesis?

: Convert the MSO specification to an ω-automaton
: Solve a game on this automaton

ω-regular games

0

0

1

1

2

¬ req _

req

¬ grant _
grant

req

¬ req

A parity game corresponding to G(req ⇒ F(grt)). 5

Models for Reactive Systems

Winning strategies in parity games are positional
Synchronous Sequential Transducers

req | grant

¬ req | ¬ grant

• Automata with outputs
• Deterministically outputs a letter on reading a letter
• All states are accepting

6

Reactive Synthesis

Theorem (Büchi and Landweber 1969)
The synthesis problem from MSO specifications to Sequential
Transducers is non-elementary (but decidable).

Proof steps
: Convert the MSO formula to an ω-automaton
: Solve a game on this automaton

Theorem [folklore]
The synthesis problem from Universal ω-Automata to Synchronous
Sequential Transducers is ExpTime-c.

Theorem (Pnueli and Rosner 1989)
The synthesis problem from LTL specifications to Sequential
Transducers is 2-ExpTime-c.

7

Reactive Synthesis

Theorem (Büchi and Landweber 1969)
The synthesis problem from MSO specifications to Sequential
Transducers is non-elementary (but decidable).

Proof steps
: Convert the MSO formula to an ω-automaton
: Solve a game on this automaton

Theorem [folklore]
The synthesis problem from Universal ω-Automata to Synchronous
Sequential Transducers is ExpTime-c.

Theorem (Pnueli and Rosner 1989)
The synthesis problem from LTL specifications to Sequential
Transducers is 2-ExpTime-c.

7

Limitations

Observations
: Input and output alphabets are assumed to be finite sets
: Large alphabets require additional techniques

Back to our running example
• Set C = {1, . . . , n} of users
• Σ = {req1, . . . , reqn,¬req} and Γ = {grt1, . . . , grtn,¬grt}
• Now, each user has a specific request
• Every request of client i is eventually granted:

∧
1≤i≤n

G
(

reqi → F
(
grti

))

: We consider the case where C is infinite and has some structure.

8

Limitations

Observations
: Input and output alphabets are assumed to be finite sets
: Large alphabets require additional techniques

Back to our running example
• Set C = {1, . . . , n} of users
• Σ = {req1, . . . , reqn,¬req} and Γ = {grt1, . . . , grtn,¬grt}
• Now, each user has a specific request
• Every request of client i is eventually granted:

∧
1≤i≤n

G
(

reqi → F
(
grti

))

: We consider the case where C is infinite and has some structure. 8

Objectives of the thesis

Main goal
Lift existing synthesis techniques to infinite alphabets

: Models for specifications and implementations

: Decidability and complexity of synthesis procedures

: Theoretical study of transducers over infinite alphabets

9

How to Represent Executions? Data Words

• Data domain D = (D,R,C): infinite set of data with
predicates and constants
: e.g. (N,=), (Q, <), (N, <, 0)

• Σ finite alphabet of labels
• Data words: sequences of pairs (a, d) ∈ Σ× D

1 4 2 2 3 1 5 3 …
req ¬grt req grt req grt ¬req grt …

• Σ = {req, grt,¬req,¬grt}
• D = (N,=)

10

Extending Automata to Data Words

Register Automata (Kaminski and Francez 1994)
Finite automata with a finite set
R of registers

• Store data
• Test register content

Transitions q σ,φ,A−−−→ q′

• σ ∈ Σ: label
• φ ∈ QF(R, ⋆): test
• A ⊆ R: assignment

wi

wo

po

pi

si
req, ⊤, {r} grt, ⋆ = r, ∅

_, _, _ ¬grt,⊤,∅
grt, ⋆ ̸= r,∅

_, _, ∅_, _, _

An URA checking that every request is eventually granted.
11

Synchronous Sequential Register Transducers

• Transitions q i,φ | A,o,r−−−−−−→ q′
• i input letter, o output letter
• φ test over ⋆
• A registers assigned ⋆

• r register whose content is output
• Sequentiality: tests are mutually exclusive

req,⊤ | {r}, grt, r

¬req,⊤ | ∅,¬grt, r

A register transducer immediately satisfying each user.

12

Outline

Part I: Reactive Synthesis

: Specifications: synchronous register automata
: Implementations: synchronous sequential register transducers
: Decidability border + compromise expressivity vs complexity

Part II: Computability

: Specifications: non-deterministic asynchronous register
transducers

: Implementations: any algorithm
: Theory of asynchronous register transducers

13

Reactive Synthesis over Data Words

Synthesis of Register Transducers

S: specification register automata

I: synchronous sequential register transducers
Unbounded Synthesis Problem

Input: S a register automaton
Output: • M a synchronous sequential register transducer

such that M |= S if it exists
• No otherwise

Theorem
The unbounded synthesis problem is undecidable for S given as a
Universal Register Automaton with ≥ 3 registers,
already over (D,=).

14

Register-Bounded Synthesis of Register Transducers

S: specification register automata

I: synchronous sequential register transducers with k registers
Register-Bounded Synthesis Problem

Input: S a register automaton, k a number of registers
Output: • M a synchronous sequential register transducer

with k registers (and arbitrarily many states)
such that M |= S if it exists

• No otherwise

Theorem
The register-bounded synthesis problem for S given as a Universal
Register Automaton is in 2-ExpTime over (D,=) and (Q, <).

15

Reduction to the Finite Alphabet Case

Action Sequences
• Input actions: tests φ ∈ QF(Rk, ⋆) Rk = {r1, . . . , rk}

• Output actions: (A, r) ∈ 2Rk × Rk p i,φ|A,o,r−−−−−→ q
• Action sequence α = a1a2 . . .

Comp(α) = {w ∈ Dω | α can be performed on reading w}

Example
Sequence α ⋆ ̸= r1, r2 ({r1}, r1) ⋆ ̸= r1, r2 ({r2}, r1) ⋆ = r1

Word w 1 1 2 1 1
Registers (0,0) (1,0) (1,0) (1,2) (1,2)

: w = 11211 ∈ Comp(α)

16

Reduction to the Finite Alphabet Case

Action Sequences
• Input actions: tests φ ∈ QF(Rk, ⋆) Rk = {r1, . . . , rk}

• Output actions: (A, r) ∈ 2Rk × Rk p i,φ|A,o,r−−−−−→ q
• Action sequence α = a1a2 . . .

Comp(α) = {w ∈ Dω | α can be performed on reading w}

Example
Sequence α ⋆ ̸= r1, r2 ({r1}, r1) ⋆ ̸= r1, r2 ({r2}, r1) ⋆ = r1

Word w′ 1 1 1 1 1
Registers (0,0) (1,0) (1,0)

: w′ = 11111 is not compatible with α

16

Reduction to the Finite Alphabet Case

Action Sequences
• Input actions: tests φ ∈ QF(Rk, ⋆) Rk = {r1, . . . , rk}

• Output actions: (A, r) ∈ 2Rk × Rk p i,φ|A,o,r−−−−−→ q
• Action sequence α = a1a2 . . .

Comp(α) = {w ∈ Dω | α can be performed on reading w}

Example
Sequence α′ ⋆ ̸= r1, r2 ({r1}, r1) ⋆ = r1, r2 ({r2}, r1) ⋆ = r1

Word w 1 1 ?
Registers (0,0) (1,0) (1,0)

: α′ is not feasible

16

The Case of Universal Specifications

Transfer Theorem
S is realisable by a sequential register transducer with k registers
iff WS,k = {α | Comp(α) ⊆ S} is realisable by a (register-free)
sequential transducer.

: WS,k is ω-regular for S URA

WS,k =
(
lab

(
LSc,k

))c

where LSc,k = {w ⊗ α | w ∈ Comp(α) ∩ Sc}

: Reduces to ω-regular synthesis

Theorem
The register-bounded synthesis problem for S given as a Universal
Register Automaton is in 2-ExpTime over (D,=) and (Q, <).

17

The Case of Universal Specifications

Transfer Theorem
S is realisable by a sequential register transducer with k registers
iff WS,k = {α | Comp(α) ⊆ S} is realisable by a (register-free)
sequential transducer.

: WS,k is ω-regular for S URA

WS,k =
(
lab

(
LSc,k

))c

where LSc,k = {w ⊗ α | w ∈ Comp(α) ∩ Sc}
: Reduces to ω-regular synthesis

Theorem
The register-bounded synthesis problem for S given as a Universal
Register Automaton is in 2-ExpTime over (D,=) and (Q, <).

17

Results

URA DRA NRA test-free NRA
Register-bounded

synthesis
2ExpTime 2ExpTime Undecidable (k ≥ 1) 2ExpTime

Unbounded
Synthesis

Undecidable ExpTime-c Undecidable Open

DRA

NRA URA

⊋ ⊊

dual

18

The Case of Deterministic Specifications: (N, <)

Theorem
The unbounded synthesis problem for S given as a Deterministic
Register Automaton over (N, <) is undecidable.

: Simulate counting using antagonism between the players

Non-regular behaviours

⊤, {rM}

r < ⋆ < rM, {r}

⋆ = 0, {r}
0

value

execution

rM

r

: The set of feasible action words is not regular

19

The Case of Deterministic Specifications: (N, <)

Theorem
The unbounded synthesis problem for S given as a Deterministic
Register Automaton over (N, <) is undecidable.

: Simulate counting using antagonism between the players

Non-regular behaviours

⊤, {rM}

r < ⋆ < rM, {r}

⋆ = 0, {r}
0

value

execution

rM

r

: The set of feasible action words is not regular
19

The Case of Deterministic Specifications: (N, <)

Theorem
The unbounded synthesis problem for S given as a one-sided
Deterministic Register Automaton over (N, <) is ExpTime-c.

: Target finite-memory implementations
⇝ regular approximation is enough.

20

Summary

URA DRA NRA test-free NRA
Register-bounded

synthesis
2ExpTime 2ExpTime Undecidable (k ≥ 1) 2ExpTime

Unbounded
Synthesis

Undecidable ExpTime-c Undecidable Open

Decidability picture over (D,=) and (Q, <)

• Generalises to oligomorphic data domains
• Over (N, <), only the unbounded synthesis for one-sided DRA

is known to be decidable

Related publications
• E., Filiot and Reynier (CONCUR 2019 and LMCS 2021). “Synthesis of

Data Word Transducers”

• E., Filiot and Khalimov (STACS 2021). “Church Synthesis on Register
Automata over Linearly Ordered Data Domains”

21

Closely Related Works

Synthesis from register automata

• Khalimov, Maderbacher, and Bloem 2018

• Khalimov and Kupferman 2019

• Ehlers, Seshia, and Kress-Gazit 2014

Synthesis from automata with arithmetic
Faran and Kupferman 2020

Synthesis from Logic of Repeating Values
Figueira, Majumdar, and Praveen 2020

Synthesis over timed automata
D’Souza and Madhusudan 2002

22

Computability over Data Words

Asynchronicity

: It can be worth waiting for additional input before outputting
something

: Growing body of research on generalised transducers

Asynchronous Register Transducers

p q
a, φ | A,

possibly empty︷ ︸︸ ︷
(b0, r0) . . . (bk, rk)

23

Asynchronicity

Theorem (Carayol and Löding 2015)
The synthesis problem from non-deterministic (register-free)
asynchronous transducers to sequential ones is undecidable.

: Relax finite-memory requirement ⇝ computable
implementations.

24

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5

1 4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5

1 4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1

4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1

4 3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 4

3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

q#

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 4

3 6 6 8 12

. . . work

4 5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

q#

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4

5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

q←

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4

5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

q←

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4

5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

q←

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4

5 1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5

1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5

1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5

1 # 8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5 1

8 6 6 3

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5 1

8 6 6 3

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5 1

8 6 6 3

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qo

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 #

3 6 6 8 12

. . . work

4 5 1 #

8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 # 3 6 6 8

12

. . . work

4 5 1 #

8 6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 # 3 6 6 #

12

. . . work

4 5 1 # 8

6 6 3 #

. . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 # 3 6 6 #

12

. . . work

4 5 1 # 8 6 6 3 # . . . output

25

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

qc

5 1 4 # 3 6 6 8 # 12 . . . input

5 1 # 3 6 6 # 12 . . . work

4 5 1 # 8 6 6 3 # . . . output

25

Computability

Three tape deterministic Turing machine

• Read-only one-way input tape
• Two-way working tape
• Write-only one-way output tape

M computes f : Dω → Dω if for all x ∈ dom(f),
M writes f(x) in the limit
Theorem (Filiot and Winter 2021)
The synthesis problem of computable functions from
non-deterministic asynchronous transducers over a finite alphabet
is undecidable.

: Restrict to functional specifications, i.e. specifications that
define functions.

26

Computability

Three tape deterministic Turing machine

• Read-only one-way input tape
• Two-way working tape
• Write-only one-way output tape

M computes f : Dω → Dω if for all x ∈ dom(f),
M writes f(x) in the limit
Theorem (Filiot and Winter 2021)
The synthesis problem of computable functions from
non-deterministic asynchronous transducers over a finite alphabet
is undecidable.

: Restrict to functional specifications, i.e. specifications that
define functions.

26

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

: Definable by a non-deterministic register transducer
(in the manuscript)

: Computable, not by a sequential transducer

Co-example

fagain : dw 7→

{
w if d /∈ w
dω otherwise

1

2 3

4 5

⊤ | {
r1}, ε

⊤ | {r1}, ε

⋆ = r1 | ε

⋆ = r1 | r1

⋆ ̸= r1 | {r2}, r2

⋆ ̸= r1 | r1 ⊤ | r1

A register
transducer defining
fagain

27

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

: Definable by a non-deterministic register transducer
(in the manuscript)

: Computable, not by a sequential transducer

Co-example

fagain : dw 7→

{
w if d /∈ w
dω otherwise

1

2 3

4 5

⊤ | {
r1}, ε

⊤ | {r1}, ε

⋆ = r1 | ε

⋆ = r1 | r1

⋆ ̸= r1 | {r2}, r2

⋆ ̸= r1 | r1 ⊤ | r1

A register
transducer defining
fagain

27

Computability

Example
fswap : w1d1#w2d2# · · · 7→ d1w1#d2w2 . . .

: Definable by a non-deterministic register transducer
(in the manuscript)

: Computable, not by a sequential transducer

Co-example

fagain : dw 7→

{
w if d /∈ w
dω otherwise

1

2 3

4 5

⊤ | {
r1}, ε

⊤ | {r1}, ε

⋆ = r1 | ε

⋆ = r1 | r1

⋆ ̸= r1 | {r2}, r2

⋆ ̸= r1 | r1 ⊤ | r1

A register
transducer defining
fagain

27

Continuity

Cantor distance

For u, v ∈ Dω, d(u, v) =
{

0 if u = v
2−|u∧v|otherwise

u ∧ v: longest common prefix ℓ of u and v

ℓ

u[l]

v[l]

̸=

. . . u

. . . v

Continuous function
f : Dω → Dω is continuous if:

lim
n∞

f(xn) = f(lim
n∞

(xn))
28

Computability over finite alphabets

Theorem (Dave et al. 2019)
Let f : Σω → Σω be a function definable by a non-deterministic
transducer over a finite alphabet. Then f is continuous iff it is
computable.

Theorem (Dave et al. 2019)
Computability of functions defined by nondeterministic transducers
is decidable in PTime.

29

Computability over finite alphabets

Theorem (Dave et al. 2019)
Let f : Σω → Σω be a function definable by a non-deterministic
transducer over a finite alphabet. Then f is continuous iff it is
computable.
Theorem (Dave et al. 2019)
Computability of functions defined by nondeterministic transducers
is decidable in PTime.

29

Computability and Continuity

Computability
f : Dω → Dω computable: deterministic Turing machine that
outputs f(x) in the limit.

Continuity

lim
n∞

f(xn) = f(lim
n∞

(xn))

Computability ⇒ Continuity
Deterministic machine: when reading head is at position k, the
output only depends on the k first letters.

• The other implication does not always hold.

30

Computability and Continuity

Computability
f : Dω → Dω computable: deterministic Turing machine that
outputs f(x) in the limit.

Continuity

lim
n∞

f(xn) = f(lim
n∞

(xn))

Computability ⇒ Continuity
Deterministic machine: when reading head is at position k, the
output only depends on the k first letters.

• The other implication does not always hold.

30

Continuity and computability

Theorem
A function defined by a non-deterministic register transducer over
oligomorphic domains or (N, <) is computable iff it is continuous.

Computability ⇒ Continuity is proved as before.

Continuity ⇒ Computability: requires to determine the next letter.
Next-letter problem

Input: u, v ∈ D∗

Output: d ∈ D s.t. ∀y ∈ Dω s.t. u · y ∈ dom(f),
v · d ⪯ f(u · y) if it exists
No otherwise

Theorem
For functions defined by register transducers over oligomorphic
domains or (N, <), deciding computability is PSpace-complete.

31

Continuity and computability

Theorem
A function defined by a non-deterministic register transducer over
oligomorphic domains or (N, <) is computable iff it is continuous.

Computability ⇒ Continuity is proved as before.

Continuity ⇒ Computability: requires to determine the next letter.
Next-letter problem

Input: u, v ∈ D∗

Output: d ∈ D s.t. ∀y ∈ Dω s.t. u · y ∈ dom(f),
v · d ⪯ f(u · y) if it exists
No otherwise

Theorem
For functions defined by register transducers over oligomorphic
domains or (N, <), deciding computability is PSpace-complete. 31

Summary

: Continuity ≡ computability for functions defined by
non-deterministic register transducers, over a large class of domains

: This is decidable.

Related publications
• E., Filiot and Reynier (FoSSaCS 2020). “On Computability of Data Word

Functions Defined by Transducers”

• E., Filiot, Lhote and Reynier (submitted to LMCS). “Computability of
Data-Word Transductions over Different Data Domains”

32

Perspectives

Reactive Synthesis

• Good-for-games register automata
• Register-bounded synthesis over (N, <, 0)
• Synthesis from logical formalisms: FO2[<p,∼], FO2[<p, <d]

Computability

• Generalise to other data domains and two-way models
• Lift the functionality requirement: automatic specifications

Going Further

• Explore other formalisms than register automata
• Minimisation and learning of non-deterministic transducers

33

Bibliography i

Bibliography

Büchi, J. Richard and Lawrence H. Landweber (1969). “Solving
Sequential Conditions by Finite-State Strategies”. In:
Transactions of the American Mathematical Society 138,
pp. 295–311. issn: 00029947. doi: 10.2307/1994916.

Carayol, Arnaud and Christof Löding (2015). “ Uniformization in
Automata Theory”. In: Logic, Methodology and Philosophy of
Science - Proceedings of the 14th International Congress.

34

https://doi.org/10.2307/1994916

Bibliography ii

Dave, Vrunda et al. (2019). “Deciding the Computability of
Regular Functions over Infinite Words”. In: CoRR
abs/1906.04199. arXiv: 1906.04199.

D’Souza, Deepak and P. Madhusudan (2002). “Timed Control
Synthesis for External Specifications”. In: STACS 2002, 19th
Annual Symposium on Theoretical Aspects of Computer
Science, Antibes - Juan les Pins, France, March 14-16, 2002,
Proceedings. Ed. by Helmut Alt and Afonso Ferreira. Vol. 2285.
Lecture Notes in Computer Science. Springer, pp. 571–582. doi:
10.1007/3-540-45841-7_47.

35

http://arxiv.org/abs/1906.04199
https://doi.org/10.1007/3-540-45841-7_47

Bibliography iii

Ehlers, Rüdiger, Sanjit A. Seshia, and Hadas Kress-Gazit (2014).
“Synthesis with Identifiers”. In: Verification, Model Checking,
and Abstract Interpretation - 15th International Conference,
VMCAI 2014, San Diego, CA, USA, January 19-21, 2014,
Proceedings. Ed. by Kenneth L. McMillan and Xavier Rival.
Vol. 8318. Lecture Notes in Computer Science. Springer,
pp. 415–433. doi: 10.1007/978-3-642-54013-4_23.

36

https://doi.org/10.1007/978-3-642-54013-4_23

Bibliography iv

Faran, Rachel and Orna Kupferman (2020). “On Synthesis of
Specifications with Arithmetic”. In: SOFSEM 2020: Theory and
Practice of Computer Science - 46th International Conference on
Current Trends in Theory and Practice of Informatics, SOFSEM
2020, Limassol, Cyprus, January 20-24, 2020, Proceedings.
Ed. by Alexander Chatzigeorgiou et al. Vol. 12011. Lecture
Notes in Computer Science. Springer, pp. 161–173. doi:
10.1007/978-3-030-38919-2_14.

Figueira, Diego, Anirban Majumdar, and M. Praveen (2020).
“Playing with Repetitions in Data Words Using Energy Games”.
In: Log. Methods Comput. Sci. 16.3.

37

https://doi.org/10.1007/978-3-030-38919-2_14

Bibliography v

Filiot, Emmanuel and Sarah Winter (2021). “Continuous
Uniformization of Rational Relations and Synthesis of
Computable Functions”. In: CoRR abs/2103.05674. arXiv:
2103.05674.

Kaminski, Michael and Nissim Francez (1994). “Finite-memory
automata”. In: Theoretical Computer Science 134.2,
pp. 329–363. issn: 0304-3975. doi:
https://doi.org/10.1016/0304-3975(94)90242-9.

38

http://arxiv.org/abs/2103.05674
https://doi.org/https://doi.org/10.1016/0304-3975(94)90242-9

Bibliography vi

Khalimov, Ayrat and Orna Kupferman (2019). “Register-Bounded
Synthesis”. In: 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands. Ed. by Wan J. Fokkink and Rob van Glabbeek.
Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 25:1–25:16. doi:
10.4230/LIPIcs.CONCUR.2019.25.

Khalimov, Ayrat, Benedikt Maderbacher, and Roderick Bloem
(2018). “Bounded Synthesis of Register Transducers”. In:
Automated Technology for Verification and Analysis, 16th
International Symposium, ATVA 2018, Los Angeles, October
7-10, 2018. Proceedings.

39

https://doi.org/10.4230/LIPIcs.CONCUR.2019.25

Bibliography vii

Pnueli, A. and R. Rosner (1989). “On the Synthesis of a Reactive
Module”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL
’89. Austin, Texas, USA: ACM, pp. 179–190. isbn:
0-89791-294-2. doi: 10.1145/75277.75293.

40

https://doi.org/10.1145/75277.75293

	Reactive Synthesis over Data Words
	Computability over Data Words

