
A Comparison of Various
Backward Analyzers for

Parametrized Concurrent Systems
GILLES GEERAERTS

gigeerae@ulb.ac.be.

Université Libre de Bruxelles - Département

d’informatique

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.1/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?

Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?

Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?

Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Plan of the talk

A Comparison of Various Backward Analyzers for
Parametrized Concurrent Systems

What is a parametrized concurrent system ?
Need for verification, how to formalize. . .

How do we verify ?
Forward and backward approach, decidability
results. . .

What can we compare ?
Performances with different datastructures. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.2/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !
e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !

e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !
e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !
e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !
e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Concurrent systems

Concurrent system = system with many
processes interacting and communicating. . .

. . . they can be found everywhere !
e.g.: Multi-threaded Java programs for web-based
applications.

They often get involved in safety-critical
environments.

e.g.: Online secured billing.

We need well-suited verification procedures !
A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.3/21



Motivation – Parametrized verification

Most of the time, the number of process is not
fixed (it is a parameter).

e.g.: How many clients are going to connect to a
given web-server ?

Classical approach: try for one process, two
processes, three processes. . .

. . . and hope the property holds for other
values of the parameter !

Parametrized approach: Verify the property
for any value of the parameter.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.4/21



Motivation – Parametrized verification

Most of the time, the number of process is not
fixed (it is a parameter).

e.g.: How many clients are going to connect to a
given web-server ?

Classical approach: try for one process, two
processes, three processes. . .

. . . and hope the property holds for other
values of the parameter !

Parametrized approach: Verify the property
for any value of the parameter.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.4/21



Motivation – Parametrized verification

Most of the time, the number of process is not
fixed (it is a parameter).

e.g.: How many clients are going to connect to a
given web-server ?

Classical approach: try for one process, two
processes, three processes. . .

. . . and hope the property holds for other
values of the parameter !

Parametrized approach: Verify the property
for any value of the parameter.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.4/21



Motivation – Parametrized verification

Most of the time, the number of process is not
fixed (it is a parameter).

e.g.: How many clients are going to connect to a
given web-server ?

Classical approach: try for one process, two
processes, three processes. . .

. . . and hope the property holds for other
values of the parameter !

Parametrized approach: Verify the property
for any value of the parameter.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.4/21



Motivation – Parametrized verification

Most of the time, the number of process is not
fixed (it is a parameter).

e.g.: How many clients are going to connect to a
given web-server ?

Classical approach: try for one process, two
processes, three processes. . .

. . . and hope the property holds for other
values of the parameter !

Parametrized approach: Verify the property
for any value of the parameter.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.4/21



The verification process

Concurrent system

Global/Local Machine

Formalization

Multi-Transfer Net

Translation

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.5/21



The verification process

Concurrent system

Global/Local Machine

Formalization

Multi-Transfer Net

Translation

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.5/21



The verification process

Concurrent system

Global/Local Machine

Formalization

Multi-Transfer Net

Translation

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.5/21



Global/Local machines

One global machine = collection of several local
machines + global boolean variables.

The local machines synchronize through rendez-vous,
broadcasts and asynchronous rendez-vous.

a b c

d e

f g

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.6/21



Global/Local machines

One global machine = collection of several local
machines + global boolean variables.

The local machines synchronize through rendez-vous,
broadcasts and asynchronous rendez-vous.

a b c

d e

f g

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.6/21



Global/Local machines

One global machine = collection of several local
machines + global boolean variables.

The local machines synchronize through rendez-vous,
broadcasts and asynchronous rendez-vous.

a b c

� � � �� � � � � � � � � � �

d e
� 	 	

f g

� 	 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.6/21



Global/Local machines

One global machine = collection of several local
machines + global boolean variables.

The local machines synchronize through rendez-vous,
broadcasts and asynchronous rendez-vous.

a b c

� � � � � � � � � � � � � � �

d e
� 	 	

f g

� 	 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.6/21



Global/Local machines

One global machine = collection of several local
machines + global boolean variables.

The local machines synchronize through rendez-vous,
broadcasts and asynchronous rendez-vous.

a b c

� � � �� � � � � � � � � � �

d e
� 	 	

f g

� 	 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.6/21



Multi-transfer nets

� �

� �
�

�

1

2

1

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.7/21



Multi-transfer nets

�
�

�

1

2

�

� �

1

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.7/21



Multi-transfer nets

�

�

�

1

2

�

� �

1

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.7/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Forward v.s. Backward

Verification of a safety property is a MTN
marking reachable ?

Two approaches:

Forward

I

S

Backward

S

I

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.8/21



Decidability

The fixed-point algorithm working backwards
will finish if the set of unsafe points is
upward-closed [Abdulla, Cerans, . . . ].

An upward-closed set of points (markings) is
caracterized by its generator.

� � �

�
�

�

G

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.9/21



Datastructures

To store the set of reachable markings, we
need efficient datastructures .

Which one is best-suited ?

Let’s compare the practical preformances of
four of them: CST, IST, DDD, NDD !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.10/21



Datastructures

To store the set of reachable markings, we
need efficient datastructures .

Which one is best-suited ?

Let’s compare the practical preformances of
four of them: CST, IST, DDD, NDD !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.10/21



Datastructures

To store the set of reachable markings, we
need efficient datastructures .

Which one is best-suited ?

Let’s compare the practical preformances of
four of them: CST, IST, DDD, NDD !

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.10/21



Covering Sharing Trees

0 0 0

0

1

2

2

1

0

� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.11/21



Covering Sharing Trees

0 0 0

0

1

2

2

1

0

� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.11/21



Covering Sharing Trees

0 0 0

0

1

2

2

1

0

� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	




� � �

� � ���

� � ���

� � ���

� � ���

� 	

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.11/21



Interval Sharing Trees

[1,2]

[5,7]

[3,4]

[4,5]

[7,9]

[1,2]

[2,4]

� � � ��� � � ��� �	 � ��
 � � �� �� � �� � 	 ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.12/21



Interval Sharing Trees

[1,2]

[5,7]

[3,4]

[4,5]

[7,9]

[1,2]

[2,4]

� � � ��� � � ��� �	 � ��
 � � �� �� � �� � 	 ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.12/21



Interval Sharing Trees

[1,2]

[5,7]

[3,4]

[4,5]

[7,9]

[1,2]

[2,4]

� � � ��� � � ��� �	 � ��
 � � �� �� � �� � 	 ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

�

� � � ��� � � ��� �� � ��
 � � �� � � � �� � � ��� � � � ��� � � �

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.12/21



Difference Decision Diagrams

��� �

� � �
� � �

� � �
�
 �

� � �

��
 � ��� � �

0 1

�
� ��� � � � � � � � � � � � �
� ��
 � � �

�

�
� ��� � � � � � ��� � � � � � ��
 � � � � �
� �
 � ��� � � �

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.13/21



Difference Decision Diagrams

��� �

� � �
� � �

� � �
�
 �

� � �

��
 � ��� � �

0 1

�
� ��� � � � � � � � � � � � �
� ��
 � � �

�

�
� ��� � � � � � ��� � � � � � ��
 � � � � �
� �
 � ��� � � �

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.13/21



Number Decision Diagrams

I

N

C

� � � � � � �

000 011 101

010 100 111

i, j, i+j+1i, j, i+j-2

i, j, i+j-1

i, j, i+j

1+1=2: 001+001=010 (simplified version)

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.14/21



Number Decision Diagrams

I

N

C

� � � � � � �

000 011 101

010 100 111

i, j, i+j+1i, j, i+j-2

i, j, i+j-1

i, j, i+j

1+1=2: 001+001=010 (simplified version)

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.14/21



Number Decision Diagrams

I

N

C

� � � � � � �

000 011 101

010 100 111

i, j, i+j+1i, j, i+j-2

i, j, i+j-1

i, j, i+j

1+1=2: 001+001=010 (simplified version)

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.14/21



Number Decision Diagrams

I

N

C

� � � � � � �

000 011 101

010 100 111

i, j, i+j+1i, j, i+j-2

i, j, i+j-1

i, j, i+j

1+1=2: 001+001=010 (simplified version)

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.14/21



The comparison

First, we need a good set of examples:

Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:

Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



The comparison

First, we need a good set of examples:
Bounded or unbounded Petri nets;

Cache coherency protocol;

Multi-threaded Java programs.

Then, select the set of parameters:
Execution time (User/System);

Memory consumption (Resident/Data/Total/. . . );

Bottleneck operations;

. . .

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.15/21



A twofold comparison – First phase

BABYLON: an unified model-checker.

The datastructures are seen as constraint solvers;

The three model-checking algorithms are shared
among the datastructures;

Only Petri nets.
class Set {

virtual Set * Union (const Set * S) = 0;
virtual Set * Intersection (const Set * S) = 0 ;
virtual Set * Difference (const Set * S) = 0 ;
virtual bool IsEmpty() = 0 ;
virtual Set * Pre(void) = 0 ; virtual Set * Pre(int i) = 0 ;
virtual void EmptySet() = 0 ; [. . . ] }

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.16/21



A twofold comparison – First phase

BABYLON: an unified model-checker.

The datastructures are seen as constraint solvers;

The three model-checking algorithms are shared
among the datastructures;

Only Petri nets.
class Set {

virtual Set * Union (const Set * S) = 0;
virtual Set * Intersection (const Set * S) = 0 ;
virtual Set * Difference (const Set * S) = 0 ;
virtual bool IsEmpty() = 0 ;
virtual Set * Pre(void) = 0 ; virtual Set * Pre(int i) = 0 ;
virtual void EmptySet() = 0 ; [. . . ] }

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.16/21



A twofold comparison – First phase

BABYLON: an unified model-checker.

The datastructures are seen as constraint solvers;

The three model-checking algorithms are shared
among the datastructures;

Only Petri nets.
class Set {

virtual Set * Union (const Set * S) = 0;
virtual Set * Intersection (const Set * S) = 0 ;
virtual Set * Difference (const Set * S) = 0 ;
virtual bool IsEmpty() = 0 ;
virtual Set * Pre(void) = 0 ; virtual Set * Pre(int i) = 0 ;
virtual void EmptySet() = 0 ; [. . . ] }

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.16/21



A twofold comparison – First phase

BABYLON: an unified model-checker.

The datastructures are seen as constraint solvers;

The three model-checking algorithms are shared
among the datastructures;

Only Petri nets.

class Set {
virtual Set * Union (const Set * S) = 0;
virtual Set * Intersection (const Set * S) = 0 ;
virtual Set * Difference (const Set * S) = 0 ;
virtual bool IsEmpty() = 0 ;
virtual Set * Pre(void) = 0 ; virtual Set * Pre(int i) = 0 ;
virtual void EmptySet() = 0 ; [. . . ] }

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.16/21



A twofold comparison – First phase

BABYLON: an unified model-checker.

The datastructures are seen as constraint solvers;

The three model-checking algorithms are shared
among the datastructures;

Only Petri nets.
class Set {

virtual Set * Union (const Set * S) = 0;
virtual Set * Intersection (const Set * S) = 0 ;
virtual Set * Difference (const Set * S) = 0 ;
virtual bool IsEmpty() = 0 ;
virtual Set * Pre(void) = 0 ; virtual Set * Pre(int i) = 0 ;
virtual void EmptySet() = 0 ; [. . . ] }

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.16/21



Results – Second Phase

Execution times (sec.) – Algorithm 3

Example CST IST DDD NDD

Peterson 0.54 0.34 0.33 2’172.19

Lamport 0.14 0.1 0.13 139.19

Multipool 14.19 9.36 3.04 >3 hours

Mesh3x2 466.31 513.62 195.99 >3 hours
(. . . )

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.17/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part LASH library (ULg);

DDD part DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



A twofold comparison – Second phase

YABA: a model-checker based on DDD and NDD.

NDD part �

LASH library (ULg);

DDD part � DDD library (Møller) + new extensions.

Other tools already exist for CST and IST.

The algorithms are peculiar to the datastructures.

Many optimizations (invariants) have been used.

New optimizations techniques have been developped
for DDD and NDD.

Large set of examples.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.18/21



Results – Second Phase

Execution times (sec.)

Example CST IST DDD NDD

Peterson 0.88 0.2 0.31 691.12

Multipool 3.39 5.44 0.49 1’309.12

Client/Server 0.27 0.09 0.44 3.34

Client/Server (Ex I) – – 0.04 0.9

Client/Server (He I) 0.04 0 6.28 –

Illinois – 0 0.04 0.66

(. . . )

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.19/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Conclusion

NDD are definitely too slow. (Next version ?)

CST, IST and DDD have more or less the
same performances:

DDD are quicker (more powerful implementation). . .

. . . but have poor memory consumption.

Their increased expressivity is not interesting here.

IST and CST thus seem best-suited.

These experiments could be largely refined.

Other datastructures ?

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.20/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21



Personal contributions

Development (with Giorgio) of the methodology.

Conception and implementation of YABA.

Adaptation of the invariant-based optimization to NDD
and DDD.

Extension of the DDD library:

for the invariant-based optimization;

to let it handle transfers (MTN).

Implementation of BABYLON (with Pierre and Laurent)

Benchmarks and collection of the results.

A Comparison of Various Backward Analyzers for Parametrized Concurrent Systems – p.21/21


	Plan of the talk
	Motivation -- Concurrent systems
	Motivation -- Parametrized verification
	The verification process
	Global/Local machines
	Multi-transfer nets
	Forward v.s. Backward
	Decidability
	Datastructures
	Covering Sharing Trees
	Interval Sharing Trees
	Difference Decision Diagrams
	Number Decision Diagrams
	The comparison
	A twofold comparison -- First phase
	Results -- Second Phase
	A twofold comparison -- Second phase
	Results -- Second Phase
	Conclusion
	Personal contributions

