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Abstract. We present and motivate the definition and use of the lan-
guage and environment dSL, an imperative and event driven language
designed to program distributed industrial control systems. dSL provides
transparent code distribution using simple mechanisms. Its use allows the
industrial control system’s designer to concentrate on the sequences of
control required; the dSL compiler-distributer taking into account the
distribution aspects. We show the advantages of our approach compared
to others proposed using e.g. shared memory or synchronous languages
like Esterel, Lustre or Signal.
keywords: Industrial process control, transparent code distribution, ex-
ecution migration

1 Introduction

An industrial control system is generally safety critical, event-driven, physi-
cally distributed and controls heterogeneous equipments whose response time
can range from milliseconds to minutes. To be of any use in a real industrial
environment, a control system must be reliable, efficient, robust and simple. Ef-
ficiency is needed to ensure that the controller is not overtaken by the system
it controls. Robustness allows a maximal control even in case of hardware fail-
ure (sensor, actuator or processor). Simplicity is of main importance to allow a
strong monitoring of the system and in case of maintenance or upgrade, to be
able to easily update it without stopping the industrial system controlled.

The burden of combining the physical complexity of the process, the com-
munication schemes of the distributed parts, the need to provide simple and
fast control and the extreme reliability and robustness requirements make the
development of such systems hard.

To simplify the work of the distributed systems designer, it is beneficial to de-
sign a development environment which handles the communication aspects and
allows the programmer to concentrate on the functional aspects of the system.
Classical solutions based on this idea exist (CORBA[16], DCOM [22], EJB [10]).
Unfortunately, due to the genericness of these solutions, they are quite heavy
and completely hide all of the communication process, making the monitoring
of such systems difficult.

More dedicated solutions to the problem of distributed execution of a system
with transparent distribution mechanism, have been proposed. Examples of such
solutions are distributed shared memory [27], or more specifically in the domain
of control systems, synchronous languages like Esterel, Lustre or Signal (e.g. [2]
and [15]).
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Unfortunately, even if shared memory solutions are generally lighter than the
distributed objects one, due to the cache coherence protocol, the time to access
the memory can vary greatly and is not predictable. We also motivate why in
our opinion, the latter solutions have, in practice, some drawbacks.

This leads us to the definition of dSL1, a new environment and language de-
signed to program distributed industrial control systems, providing transparent
code distribution using low level mechanisms adapted for the industrial environ-
ments. dSL has been developed by the verification group of ULB2 in collaboration
with the company Macq Electronique3

dSL offers both advantages to allow, most of the time, dSL programmers
to ignore all the communication aspects between controllers of the distributed
systems and, by the simplicity of the distribution mechanisms, to easily monitor
the behavior of the synthesized distributed system. dSL can also be formally
modeled and therefore allows links with the world of formal model-checking to
verify the correctness of the systems. Another advantage of this approach is the
ability to debug and verify the centralized program before its distribution.

In the remaining part of this paper, we first, in section 2, detail related
proposals and justify the advantages of our solutions. In section 3 we present
the dSL syntax and in section 4, outline its semantics. In section 5, we describe
the distribution procedure and dSL environment. Finally in section 6, we discuss
our future work.

2 Other approaches and motivations

The problem of distributing applications that control reactive systems has been
studied for many years now and several interesting observations on these works
shaped the design of dSL. In particular, this problem has been studied concep-
tually in the world of process algebra and defined as a correctness preserving
transformation of a centralized specification into a semantically equivalent dis-
tributed one. (e.g. for bisimulation equivalence [24], see [21, 7]). It has also been
studied on various types of labelled transition systems ([9] [26, 28]).

These works solved part of the problem. However, contrary to other program-
ming languages, the notion of variable does not exist in process algebra and these
solutions had therefore to be extended. Work has also been done in the domain
of synchronous languages such as Esterel [6], Lustre [8] and Signal [20], which
answered questions on how to specify controllers in a natural and semantically
well defined way. Unfortunately, in our opinion, the distribution of synchronous
languages while preserving the semantics, suffer from a performance problem
which, in practice, may not be acceptable.

Indeed, the synchronous programming scheme found in the synchronous lan-
guages supposes that time is defined as a sequence of instants. To preserve de-
terminism, these languages use the concept of synchronous broadcast [5, 4] when
several processes are composed in parallel. This implies that parallel branches in
the high level description can be transformed into sequential deterministic code.
The distribution of such programs, for example in Esterel [15], may suffer from

1

dSL is the successor of the language SL (Supervision Language, based on ST, an
industrial standard defined in IEC1131-3) developed at Macq Electronique company

2 http://www.ulb.ac.be/di/ssd/groupverif.html
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severe performance penalties 1. because the instants must be respected, requir-
ing a strong resynchronization scheme, and 2. because the distribution is applied
on the determinized sequential code. The distribution of Esterel described in [15]
can be summarized in 4 steps : (1) the centralized program (after being compiled
in a single threaded sequential code) is duplicated on all participating sites; (2)
the instructions that are not relevant to a given site are removed; (3) for data that
is accessed on one site, but calculated on another, communication messages are
inserted, and (4) synchronization messages are inserted to preserve the global
instants. Remark that since the initial code is sequential, this solution suffers
from the lack of parallelism (there are some ways to achieve higher concurrency
such as weak synchronization but that does not preserve safety properties [15]).
For Signal, the situation is very similar [2].

This strong synchronization has several undesirable drawbacks in an indus-
trial environment. First of all, to keep all processes in pace, numerous messages
need to be exchanged at each global instant. Secondly, all participating processes
have to advance at the speed of the slowest process. Finally, the failure of one of
the processes makes the whole system deadlock. To the best of our knowledge,
the synchronous approach has no answer to these shortcomings.

These observations make us believe that, although perfectly suitable for
tightly coupled homogeneous systems and having the benefit of simplicity when
it comes to specifying a controller, the simplicity of the synchronous approach is
too costly in terms of performance when applied to loosely coupled heterogeneous
systems. Moreover, from the experience of our industrial partner specialized in
process control, the strong synchronization of all processes is only rarely needed
and must therefore not be used by default, but made available when needed.

To avoid these drawbacks, dSL rejects the synchronous product [23] used
in the above languages at the detriment of indeterminism, and adopts an asyn-
chronous composition of instantaneous (atomic) code and asynchronous (sequen-
tial) code. Asynchronous composition is therefore the keyword in dSL’s design.
The instantaneous code uses an event driven scheme and, for a given component,
must be able to run without any synchronization that would make it wait on
other components. This asynchronous composition has the advantage that the
failure of one site does not introduce deadlocks in atomic code on other sites.
Moreover, as we detail later on, dSL offers a way to detect and handle network
or hardware failures. The sequential code, on the other hand, can be executed
in a totally distributed and cooperative manner. These assumptions, of course,
imply some restrictions on code and have consequences on the way data values
are transmitted between distributed processes, as explained in section 5.

For the distributed execution of the sequential code, several models are pro-
posed in the literature. These models can be divided into two sets based on the
way they achieve data locality : either move data, or move the execution. Many
systems have been studied that use the first solution, such as Distributed Shared
Memory systems [27]. These systems, although offering a transparent distributed
environment, suffer from undesirable border effects that make them unusable in
an industrial environment. The need to replicate data to make such systems work
in a performance responsible way [17], may cause thrashing4 or false sharing5

4 The effect of two (or more) processes competing for exclusive access to a given
variable, resulting in high communication traffic and almost no productiveness

5 Caused when two (or more) variables, used by different processes, are in the same
page causing unnecessary communication traffic



and these systems therefore do not guarantee stable performance as observed
in [27]. Secondly, since data moves around, the supervision of such systems and
its error-recovery - both indispensable features in industrial applications - may
become too complicated [25] on dSL’s target hardware.

For these reasons, dSL uses the second solution, which consists of moving the
execution to the data, a concept known as process or thread migration [14]. In
this concept, a thread of execution is halted on one site, its context (local vari-
ables and program counter) is sent to another site, where its context is restored
and execution continues. Thread migration is known to enable dynamic load
distribution, fault tolerance, eased system administration, data access locality
and mobile computing [19]. In our system, all instructions and global variables
are statically assigned to the participating sites and thread migration, decided
at compile time, is used to obtain data access locality. The benefits are twofold:
(1) following the state of the system is very easy, and (2) all communication and
synchronization messages can statically be calculated, resulting in a predictable
execution. However, we lose the benefits of dynamic load balancing and fault
tolerance since the migration policy used in dSL is static.

The design of dSL can thus be synthesized as a hybrid execution scheme com-
posed of two types of code : local or atomic instantaneous code, and distributed
sequential code that executes using statically calculated thread migration.

3 The dSL concept

dSL is an imperative language with static variables. Each variable can be either
(1) internal to a program, (2) linked to an input (sensor), or (3) linked to an
output (actuator). dSL is event driven. This allows to specify that when the
value of a boolean expression switches from false to true, some code must be ex-
ecuted. For instance, when x >= 0 then run motor1(); end when will trigger
the method run motor1() every time the variable x switches from a negative to
a positive value. dSL also offers limited Object Oriented features.

Moreover, the domains of all dSL primitive types are extended with the spe-
cial value unknown. A variable linked to an I/O may take this special value in
case of hardware failure. The unknown value propagates in expression evaluation
and can be tested for with the builtin is unknown statement. As shown in fig-
ure 1 this allows to construct more robust programs. In this figure, a sensor is
duplicated in order to ensure correct behavior in case of hardware failure. Note
that the body of a when whose condition evaluates to unknown is not executed.

WHEN temp1 > 30 AND
NOT handled THEN

handled := TRUE;
...

END_WHEN

WHEN temp2 > 30 AND
NOT handled THEN

handled := TRUE;
...

END_WHEN

WHEN IS_UNKNOWN(temp1) AND
IS_UNKNOWN(temp2) THEN

alarm := TRUE;
...

END_WHEN

Fig. 1. Fault tolerance in dSL with unknown.

A program in dSL is written in a centralized manner, as if every input or
output can be accessed without the need for explicit communication or synchro-
nization (we shall see that some restrictions are imposed to apply this principle).



The designer must then fill in a localization table to specify the physical localiza-
tion (execution sites) of each I/O. Other (internal) variables are either global in
which case their localization will statically be fixed by the distributer, or local in
which case they can move during execution. Since global variables do not move
during execution, the distributer has to ensure that an instruction accessing a
global variable is executed on the site of that variable. An execution site can be
either a supervisor (typically a computer, possibly with a user interface) or a
programmable controller (called automata from here on, which are connected to
the industrial equipment through the sensors and actuators).

The dSL compiler/distributer automatically distributes the code among the
execution sites, trying to minimize communications, and compiles the distributed
code to an assembler-like language. This assembler-like code is interpreted by a
dSL Virtual Machine. A dSL virtual machine is available for both supervisors
and automata. This is illustrated in figure 2.

This approach has many benefits such as (1) maintainability (only one lan-
guage is used to program both the supervisors and automata) (2) flexibility (any
change of an actuator or a sensor does not imply changes in the program),(3)
simplicity (since communication / distribution is done implicitly, the program-
mer does not need to come up with synchronization schemes to handle particular
tasks).

Fig. 2. dSL

A dSL program contains several parts. (1) class declarations, (2) global vari-
ables declarations - including all I/O variables (3) method definitions (4) when
definitions (5) sequence definitions and (6) a program initialization. Each Input
(resp. Output) variable vin (resp. vout) is linked to a hardware sensor v∗in (resp.
actuator v∗out). For A simplified version of the dSL grammar, see appendix A.

Atomic and sequential code. The design of dSL has been dictated by the
execution paradigm requiring an immediate reaction to events and their instan-
taneous treatment. In practice this forbids any implicit synchronization during
the execution which implies inter-site communications (through a relatively slow
network). A clear way must therefore exist to express that inter-site synchroniza-
tion is allowed. Hence, in dSL, there is a distinction between:

– atomic code which must be executed in an atomic manner and therefore
cannot be distributed,

– sequential code which can be distributed and use inter-site communications
to synchronize or transfer values between sites.



CLASS Heater
control, state : INT;
maintenance : BOOL;

END_CLASS

GLOBAL_VAR
heater : Heater;
temperature, fuel_cost : INT;
alarm, led : BOOL;

END_VAR

SEQUENCE set_heater(new_state : INT)
heater.control := heater.control + 1;
heater.state := new_state;
IF (heater.state == 1) THEN

led := TRUE;
fuel_cost := fuel_cost + 10;

ELSE
led := FALSE;

END_IF
END_SEQUENCE

WHEN IN Heater (control==1000) THEN // W1
control := 0;
maintenance := TRUE;

END_WHEN

WHEN heater.maintenance THEN // W2
alarm := TRUE;

END_WHEN

WHEN ~temperature < 0 THEN // W3
IF (NOT heater.maintenance) THEN

LAUNCH set_heater(1);
END_IF

END_WHEN

WHEN ~temperature > 20 THEN // W4
IF (NOT heater.maintenance) THEN

LAUNCH set_heater(0);
END_IF

END_WHEN

PROGRAM
heater.control := 0;
heater.maintenance := FALSE;
LAUNCH set_heater(temperature<0);

END_PROGRAM

Fig. 3. A temperature control system in dSL

Code inside a WHEN (the instruction inside its body and the condition) is
forced atomic, and must therefore be local to a given site. Sequential code is
defined through the use of the SEQUENCE construct. The code inside a METHOD
can be either atomic or sequential depending on the context in which it is called.
If a METHOD can be reached from a WHEN, then the body of this METHOD is assumed
to be atomic. It is assumed sequential otherwise. To relax the atomic constraints
in a WHEN, two mechanisms have been defined (see figure 3) :

– The LAUNCH keyword allowing to call a SEQUENCE or a METHOD asynchronously
(i.e without waiting for the control to return from the SEQUENCE or the
METHOD), and possibly on a distant site. Note that a SEQUENCE can only be
called asynchronously (using LAUNCH) and that it cannot have more than one
instance executed simultaneously.

– The “~” operator allowing to reference the last locally known value of a
variable possibly on a distant site. When the value of a variable is changed
on the site governing it, its new value is sent to all necessary sites. One must
be careful with tilded variables since it is never guaranteed that the value
of the tilded variables corresponds to the real value of the variable. It can
be interesting to use if the exact value is not imperative (e.g. temperature
which evolves slowly), or if the program is built such that it is known that
the tilded value is equal to the real one (e.g. using a procedure for explicit
synchronization). A site that has a tilded copy of x, regularly checks if the
site owning x is still alive. If not, the copy is set to unknown, indicating
hardware or network failure.

dSL example. To illustrate the dSL concepts, let us examine a small example
of a temperature control system. In this system, a temperature sensor is linked to
an input variable temperature. A heater is turned on (off) if the temperature
is below 0o (above 20o). The state of the heater (on/off) is controlled by the
output variable heater.state. Moreover, there are two indicators on a control
panel. The first indicator, (linked to the output variable led) is used to indicate



the state of the heater, and the second (linked to the input variable alarm) is
updated when the heater has been turned on a certain number of times. An
additional variable fuel cost estimates the amount of fuel consumed by the
heater. The dSL program is presented in figure 3.

4 The dSL semantics

In this section, we introduce the dSL semantics, concentrating on the distributed
aspect of the language. We therefore skip a complete and formal review of well
known program issues like method call, control flow, expression evaluation and
the limited object oriented features.

The behavior of a dSL program depends on the localization of its variables.
Our goal is to describe the semantics of a dSL program independently from any
localization information. For that, we introduce the notion of maximal distri-
bution, which expresses the most permissive way to distribute a dSL program.
The semantics of a dSL program is then defined by the set of all behaviors of its
maximal distribution.

Maximal distribution. The maximal distribution is deduced from the locality
constraints imposed on global variables by the atomic code, e.g (1) two global
variables appearing in the same instruction and (2) two global variables accessed
by the same WHEN must be governed by the same site. This defines a partition of
the set of variables where each subset of the partition corresponds to an execution
site. A formal description of how to find the maximal distribution can be found
in appendix B.

Process behavior. The behavior of a dSL program P in its maximal distribu-
tion is given by

P1 ‖ ... ‖ Pn

where each Pi is an independent process executing the part of code of P handling
all the variables local to site i. These processes communicate through Fifo-
channels between each pair of processes. We will note Fi,j the Fifo-channels
used from a process Pi to another process Pj .

Every process Pi is an infinite loop. Each cycle (i.e iteration) is composed
of three phases: (1) the input phase, where each physical input is sampled and
where the variables linked to those inputs are updated, (2) the process phase
where the necessary WHENs are triggered and where the messages from other
execution site are processed and (3) the output phase where the physical outputs
are updated according to the variable they are linked to. The pseudo-code for
this input-process-output cycle is given by :

//input phase:
for each vin ∈ Pi linked to an input do vin ← v∗

in done
//process phase:
for each w ∈ W · V arW(w) ⊆ Pi do process w done
for each j ∈ {1, 2..., i − 1, i + 1, ..., n} do process messages from Fj,i done
//output phase:
for each vout ∈ Pi linked to an output do v∗

out ← vout done



where v∗in (v∗out) denotes the hardware value of the variable vin (vout), W the
set of WHENs, and V arW(w) the set of variables accessed by when w (for more
details see appendix B).

Processing WHENs. To each WHEN, we associate a hidden variable vw keeping the
previous value of the condition. This allows to trigger w of the form “WHEN”

cond “THEN” instruction list “END WHEN” only when the condition switched
from false to true. Note that the WHENs are processed in their order of appearance
in the dSL program. The pseudo code for the execution of w is :

if cond ∧ ¬vw then vw ← true; execute instruction list else vw ← cond fi

Processing Messages. Conceptually, there are two types of messages: (1) mes-
sages concerning the update of tilded variables and (2) messages concerning
the remote execution of sequential code. The first kind of message is of the
form (v, new value). Processing such a message simply consists in assigning this
new value to the local copy of v (see Assignment hereafter). The second kind
of message, corresponding to the LAUNCH or continuation of sequential code, is
simply a label. Indeed, when a process must execute remote code, it posts a
message with the label corresponding to the first instruction of that code to the
governing site. Processing such a message consists of the execution of the code
associated with that label, until it reaches the end of that code or is migrated
to another site.

Assignment. An assignment of the form v “:=” e “;” executed by the site Si
(v ∈ Si) has the usual result (the variable v is set to value of the expression
e), but dSL adds two features to that. First of all, all WHENs w are processed,
as explained previously. Secondly, if v has asynchronous distant copies (i.e. ~v),
then these must be updated. Therefore, for all sites Sj governing a ~v, a message
is posted in Fi,j with v and its new value (i.e. the value of e). Note that the
special behavior for assignment may cause infinite recursion in the processing of
whens. A simple static check allows us to reject programs that may contain this
unacceptable infinite recursion.

5 Static distribution process of dSL

In this section, we discuss dSL’s distribution algorithms and the dSL virtual
machine. First, for atomic code, the distributer has to assign a unique localiza-
tion to each instruction and each global variable such that the constraints on
atomic code are met. Next, for the sequential code, the instructions that were
not previously dealt with must be localized, taking into account the localization
already imposed on the global variables at the level of the distribution of the
atomic code. A second algorithm is introduced to solve this problem. Finally,
we show how, from the computed information on localization, the distribution
is actually achieved.

Satisfying the constraints on atomic code. In order to calculate indepen-
dent components, and to satisfy the localization constraints on atomic code, a



dependency graph is constructed whose purpose is to take into account the depen-
dencies between all instructions and global variables involved in the WHEN-part
of the dSL program.

Informally, a vertex in this graph is either (1) an instruction that appears
or is reachable through synchronous call from the body of any WHEN or (2) a
non tilded global variable appearing in these instructions. Edges exist between
two instructions when control may flow from one instruction to the other, while
edges between an instruction and a variable exist if the instruction contains the
variable.

Within this graph, an edge states that both vertices must be on the same site
to keep atomic code local to that site. Each connected component is indepen-
dent of the others and may be localized on a separate site. If inside one of the
components, different sites are specified by the localization table, the program
is not distributable. In this case, the designer must relax the atomic constraints
by introducing LAUNCH, “~” or SEQUENCE. Otherwise, if for a given component at
least one variable appears in the localization table, all vertices, i.e. instructions
and global variables, are localized on the site specified in the table. If this is not
the case (not a single variable in the component is present in the localization
table), the component can be assigned to any site, e.g. using a load-balancing
algorithm.

Remark that this algorithm forces not only the localization of instructions
from atomic code, but does the same for all instructions in sequential code that
use global variables also used in atomic code. It is up to the algorithm described
in the next paragraph to localize the remaining instructions.

Given the following localization table :

temperature Site 2 heater.state Site 2
alarm Site 1 heater.control Not imposed
led Site 1 heater.maintenance Not imposed
fuel cost Not imposed

the dependency graph, obtained by applying the previous method on the
example of figure 3 is represented in figure 4.a (the vertices Wi correspond to all
instructions in Wi of figure 3).

Remark that in this example, all variables but fuel cost are localized once
the atomic constraints are fulfilled and that imposing heater.control on a dif-
ferent site than heater.maintenancewould make the program not distributable.
Also remark that fields from a same class do not necessarily need to be localized
on the same site. The ~ in W3 and W4 relaxes the atomic constraints, and allows
temperature and heater.maintenance to be localized on different sites.

Localizing remaining sequential instructions. The sequential instructions
not constrained by the previous algorithm can be localized anywhere. However,
it is important to find a good, and if possible, optimal localization. Indeed, as
we show further on, between each pair of consecutive instructions of a sequence
(control may flow directly from one to the other), localized on different sites,
the distributer inserts a migration point so that execution stops on the first
site and may continue on the second site. A bad localization may result in a
program containing unnecessary migration points lowering the performance of
the program at runtime.



To evaluate the performance of a particular localization, we introduced the
notion of weighted colored control flow graph in [11] : a control flow graph
with weights on the edges expressing the mean number of times control will
flow following each edge during execution. In the case of an IF, these weights
are based on the estimated probability of the test being satisfied. For a WHILE,
they are based on an estimation of the mean number of times the body will be
executed. The weights are then obtained by recursively combining these values
for nested control structures (e.g. an IF branch with probability .3 nested in a
loop executing 5 times results in a weight of 1.5). The colors on the vertices model
the localization of each instruction (vertices with the same color are localized
on the same site). We then define the communication load as the sum of the
weights of the edges between vertices of different colors, which corresponds to
the mean number of migrations during execution.

The problem of finding the localization minimizing the communication load
can be defined as an instance of the NP-complete Colored Multiterminal Cut
problem which finds the optimal coloring for the uncolored vertices[3]. For a
formal definition of the problem and efficient heuristics, which are implemented
in our system, see [11].

The figure 4.b illustrates this algorithm based on the example in figure 3 and
the results of the previous algorithm. Remark that the algorithm should localize
fuel cost on site 1 in order to minimize the communication load.

Fig. 4. a. Satisfying constraints on atomic code, b. Localizing sequential instructions.

Executable distributed code. Once every variable and instruction is uniquely
assigned to a certain site, the distributer inserts migration points between in-
structions localized on different sites. The migration of the local context is based
on extensive use of def-use chains (definition-use, a classical data-flow analysis
technique[1]). Since we have complete knowledge of live variables, the distributer
can insert code that migrates only those local variables that are updated on the
current site and read elsewhere. Technically, context migrating code builds mes-
sages to ask the remote update of either register or stack entries on distant
sites. A valuable point of our migration method is that in contrast to many



systems where the complete stack is migrated [13, 18], dSL can use the informa-
tion provided by the compiler to migrate only what is needed, saving valuable
bandwidth. However, more instructions have to be interpreted to migrate the
context than would be needed if the complete stack was migrated. Since in our
target platform bandwidth is crucial because network speeds may be of very low
quality, our solution yields higher performance.

Execution environment. dSL uses virtual machines. This is clearly indispens-
able since dSL’s heterogeneous target platform consists of servers with a graphi-
cal user environment developed for Linux,UNIX,Windows on Intel or Power-PC
processors and PLCs (16 bit Motorola 68340 @ 25Mhz with 4MB RAM of which
2MB is flash, no OS) interfaced to the environment. The dSL Virtual Machine,
implemented for both server platforms and for the PLC hardware, can be clas-
sified as a CISC (i.e. Complex Instruction Set Computing) architecture, inter-
preting low level three-operand code, is single threaded and has a fixed amount
of allocated memory. Simplicity and performance are essential in its design. The
instruction set is very rich to optimize the interpretation/execution time ratio. In
particular the instruction set contains specific instructions handling execution-
and context-passing. Communications are guaranteed to respect message order-
ing and to be error free. In our implementation we use a simplified TCP/IP
protocol stack.

The absence of a scheduler and preempted code is a design choice that aims
at simplicity. Code is simply executed until it ends or migrates to another site.
There is therefore no performance penalty for context switching and no need for
a multi-threaded operating system.

An important feature of dSL’s execution environment is that the memory size
is bounded. Two reasons ensure this property : first, there is no dynamic memory
allocation in dSL, so global memory can statically be allocated. Secondly, only
a bounded number of processes with a local context coexist during execution.
Indeed, each site has one process that handles uninterruptible synchronous code
and remotely LAUNCHed methods. Finally, we can remark that since sequences
have only one running instance at a time and that stacks are limited to a certain
size, resulting in a statically known amount of memory.

In its current state, the dSL compiler/distributer and VM have been im-
plemented in 20k+7k lines of C/C++ code as a proof of concept. The present
implementation of the VM fits into 1MB of memory, including the dynamic
program loader, debugger and interpreter. Further development, separate com-
pilation, dynamic types, user interface, etc. is taken over by Macq Electronique.
The introduction of pointers makes the static distribution process of dSL hard.
We are working on a solution that uses extensive pointer analysis. Since dSL is
integrated into Macq Electronique’s OBviews, a commercial development envi-
ronment and toolkit for the programming and supervision of PLCs, it benefits
from a high number of existing utilities. The localization table as well as the
description of types and global variables uses the graphical user interface of OB-
Views’ database subsystem. The dSL Virtual Machine is compatible with the
OBViews’ supervision subsystem that allows, amongst others, to create graphi-
cal representations of the controlled system, stimulated by the state of the con-
trolling dSL program. In [12] we studied a controller, specified by a 200 lines dSL
program, for the locks of a canal where various distributed constraints have to
be respected (e.g. not to open both gates of the same lock). The resulting VM



code was distributed on 3 PLCs. As a proof of concept, we actually built a small
scale model of the locks using Lego MindstormsTm and interfaced the PLCs to
the engines and sensors6.

6 Future work

The main research we are conducting now and will pursue in the future is to
enable the formal verification of dSL. A first experiment has been conducted
on the canal locks example of [12], where the dSL source code is translated
into Promela, and verified for the correctness of safety properties by the Spin
model checker. We are working on the automatic translation of dSL to Promela
and more generally on an efficient way to verify dSL programs avoiding the
state space explosion problem. The indeterminism in dSL is caused by the asyn-
chronous composition and communications but not by the dSL code itself. We
hope to be able to use this fact to reduce the state space in addition to the classi-
cal methods like abstraction, symmetry and partial order reduction. We are also
investigating how lightweight verification can offer a solution between testing
and exhaustive verification. In order to achieve this validation, we developed a
prototype debugger capable of generating traces. The model checker is used to
explore the state space within a certain diameter of those traces.

In the case of exhaustive verification, we need to obtain a closed system. In
order to do so, we must build a sufficiently detailed specification of the envi-
ronment (i.e. the industrial process to control). This problem can be simplified
by offering the user a verified library of pre-constructed and parameterizable
common environments.

Further topics include efficiency (real-time behavior) and robustness issues.
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A dSL grammar

Note that this grammar is a reduced version of the complete dSL grammar. To
keep it compact, some rules may introduce ambiguity.

dsl program → decl list main program

main program → “PROGRAM” var decl instruction list “END PROGRAM”

decl list → decl decl list | decl

decl → class decl | global var decl | when decl | method decl | sequence decl

class decl → “CLASS” id var list “END CLASS”

global var decl → “GLOBAL VAR” var list “END VAR”

when decl → “WHEN” expression “THEN” instruction list “END WHEN” |
“WHEN” “IN” id expression “THEN” instruction list “END WHEN”

method decl → “METHOD” id “(” param decl “)” var decl instruction list
“END METHOD” | “METHOD” id “::” id “(” param decl “)” var decl
instruction list “END METHOD”

sequence decl → “SEQUENCE” id “(” param decl “)” var decl instruction list
“END SEQUENCE”

var decl → “VAR” var list “END VAR”

param decl → id list “:” var type | id list “:” var type “,” param decl

var list → id list “:” var type “;” | id list “:” var type “;” var list

id list → id | id “,” id list

var type → “INT” | “BOOL”

instruction list → instruction instruction list | instruction

instruction → if | while | assign “;” | synch call “;” | asynch call “;”

if → “IF” expression “THEN” instruction list “END IF” |
“IF” expression “THEN” instruction list “ELSE” instruction list
“END IF”

while → “WHILE” expression “DO” instruction list “END WHILE”

assign → lh side “:=” expression “;”

lh side → id | lh side “.” id

synch call → id “(” id list “)” | lh side “< −” id “(” id list “)”

asynch call → “LAUNCH” synch call

expression → expression binary op expression | unary op expression | “(” expression “)” |
lh side | “˜” lh side | constant

binary op → “+” | “−” | “∗” | “/” | “<” | “>” | “<>” | “<=” | “>=” | “==” | “AND” |
“OR”

unary op → “−” | “NOT” | “IS UNKNOWN”

constant → number | “TRUE” | “FALSE”



B Maximal distribution

Definition 1 (Sets of variables, expressions and instructions). Given
a dSL program, let V be the set of all its variables, let E be the set of all its
expressions, and I the set of all its instructions.

Definition 2 (Variables accessed in an expression). Let V arE : E → 2V

be a function that maps an expression e ∈ E to the set of all the non-tilded
variables appearing in e.

V arE (e) =











{v} if e ≡ v
V arE(e1) ∪ V arE(e2) if e ≡ e1 binary op e2
V arE(e1) if e ≡ “(” e1 “)” or e ≡ unary op e1

∅ if e ≡ “˜” e1 or e ≡ constant

This definition can be extended to sets of expressions V arE(E) = ∪e∈EV arE(e).

Definition 3 (Variables accessed in an instruction). Let V arI : I → 2V be
a function that maps an instruction i ∈ I to the set of all the variables appearing
in the immediate constituents of i.

V arI(i) =











{v} ∪ V arE(e) if i ≡ v “:=” e “;”
V arE(e) if i ≡ “IF” e “THEN” instruction list “END IF”
V arE(e) if i ≡ “WHILE” e “DO” instruction list

“END WHILE”

This definition can be extended to sets of instructions V arI(I) = ∪i∈IV arI(i).

Definition 4 (Variables accessed in a WHEN). If W denotes the set of all the
WHENs in the dSL program, let CondW : W → E be a function that maps a WHEN

w ∈ W to the triggering expression of w and let InstrW : W → 2I be a function
that maps a WHEN w ∈ W to the set of all instructions that can be reached
from the body of w, including all instruction in the body of w, all instructions
reached through synchronous call from the body of w as well as all instructions
reached through every WHEN that may be triggered because of an assignment of
the body of w, and this recursively. Moreover, let V arW : W → 2V denote
the set of global variables accessed by a WHEN: V arW(w) = V arE(CondW (w)) ∪
V arI(InstrW(w)).

Definition 5 (Maximal distribution). Let ≡v be the least equivalence rela-
tion on V such that ∀v1, v2 ∈ V:

(1) (∃i ∈ I · {v1, v2} ⊆ V arI(i)) → (v1 ≡v v2)
(2) (∃w ∈ W · {v1, v2} ⊆ V arW(w)) → (v1 ≡v v2)

The maximal distribution is defined by the set of equivalence classes {S1, ..., Sn}
of V induced by ≡v. Each Si defines an execution site.


