
AbsSynthe: abstract synthesis from succinct safety
specifications

Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, Ocan
Sankur

Université Libre de Bruxelles – Brussels, Belgium
SYNT’14 @ Vienna

July, 2014



Outline

1 Succinct safety specs = Safety games

2 The classic algorithm
Main idea
The uncontrollable predecessors’ operator

3 A CEGAR algorithm
Contributions
Abstract game
Abstract operators
The algorithm

4 Benchmarks & conclusions

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 2 / 29



What is a succinct safety spec?

In essence: a boolean network for a single-output sequential circuit:
A set of boolean inputs X ,
a set of boolean latches L with a distinguished error latch BAD ∈ L.

C

Xn−1

X0

... fBAD

The circuit defines a boolean function fl over L and X per latch.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 3 / 29



Synthesis from a succinct safety spec

For synthesis, X partitioned into uncontrollable Xu and controllable inputs
Xc . Xu are chosen by the environment.

C
fBADu0

...

c0
controllable

{
uncontrollable

{
...

Xc
u0

...

Realizability: does there exist
such a controller for Xc?

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 4 / 29



Synthesis from a succinct safety spec

For synthesis, X partitioned into uncontrollable Xu and controllable inputs
Xc . Xu are chosen by the environment.

C
fBADu0

...

c0
controllable

{
uncontrollable

{
...

Xc
u0

...

Realizability: does there exist
such a controller for Xc?

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 4 / 29



Synthesis from a succinct safety spec

For synthesis, X partitioned into uncontrollable Xu and controllable inputs
Xc . Xu are chosen by the environment.

C
fBADu0

...

c0
controllable

{
uncontrollable

{
...

Xc
u0

...

Realizability: does there exist
such a controller for Xc?

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 4 / 29



The safety game

Q is the set of valuations of L, U ⊆ Q are the error states
Σu,Σc are valuations of Xu,Xc resp.
δ : Q × Σu × Σc → Q defined by circuit C
Game: environment chooses σ and controller responds with τ

0, 0 1, 0 1, 1

¬(r ∧ g)

r ∧ g

¬(r ∧ g)

r ∧ g

Example: L = {l0,BAD}, Σu = {r , r}, Σc = {g , g}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 5 / 29



The safety game

Q is the set of valuations of L, U ⊆ Q are the error states
Σu,Σc are valuations of Xu,Xc resp.
δ : Q × Σu × Σc → Q defined by circuit C
Game: environment chooses σ and controller responds with τ

0, 0 1, 0 1, 1

¬(r ∧ g)

r ∧ g

¬(r ∧ g)

r ∧ g

Example: L = {l0,BAD}, Σu = {r , r}, Σc = {g , g}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 5 / 29



The safety game

Q is the set of valuations of L, U ⊆ Q are the error states
Σu,Σc are valuations of Xu,Xc resp.
δ : Q × Σu × Σc → Q defined by circuit C
Game: environment chooses σ and controller responds with τ

0, 0 1, 0 1, 1

¬(r ∧ g)

r ∧ g

¬(r ∧ g)

r ∧ g

Example: L = {l0,BAD}, Σu = {r , r}, Σc = {g , g}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 5 / 29



Outline

1 Succinct safety specs = Safety games

2 The classic algorithm
Main idea
The uncontrollable predecessors’ operator

3 A CEGAR algorithm
Contributions
Abstract game
Abstract operators
The algorithm

4 Benchmarks & conclusions

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 6 / 29



The classic algorithm

Based on the Reachability Game played on the graph 〈Q,Σu,Σc , δ,U〉:
1 Define an uncontrollable predecessors operator UPRE.
2 Compute the least fixpoint of UPRE starting from the error states

(call this Wu).
3 From Wc = Q \Wu controller can respond to a given σ with any τ

which ensures she stays in Wc .

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 7 / 29



UPRE: definition by example

UPRE(S) is the set of states from which environment can force to reach S
If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then UPRE(d , e) =???

· · ·

· · ·

b

c

d

e

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 8 / 29



UPRE: definition by example

UPRE(S) is the set of states from which environment can force to reach S
If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then UPRE(d , e) =??? {c}

· · ·

· · ·

b

c

d

e

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 8 / 29



The classic algorithm

Based on the Reachability Game played on the graph 〈Q,Σu,Σc , δ,U〉:
1 Define an uncontrollable predecessors operator UPRE.
2 Compute the least fixpoint of UPRE starting from the error states

(call this Wu).
3 From Wc = Q \Wu controller can respond to a given σ with any τ

which ensures she stays in Wc .

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 9 / 29



The classic algorithm

Based on the Reachability Game played on the graph 〈Q,Σu,Σc , δ,U〉:
1 Define an uncontrollable predecessors operator UPRE.
2 Compute the least fixpoint of UPRE starting from the error states

(call this Wu).
3 From Wc = Q \Wu controller can respond to a given σ with any τ

which ensures she stays in Wc .

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 9 / 29



How do we compute UPRE?

Using BDDs. . .
1 Either compute a transition relation

T (L,Xu,Xc , L′) =
∧
l∈L

l ′ ⇔ fl (Xu,Xc , L)

and then set UPRE(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ S(L′); or

2 for deterministic systems we can avoid computing T and just
substitute fl for each l in S1

UPRE(S) = ∃Xu,∀Xc : S(L′)[l ′ ← fl (Xu,Xc , L)]l∈L.

Computing T is sometimes
too costly (time and size).

1[Coudert et al., 1990, Coudert et al., 1991]
Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 10 / 29



How do we compute UPRE?

Using BDDs. . .
1 Either compute a transition relation

T (L,Xu,Xc , L′) =
∧
l∈L

l ′ ⇔ fl (Xu,Xc , L)

and then set UPRE(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ S(L′); or

2 for deterministic systems we can avoid computing T and just
substitute fl for each l in S1

UPRE(S) = ∃Xu,∀Xc : S(L′)[l ′ ← fl (Xu,Xc , L)]l∈L.

Computing T is sometimes
too costly (time and size).

1[Coudert et al., 1990, Coudert et al., 1991]
Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 10 / 29



Outline

1 Succinct safety specs = Safety games

2 The classic algorithm
Main idea
The uncontrollable predecessors’ operator

3 A CEGAR algorithm
Contributions
Abstract game
Abstract operators
The algorithm

4 Benchmarks & conclusions

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 11 / 29



Contributions

We improve on a CEGAR-based approach [de Alfaro and Roy, 2010].
1 Use information from the computation of the over-approx of UPRE to

over-approx reachable states fixing winning strategies of environment
restrict the uncontrollable actions we need to check to compute UPRE.

2 Use substitution (BDD composition) to avoid computing an abstract
transition relation (though post over-approx’d).

3 Simple heuristic for choosing new predicates to refine the abstract
game without concrete UPRE.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 12 / 29



Contributions

We improve on a CEGAR-based approach [de Alfaro and Roy, 2010].
1 Use information from the computation of the over-approx of UPRE to

over-approx reachable states fixing winning strategies of environment
restrict the uncontrollable actions we need to check to compute UPRE.

2 Use substitution (BDD composition) to avoid computing an abstract
transition relation (though post over-approx’d).

3 Simple heuristic for choosing new predicates to refine the abstract
game without concrete UPRE.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 12 / 29



Contributions

We improve on a CEGAR-based approach [de Alfaro and Roy, 2010].
1 Use information from the computation of the over-approx of UPRE to

over-approx reachable states fixing winning strategies of environment
restrict the uncontrollable actions we need to check to compute UPRE.

2 Use substitution (BDD composition) to avoid computing an abstract
transition relation (though post over-approx’d).

3 Simple heuristic for choosing new predicates to refine the abstract
game without concrete UPRE.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 12 / 29



Contributions

We improve on a CEGAR-based approach [de Alfaro and Roy, 2010].
1 Use information from the computation of the over-approx of UPRE to

over-approx reachable states fixing winning strategies of environment
restrict the uncontrollable actions we need to check to compute UPRE.

2 Use substitution (BDD composition) to avoid computing an abstract
transition relation (though post over-approx’d).

3 Simple heuristic for choosing new predicates to refine the abstract
game without concrete UPRE.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 12 / 29



Outline

1 Succinct safety specs = Safety games

2 The classic algorithm
Main idea
The uncontrollable predecessors’ operator

3 A CEGAR algorithm
Contributions
Abstract game
Abstract operators
The algorithm

4 Benchmarks & conclusions

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 13 / 29



Example of an abstract game

Q is exponential w.r.t. L, so let us “simplify” the game. . .

Qa defined by predicates pU = lBAD, pI = ¬(l0 ∨ l1 ∨ lBAD), p0 = l0
∆a over-approximates δ

0, 0, 0

0, 1, 0

1, 1, 0

1, 1, 1

σ0

¬σ0

σ0

σ0

¬σ0

¬σ0

>

>

σ0

¬σ0

Example: L = {l0, l1, lBAD}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 14 / 29



Example of an abstract game

Q is exponential w.r.t. L, so let us “simplify” the game. . .
Qa defined by predicates pU = lBAD, pI = ¬(l0 ∨ l1 ∨ lBAD), p0 = l0

∆a over-approximates δ

0, 0, 0

0, 1, 0

1, 1, 0

1, 1, 1

σ0

¬σ0

σ0

σ0

¬σ0

¬σ0

>

>

σ0

¬σ0

Example: L = {l0, l1, lBAD}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 14 / 29



Example of an abstract game

Q is exponential w.r.t. L, so let us “simplify” the game. . .
Qa defined by predicates pU = lBAD, pI = ¬(l0 ∨ l1 ∨ lBAD), p0 = l0
∆a over-approximates δ

0, 0, 0

0, 1, 0

1, 1, 0

1, 1, 1

σ0

¬σ0

σ0

σ0

¬σ0

¬σ0

>

>

σ0

¬σ0

Example: L = {l0, l1, lBAD}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 14 / 29



Abstract game

Some remarks:
We require the initial state be distinguishable and Ua to contain U .
The partition of Q is done (mainly) via localization reduction (only
pR , pI , pU are real predicates).

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 15 / 29



Abstract UPRE operators

P is set of predicates defining Qa. T a is computed as expected from T .

Definition (Two UPRE operators)
Given Sa ⊆ Qa let

UPREa(Sa) = ∃Xu, ∀Xc , ∃P ′ : T a(P,Xu,Xc ,P ′) ∧ Sa(P ′),
UPREa(Sa) = ∃Xu, ∀Xc , ∀P ′ : T a(P,Xu,Xc ,P ′)⇒ Sa(P ′).

In fact, one can again avoid computing T a using substitution.

Lemma (Over- and under-approximating UPRE)
γ(UPRE∗a(Ua)) ⊆ UPRE∗(U) ⊆ γ(UPRE∗a(Ua)).

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 16 / 29



Abstract UPRE: definition by example

If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then
UPREa({{d , e}}) =???

UPREa({{d , e}}) =???

· · ·

· · ·

b

c

d

e

DISJ of all edges = σ0 ∨ τ0

DISJ of all edges = σ0 ∨ τ0

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 17 / 29



Abstract UPRE: definition by example

If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then
UPREa({{d , e}}) =??? {{b, c}}
UPREa({{d , e}}) =???

· · ·

· · ·

b

c

d

e

DISJ of all edges = σ0 ∨ τ0

DISJ of all edges = σ0 ∨ τ0

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 17 / 29



Abstract UPRE: definition by example

If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then
UPREa({{d , e}}) =??? {{b, c}}
UPREa({{d , e}}) =??? {}

· · ·

· · ·

b

c

d

e

DISJ of all edges = σ0 ∨ τ0

DISJ of all edges = σ0 ∨ τ0

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 17 / 29



A CEGAR algorithm [de Alfaro and Roy, 2010]

Based on the abstract game 〈Qa, qa
I ,Σu,Σc ,∆

a,Ua〉 and an
over-approximation of the reachable states Ra:

1 If qa
I ∈ UPRE∗a(Ua) environment wins,

2 if qa
I 6∈ UPRE∗a(Ua) controller wins,

3 else we do not know who wins G . . . add a new “useful” single-latch
predicate to P and repeat.

Does it terminate?
Eventually all latches are added, so we converge to the original game.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 18 / 29



Contribution: strategies winning for environment

Assume qa
I 6∈ UPRE∗a(Ua) and qa

I ∈ UPRE∗a(Ua). . .
1 Extract a winning non-deterministic strategy of environment

Λa : Qa → P(Σu),
2 this defines a non-det strategy for him in the original game

Λ : Q → P(Σu).

Theorem (All of his winning strats)
If λ is a winning strategy for environment in G, then λ is “included” in Λ.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 19 / 29



Contribution: strategies winning for environment

This allows for two nice optimizations!

Corollary (Over-approx reachable and restrict UPRE)
1 If qa

I ∈ UPRE∗a(Ua) then we can restrict our search to states
reachable if environment plays Λa(P,Xu),

2 and we can replace UPRE by

UPREΛ(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ Λ(L,Xu) ∧ S(L′)

which takes less uncontrollable inputs into account.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 20 / 29



Forward exploration
1 Look for a strategy of environment in the abstract game.

2 Ignore all states not reachable in original game via these strategies.

qa
I

Ua

UPREa(Ua)

· · ·

UPRE∗a(Ua)

µX .(Ua ∪ UPREa(X )) ∩Ra



Forward exploration
1 Look for a strategy of environment in the abstract game.

2 Ignore all states not reachable in original game via these strategies.

qa
I

Ua

UPREa(Ua)

· · ·

UPRE∗a(Ua)

µX .(Ua ∪ UPREa(X )) ∩Ra



Forward exploration
1 Look for a strategy of environment in the abstract game.

2 Ignore all states not reachable in original game via these strategies.

qa
I

Ua

UPREa(Ua)

· · ·

UPRE∗a(Ua)

µX .(Ua ∪ UPREa(X ))

∩Ra



Forward exploration
1 Look for a strategy of environment in the abstract game.
2 Ignore all states not reachable in original game via these strategies.

qa
I

Ua

UPREa(Ua)

· · ·

UPRE∗a(Ua)

µX .(Ua ∪ UPREa(X )) ∩Ra



Contribution: strategies winning for environment

This allows for two nice optimizations!

Corollary (Over-approx reachable and restrict UPRE)
1 If qa

I ∈ UPRE∗a(Ua) then we can restrict our search to states
reachable if environment plays Λa(P,Xu),

2 and we can replace UPRE by

UPREΛ(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ Λ(L,Xu) ∧ S(L′)

which takes less uncontrollable inputs into account.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 22 / 29



Contribution: when is a latch “useful”?

We don’t have a unique answer :-(

Definition (Interesting and useful latches)
Given Ua and current visible latches,

1 we consider a latch l interesting if l 6⇒ Ua and ¬l 6⇒ Ua; and
2 we say an interesting latch is useful if there is some already visible

latch v such that fv (L,Xu,Xc) depends on l .

The idea is. . .
The newly visible latch will hopefully make ∆a more closely resemble the
original δ.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 23 / 29



Contribution: when is a latch “useful”?

We don’t have a unique answer :-(

Definition (Interesting and useful latches)
Given Ua and current visible latches,

1 we consider a latch l interesting if l 6⇒ Ua and ¬l 6⇒ Ua; and
2 we say an interesting latch is useful if there is some already visible

latch v such that fv (L,Xu,Xc) depends on l .

The idea is. . .
The newly visible latch will hopefully make ∆a more closely resemble the
original δ.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 23 / 29



abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));



abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));

Is qa
I already in the FP of

under-approx’d UPRE?

Is qa
I not in the FP of

over-approx’d UPRE?
If it is, just update

reachability information

Is the under-approx’d UPRE
FP the concrete FP as well?Add a new latch, up-
date Ua,Ra and repeat.



abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));

Is qa
I already in the FP of

under-approx’d UPRE?

Is qa
I not in the FP of

over-approx’d UPRE?
If it is, just update

reachability information

Is the under-approx’d UPRE
FP the concrete FP as well?Add a new latch, up-
date Ua,Ra and repeat.



abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));

Is qa
I already in the FP of

under-approx’d UPRE?

Is qa
I not in the FP of

over-approx’d UPRE?
If it is, just update

reachability information

Is the under-approx’d UPRE
FP the concrete FP as well?Add a new latch, up-
date Ua,Ra and repeat.



abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));

Is qa
I already in the FP of

under-approx’d UPRE?

Is qa
I not in the FP of

over-approx’d UPRE?
If it is, just update

reachability information

Is the under-approx’d UPRE
FP the concrete FP as well?Add a new latch, up-
date Ua,Ra and repeat.



Some results

Figure : Time (in seconds) to
check realizability.

Figure : Time (in seconds) for
cnt benchmarks.

(C) FP computation with a precomputed transition relation2;
(C-TL) no transition relation;
(A) CEGAR algo with a precomputed abstract transition relation;
(A-TL) no transition relation (post overapproximated).

2Base implementation from [Bloem et al., 2014]



Thank you for your attention!

If you want to drink download our tool:

https://github.com/gaperez64/AbsSynthe



References I

Bloem, R., Könighofer, R., and Seidl, M. (2014).
Sat-based synthesis methods for safety specs.
In VMCAI, volume 8318 of LNCS, pages 1–20. Springer.

Coudert, O., Berthet, C., and Madre, J. C. (1990).
Verification of synchronous sequential machines based on symbolic
execution.
In Automatic verification methods for finite state systems, volume 407
of LNCS, pages 365–373. Springer.

Coudert, O., Madre, J. C., and Berthet, C. (1991).
Verifying temporal properties of sequential machines without building
their state diagrams.
In CAV, volume 531 of LNCS, pages 23–32. Springer.



References II

de Alfaro, L. and Roy, P. (2010).
Solving games via three-valued abstraction refinement.
Information and Computation, 208(6):666–676.


	Succinct safety specs = Safety games
	The classic algorithm
	Main idea
	The uncontrollable predecessors' operator

	A CEGAR algorithm
	Contributions
	Abstract game
	Abstract operators
	The algorithm

	Benchmarks & conclusions

