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What is a succinct safety spec?

In essence: a boolean network for a single-output sequential circuit:
A set of boolean inputs X ,
a set of boolean latches L with a distinguished error latch BAD ∈ L.

C

Xn−1

X0

... fBAD

The circuit defines a boolean function fl over L and X per latch.
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Synthesis from a succinct safety spec

For synthesis, X partitioned into uncontrollable Xu and controllable inputs
Xc . Xu are chosen by the environment.

C
fBADu0

...

c0
controllable

{
uncontrollable

{
...

Xc
u0

...

Realizability: does there exist
such a controller for Xc?
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The safety game

Q is the set of valuations of L, U ⊆ Q are the error states
Σu,Σc are valuations of Xu,Xc resp.
δ : Q × Σu × Σc → Q defined by circuit C
Game: environment chooses σ and controller responds with τ

0, 0 1, 0 1, 1

¬(r ∧ g)

r ∧ g

¬(r ∧ g)

r ∧ g

Example: L = {l0,BAD}, Σu = {r , r}, Σc = {g , g}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 5 / 29



The safety game

Q is the set of valuations of L, U ⊆ Q are the error states
Σu,Σc are valuations of Xu,Xc resp.
δ : Q × Σu × Σc → Q defined by circuit C
Game: environment chooses σ and controller responds with τ

0, 0 1, 0 1, 1

¬(r ∧ g)

r ∧ g

¬(r ∧ g)

r ∧ g

Example: L = {l0,BAD}, Σu = {r , r}, Σc = {g , g}.
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The classic algorithm

Based on the Reachability Game played on the graph 〈Q,Σu,Σc , δ,U〉:
1 Define an uncontrollable predecessors operator UPRE.
2 Compute the least fixpoint of UPRE starting from the error states

(call this Wu).
3 From Wc = Q \Wu controller can respond to a given σ with any τ

which ensures she stays in Wc .
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UPRE: definition by example

UPRE(S) is the set of states from which environment can force to reach S
If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then UPRE(d , e) =???

· · ·

· · ·

b

c

d

e

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0
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Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 9 / 29



How do we compute UPRE?

Using BDDs. . .
1 Either compute a transition relation

T (L,Xu,Xc , L′) =
∧
l∈L

l ′ ⇔ fl (Xu,Xc , L)

and then set UPRE(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ S(L′); or

2 for deterministic systems we can avoid computing T and just
substitute fl for each l in S1

UPRE(S) = ∃Xu,∀Xc : S(L′)[l ′ ← fl (Xu,Xc , L)]l∈L.

Computing T is sometimes
too costly (time and size).

1[Coudert et al., 1990, Coudert et al., 1991]
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Contributions

We improve on a CEGAR-based approach [de Alfaro and Roy, 2010].
1 Use information from the computation of the over-approx of UPRE to

over-approx reachable states fixing winning strategies of environment
restrict the uncontrollable actions we need to check to compute UPRE.

2 Use substitution (BDD composition) to avoid computing an abstract
transition relation (though post over-approx’d).

3 Simple heuristic for choosing new predicates to refine the abstract
game without concrete UPRE.
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Example of an abstract game

Q is exponential w.r.t. L, so let us “simplify” the game. . .

Qa defined by predicates pU = lBAD, pI = ¬(l0 ∨ l1 ∨ lBAD), p0 = l0
∆a over-approximates δ

0, 0, 0

0, 1, 0

1, 1, 0

1, 1, 1

σ0

¬σ0

σ0

σ0

¬σ0

¬σ0

>

>

σ0

¬σ0

Example: L = {l0, l1, lBAD}.

Brenguier, Pérez, Raskin, Sankur (ULB) AbsSynthe July, 2014 14 / 29



Example of an abstract game

Q is exponential w.r.t. L, so let us “simplify” the game. . .
Qa defined by predicates pU = lBAD, pI = ¬(l0 ∨ l1 ∨ lBAD), p0 = l0

∆a over-approximates δ

0, 0, 0

0, 1, 0

1, 1, 0

1, 1, 1

σ0

¬σ0

σ0

σ0

¬σ0

¬σ0

>

>

σ0

¬σ0

Example: L = {l0, l1, lBAD}.
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Abstract game

Some remarks:
We require the initial state be distinguishable and Ua to contain U .
The partition of Q is done (mainly) via localization reduction (only
pR , pI , pU are real predicates).
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Abstract UPRE operators

P is set of predicates defining Qa. T a is computed as expected from T .

Definition (Two UPRE operators)
Given Sa ⊆ Qa let

UPREa(Sa) = ∃Xu, ∀Xc , ∃P ′ : T a(P,Xu,Xc ,P ′) ∧ Sa(P ′),
UPREa(Sa) = ∃Xu, ∀Xc , ∀P ′ : T a(P,Xu,Xc ,P ′)⇒ Sa(P ′).

In fact, one can again avoid computing T a using substitution.

Lemma (Over- and under-approximating UPRE)
γ(UPRE∗a(Ua)) ⊆ UPRE∗(U) ⊆ γ(UPRE∗a(Ua)).
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Abstract UPRE: definition by example

If Σu = {σ0, σ0} and Σc = {τ0, τ0}, then
UPREa({{d , e}}) =???

UPREa({{d , e}}) =???

· · ·

· · ·

b

c

d

e

DISJ of all edges = σ0 ∨ τ0

DISJ of all edges = σ0 ∨ τ0

¬τ0τ0

σ0 ∧ τ0

σ0 ∧ τ0σ0
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A CEGAR algorithm [de Alfaro and Roy, 2010]

Based on the abstract game 〈Qa, qa
I ,Σu,Σc ,∆

a,Ua〉 and an
over-approximation of the reachable states Ra:

1 If qa
I ∈ UPRE∗a(Ua) environment wins,

2 if qa
I 6∈ UPRE∗a(Ua) controller wins,

3 else we do not know who wins G . . . add a new “useful” single-latch
predicate to P and repeat.

Does it terminate?
Eventually all latches are added, so we converge to the original game.
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Contribution: strategies winning for environment

Assume qa
I 6∈ UPRE∗a(Ua) and qa

I ∈ UPRE∗a(Ua). . .
1 Extract a winning non-deterministic strategy of environment

Λa : Qa → P(Σu),
2 this defines a non-det strategy for him in the original game

Λ : Q → P(Σu).

Theorem (All of his winning strats)
If λ is a winning strategy for environment in G, then λ is “included” in Λ.
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Contribution: strategies winning for environment

This allows for two nice optimizations!

Corollary (Over-approx reachable and restrict UPRE)
1 If qa

I ∈ UPRE∗a(Ua) then we can restrict our search to states
reachable if environment plays Λa(P,Xu),

2 and we can replace UPRE by

UPREΛ(S) = ∃Xu, ∀Xc , ∃L′ : T (L,Xu,Xc , L′) ∧ Λ(L,Xu) ∧ S(L′)

which takes less uncontrollable inputs into account.
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Forward exploration
1 Look for a strategy of environment in the abstract game.

2 Ignore all states not reachable in original game via these strategies.

qa
I

Ua

UPREa(Ua)

· · ·

UPRE∗a(Ua)

µX .(Ua ∪ UPREa(X )) ∩Ra
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Contribution: when is a latch “useful”?

We don’t have a unique answer :-(

Definition (Interesting and useful latches)
Given Ua and current visible latches,

1 we consider a latch l interesting if l 6⇒ Ua and ¬l 6⇒ Ua; and
2 we say an interesting latch is useful if there is some already visible

latch v such that fv (L,Xu,Xc) depends on l .

The idea is. . .
The newly visible latch will hopefully make ∆a more closely resemble the
original δ.
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abs synth(G , Ga, Ra)

1 wu := µX . (Ua ∪ UPREa(X )) ∩ Ra;
2 if qa

I ∈ wu then return not controllable;
3 prev := ∅;
4 while Ra 6= prev do
5 prev := Ra;
6 Wu := µX . (wu ∪ UPREa(X )) ∩ Ra;
7 if qa

I 6∈Wu then return controllable;
8 Λenv := non-det strategy defined by (wu);
9 Ra := µX . (qa

I ∪ post(X ,Λenv )) ∩ Ra;
10 end
11 w ′u := (UPREγ(Λenv )(γ(wu))) ∩ γ(Ra);
12 if w ′u ⊆ γ(wu) then return controllable;
13 Qa

2 := refine(Qa,w ′u ∪ γ(wu), γ(Ra));
14 Ua

2 := α2(w ′u ∪ γ(wu));
15 return abs synth(G ,Ga

2 , α2(γ(Ra)));
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Is qa
I already in the FP of

under-approx’d UPRE?

Is qa
I not in the FP of

over-approx’d UPRE?
If it is, just update

reachability information

Is the under-approx’d UPRE
FP the concrete FP as well?Add a new latch, up-
date Ua,Ra and repeat.
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Some results

Figure : Time (in seconds) to
check realizability.

Figure : Time (in seconds) for
cnt benchmarks.

(C) FP computation with a precomputed transition relation2;
(C-TL) no transition relation;
(A) CEGAR algo with a precomputed abstract transition relation;
(A-TL) no transition relation (post overapproximated).

2Base implementation from [Bloem et al., 2014]



Thank you for your attention!

If you want to drink download our tool:

https://github.com/gaperez64/AbsSynthe
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