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Abstract. Current algorithms for the automatic verification of Petri nets suffer from the explosion
caused by the high dimensionality of the state spaces of practical examples. In this paper, we
develop an abstract interpretation based analysis that reduces the dimensionality of state spaces that
are explored during verification. In our approach, the dimensionality is reduced by trying to gather
places that may not be important for the property to establish. If the abstraction that is obtained is
too coarse, an automatic refinement is performed and a more precise abstraction is obtained. The
refinement is computed by taking into account information about the inconclusive analysis. The
process is iterated until the property is proved to be true or false.

1. Introduction

Petri nets (and their monotonic extensions) are well-adapted tools for modeling concurrent and infinite
state systems like, for instance, parametrized systems [20]. Even though their state space is infinite,
several interesting problems are decidable on Petri nets. The seminal work of Karp and Miller [22]
shows that, for Petri nets, an effective representation of the downward closure of the set of reachable
markings, the so-called coverability set, is constructable. This coverability set is the main tool needed to
decide several interesting problems and in particular the coverability problem. The coverability problem
asks: “given a Petri netN , an initial markingm0 and a markingm, is there a markingm′ reachable from
m0 which is greater or equal to m”. The coverability problem was shown decidable in the nineties for
the larger class of well-structured transition systems [14, 1]. That class of transition systems includes a
large number of interesting infinite state models including Petri nets and their monotonic extensions.

A large number of works have been devoted to the study of efficient techniques for the automatic
verification of coverability properties of infinite state Petri nets, see for example [10, 26, 2, 21]. Forward
and backward algorithms are now available and have been implemented to show their practical relevance.
All those methods manipulate, somehow, infinite sets of markings. Sets of markings are subsets of
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Figure 1. A Petri net with two distinct mutual exclusion properties (a) and its abstraction (b).

Nk where N is the set of positive integers and k is the number of places in the Petri net. We call k
its dimension. When k becomes large the above mentioned methods suffer from the dimensionality
problem: the sets that have to be handled have large representations that make them hard to manipulate
efficiently.

In this paper, we develop an automatic abstraction technique that attacks the dimensionality problem.
To illustrate our method, let us consider the Petri net of Fig. 1(a). This Petri net describes abstractly
a system that spawns an arbitrary number of processes running in parallel. There are two independent
critical sections in the system that correspond to places p4, p5 and to places p8, p9. One may be interested
in proving that mutual exclusion is ensured between p4 and p5. That mutual exclusion property is local
to a small part of the net, and it is intuitively clear that the places p6, p7, p8, p9, p10, p11, p12 are irrelevant
to prove mutual exclusion between p4 and p5. Hence, the property can be proved with an abstraction of
the Petri net as shown in Fig. 1(b) where the places {p1, p6, p7, p8, p9, p10, p11, p12} are not distinguished
and merged into a single place p′1. However, the current methods for solving coverability, when given
the Petri net of Fig. 1(a) will consider the entire net and manipulate subsets of N12. Our method will
automatically consider sets of lower dimensionality: in this case subsets of N5.

Our algorithm is based on two main ingredients: abstract interpretation and automatic refinement.
Abstract interpretation [9] is a well-established technique to define, in a systematic way, abstractions of
semantics. In our case, we will use the notion of Galois insertion to relate formally subsets in Nk with
their abstract representation in Nk′ with k′ < k. This Galois insertion allows us to systematically design
an abstract semantics that leads to efficient semi-algorithms to solve the coverability problem by manip-
ulating lower dimensional sets. We will actually show that the original coverability problem reduces to a
coverability problem of lower dimensionality and so our algorithm can reuse efficient implementations
for the forward and backward analysis of those abstractions. When the abstract interpretation is incon-
clusive, because it is not precise enough, our algorithm automatically refines the abstract domain. This
refinement ensures that the next analysis will be more precise. Moreover it guarantees that the abstract
analysis will eventually be precise enough to decide the problem. The abstraction technique that we
consider here uses all the information that has been computed by previous steps and is quite different
from the technique known as counterexample guided abstraction refinement [6].

We have implemented our automatic abstraction technique and we have evaluated our new algorithm
on several interesting examples of infinite state Petri nets taken from the literature. It turns out that
our technique finds low dimensional systems that are sufficiently precise abstractions to establish the
correctness of complex systems. We also have run our algorithm on finite state models of well-known
mutual exclusion protocols. On those, the reduction in dimension is less spectacular but our algorithm
still finds simplifications that would be very hard to find by hand.

To the best of our knowledge, this work is the first that tries to automatically abstract Petri nets
by lowering their dimensionality and which provide an automatic refinement when the analysis is not
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conclusive. In [3, 12], the authors provide syntactical criterion to simplify Petri nets while our technique
is based on semantics. Our technique provides automatically much coarser abstractions than the one we
could obtain by applying rules in [3, 12].

2. Preliminaries and Outline

We start this section by recalling Petri nets, their semantics and the coverability problem. Then, we
recall the main properties of existing algorithms to solve this coverability problem. We end the section
by giving an outline of our new algorithm.

2.1. Petri nets and their (concrete) semantics

In the rest of the paper our model of computation is given by the Petri net formalism. Given a set S we
denote by |S| its cardinality.

Definition 2.1. (Petri nets)
A Petri net N is given by a tuple (P, T, F,m0) where:

• P and T are finite disjoint sets of places and transitions respectively,

• F = (I,O) are two mappings: I,O : P × T 7→ N relating places and transitions. Once a linear
order is set on P and T , I and O can be seen as (|P | , |T |)-matrices over N (N|P |×|T | for short).
Let t∈ T , I(t) (resp. O(t)) denote the t-column vector in N|P | of I (resp. O).

• m0 is the initial marking. A marking m ∈ N|P | is a column vector giving a number m(p) of
tokens for each place p ∈ P . �

Throughout the paper we will use the letter k to denote |P |, i.e. the dimensionality of the net. We
introduce the partial order 6⊆ Nk × Nk such that for all m,m′ ∈ Nk : m 6 m′ iff m(i) ≤ m′(i) for
all i ∈ [1..k] (where [1..k] denotes the set {1, . . . , k}). It turns out that 6 is a well-quasi order (wqo
for short) on Nk meaning that for every infinite sequence of markings m1,m2, . . . ,mi, . . . there exists
indices i < j such that mi 6 mj . We also use m � m′ to denote that m 6 m′ ∧m 6= m′.

Definition 2.2. (Firing Rules of Petri net)
Given a Petri net N = (P, T, F,m0) and a marking m ∈ Nk we say that the transition t is enabled at m,
written m [t〉, iff I(t) 6 m. If t is enabled at m then the firing of t at m leads to a marking m′, written
m [t〉m′, such that m′ = m− I(t) +O(t). �

Given a Petri net we are interested in the set of markings it can reach. To formalize the set of reach-
able markings and variants of the reachability problem, we use the following lattice and the following
operations on sets of markings.

Definition 2.3. Let k ∈ N, the powerset lattice associated to Nk is the complete lattice (℘(Nk),⊆
,∪,∩, ∅,Nk) having the powerset of Nk as a carrier, union and intersection as least upper bound and
greatest lower bound operations, respectively and the empty set and Nk as the ⊆-minimal and ⊆-
maximal elements, respectively. �

We use Church’s lambda notation (so that F is λX.F (X)) and use the composition operator ◦ on
functions given by (f ◦ g)(x) = f(g(x)). Sometimes we also use logical formulas. Given a logical
formula ψ we write JψK for the set of its satisfying valuations.
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Definition 2.4. (The predicate transformers pre, p̃re, and post)
Let N a Petri net given by (P, T, F,m0) and let t ∈ T , we define preN [t], p̃reN [t], postN [t] : ℘(Nk) 7→
℘(Nk) as follows,

preN [t] def= λX. {m ∈ Nk | ∃m′ : m′ ∈ X ∧m [t〉m′}

p̃reN [t] def= λX. {m ∈ Nk | I(t) 
 m ∨m ∈ preN [t](X)}

postN [t] def= λX. {m ∈ Nk | ∃m′ : m′ ∈ X ∧m′ [t〉m} .

The extension to the set T ′ ⊆ T of transitions is given by, λX.
⋃

t∈T ′ fN [t](X) if fN is preN [T ′] or
postN [T ′]; and λX.

⋂
t∈T ′ fN [t](X) for fN = p̃reN [T ′]. �

To simplify notations, we use preN , p̃reN and postN instead of preN [T ], p̃reN [T ] and postN [T ].
In the sequel when the Petri net N is clear from the context we omit to mention N as a subscript.

Finally we recall a well-known result which is proved for instance in [8]: for any X,Y ⊆ Nk we have

post(X) ⊆ Y ⇔ X ⊆ p̃re(Y ) . (Gc)

Since all those predicate transformers are monotone functions over the complete lattice (℘(Nk),⊆
,∪,∩, ∅,Nk) so they can be used as building blocks to define fixpoints expressions.

In ℘(Nk), upward-closed and downward-closed sets are particularly interesting and are defined as
follows. We define the operator ↓ (resp. ↑ ) as λX. {x′ ∈ Nk | ∃x : x ∈ X ∧ x′ 6 x} (resp. λX. {x′ ∈
Nk | ∃x : x ∈ X ∧x 6 x′}). A set S is 6-downward closed (6-dc-set for short), respectively 6-upward
closed (6-uc-set for short), iff ↓S = S, respectively ↑S = S. We define DCS (Nk) (UCS (Nk)) to be
the set of all 6-dc-sets (6-uc-sets). A set M ⊆ Nk is said to be canonical if for any distinct x, y ∈ M
we have x � y. We say that M is a minor set of S ⊆ Nk, if M ⊆ S and ∀s ∈ S ∃m ∈M : m 6 s.

Lemma 2.1. ([11])
Given S ⊆ Nk, S has exactly one finite canonical minor set.

So, every 6-uc-set U can be represented by its finite canonical minor set, written min(U), becausexmin(U) = U . Ad-hoc data structures have been studied to represent compactly and manipulate
efficiently minor sets [26]. Since each 6-dc-set is the complement of a 6-uc-set, we conclude that it
has an effective representation. We also refer the interested reader to [22] where the authors define the
ω-markings which is an alternative representation for 6-dc-set.

We now formally state the coverability problem for Petri nets which corresponds to a fixpoint check-
ing problem. Our formulation follows [8].

Problem 1. Given a Petri net N and a 6-dc-set S, we want to check if the inclusion holds:

lfpλX. {m0} ∪ post(X) ⊆ S (1)

which, by [8, Thm. 4], is equivalent to

{m0} ⊆ gfpλX. S ∩ p̃re(X) . (2)

We write post∗(m0) and p̃re∗(S) to be the fixpoints of expressions (1) and (2), respectively. They are
called the forward semantics and the backward semantics of the net. They respectively denote the set
of reachable markings and the set of markings stuck in S (or stated otherwise the markings that cannot
escape from the set S of markings). So, with this view in mind, we find that the fixpoint checking
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problem asks, given a Petri NetN and a set S of markings, whether the reachable markings are included
in S or equivalently if the initial marking m0 belongs to the set of markings that cannot escape from S.

Note also that since S is a 6-dc-set, post∗(m0) ⊆ S if and only if
y(post∗(m0)) ⊆ S.

2.2. Existing algorithms

The solutions to Problem 1 found in the literature (see [16, 18]) iteratively compute finer overapproxi-
mations of

y(post∗(m0)) . All these solutions have in input an effective representation for (i) the initial
marking m0, (ii) the predicate transformer postN associated to the Petri net N and (iii) the 6-dc-set S.
They end up with an overapproximationR satisfying the following properties:

post∗N (m0) ⊆ R (A1)

R ∈ DCS (Nk) (A2)
postN (R) ⊆ R (A3)
post∗N (m0) ⊆ S → R ⊆ S (A4)

The solutions of [16, 18] actually solve Problem 1 for the entire class of well-structured transition sys-
tems (WSTS for short) which includes Petri nets and many other interesting infinite state models. In
[22, 19] the authors show that

y(post∗(m0)) is computable for Petri nets and thus the approximation
scheme presented above also encompasses these solutions.

In [1] an algorithm to compute the set p̃re∗(S) by evaluating its associated fixpoint (2) is given. The
algorithm works for the whole class of WSTS and thus also for Petri net 1

All these algorithms for Petri nets suffer from the explosion caused by the high dimensionality of the
state spaces of practical examples. In this paper, we develop an analysis that reduces the dimensionality
of state spaces that are explored during verification.

2.3. Overview of our approach

In order to mitigate the dimensionality problem, we adopt the following strategy. First, we define a
parametric abstract domain where subsets of Nk are abstracted by subsets of Nk′ where k′ < k (k′ being
a parameter). More precisely, when each dimension in the concrete domain records the number of tokens
contained in each place of the Petri net, in the abstract domain, each dimension records the sum of the
number of tokens contained in a set of places. Using this abstract domain, we define abstract forward and
abstract backward semantics, and define efficient algorithms to compute them. In those semantics, sets
of markings are represented by subsets of Nk′ . If the abstract semantics is not conclusive (the abstract
analysis returned a “don’t know” answer), it is refined automatically using a refinement procedure that
is guided by the inconclusive abstract semantics. During the refinement steps, we identify important
concrete sets and refine the current abstract domain to allow the exact representation of those sets.

The rest of our paper formalizes those ideas and is organized as follows. In Sect. 3, we define our
parametric abstract domain and we specify the abstract semantics. We also show how the precision
of different domains of the family can be related. In the section, we also establish the existence of the
coarsest abstract domain able to represent exactly a given setM of markings. This result is important for
the automatic refinement. In Sect. 4, we define an efficient way to overapproximate the abstract seman-
tics defined in Sect. 3. In Sect. 5, we put all those results together to obtain our algorithm that decides
coverability by successive approximations and refinements. Section 5 is also devoted to establishing the
correctness of our algorithm. Section 6 identifies the bottlenecks of the algorithm and proposes several
improvements which are validated by the experimental results which are given in Sect. 7.

1The fixpoint expression considered in [1] is actually different from (2) but coincides with its complement. This is a conse-
quence of the Park’s theorem [25].
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3. Abstraction of Sets of Markings

3.1. Partitions

At the basis of our abstraction technique are the partitions (of the set of places).

Definition 3.1. Let A be a partition of the set [1..k] into kA classes {Ci}i∈[1..kA]. We define the order�
over partitions as follows: A � A′ iff ∀C ∈ A∃C ′ ∈ A′ : C ⊆ C ′. It is well known, see [4], that the set
of partitions of [1..k] together with � form a complete lattice where {{1}, . . . , {k}} is the �-minimal
element, {{1, . . . , k}} is the �-maximal element and the greatest lower bound of two partitions A1 and
A2, noted A1 f A2, is the partition given by {C | ∃C1 ∈ A1 ∃C2 ∈ A2 : C = C1 ∩ C2 and C 6= ∅}.
The least upper bound of two partitions A1 and A2, noted A1 gA2, is the finest partition such that given
C ∈ A1 ∪A2 and {a1, a2} ⊆ C we have ∃C ′ ∈ A1 gA2 : {a1, a2} ⊆ C ′. �

Example 3.1. Given the set {a, b, c} and two partitions A1 = {{a, b}, {c}} and A2 = {{a, c}, {b}}.
We have that A1 fA2 = {{a}, {b}, {c}} and A1 gA2 = {a, b, c}.

Partitions will be used to abstract sets of markings by lowering their dimensionality. Given a marking
m (viz. a k-uple) and a partition A of [1..k] into kA classes we abstract m into a kA-uple mA by
summing all the coordinates of each class. A simple way to apply the abstraction on a marking m is
done by computing the product of a matrix A with the vector of m (noted A·m). So we introduce a
matrix based definition for partitions.

Definition 3.2. Let A be a partition of [1..k] given by {Ci}i∈[1..kA]. We associate to this partition a
matrix A := (aij)kA×k such that aij = 1 if j ∈ Ci, aij = 0 otherwise. So, A ∈ {0, 1}kA×k. We write
AkA×k to denote the set of matrices associated to the partitions of [1..k] into kA classes. Given a matrix
A, we sometimes use kA to denote the number of rows in A. �

From the above definition, we deduce that two distinct partitions A1 and A2 lead to two different ma-
trices. We also find that a matrix A matches a unique partition. Also note that, since in the matrix
based representation a linear order is given on the rows, permuting rows does not modify the associated
partition. Hence, whenever a partition A has several classes, several matrices match A. However if a
linear order is fixed on the classes of the partitions then the associated matrix is unique. Henceforth we
assume that each partition is provided with a linear order on its classes so that we can identify a partition
with its unique associated matrix.

3.2. Abstract Semantics

We are now equipped to define an abstraction technique for sets of markings. Then we focus on the
abstraction of the predicate transformers involved in the fixpoints of (1) and (2).

Definition 3.3. Let A ∈ AkA×k, we define the abstraction function αA : ℘(Nk) 7→ ℘(NkA) and the
concretization function γA : ℘(NkA) 7→ ℘(Nk) respectively as follows

αA
def= λX. {A·x | x ∈ X} γA

def= λX. {x | A·x ∈ X} .

�

Furthermore, if A is clear from the context, we will write α (resp. γ) instead of αA (resp. γA). Given
the posets 〈L,0〉 and 〈M,v〉 and the maps α ∈ L 7→M , γ ∈M 7→ L, we write 〈L,0〉 −−→−→←−−−

α

γ
〈M,v〉

if they form a Galois insertion [9], that is ∀x ∈ L,∀y ∈M : α(x) v y ⇔ x 0 γ(y) and α ◦ γ = λx. x.

Proposition 3.1. Let A ∈ AkA×k, we have (℘(Nk),⊆) −−→−→←−−−
α

γ
(℘(NkA),⊆).
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Proof:
Let X ⊆ Nk and Y ⊆ NkA ,

α(X) ⊆ Y ⇔ {A·x | x ∈ X} ⊆ Y def. 3.3
⇔ ∀x : x ∈ X → A·x ∈ Y
⇔ X ⊆ {x | A.x ∈ Y }
⇔ X ⊆ γ(Y ) def. 3.3

Now, we prove that α ◦ γ = λx. x. Given y ∈ Y , we define x ∈ Nk such that for each class Ci of A we
choose j ∈ Ci and set x(j) = y(i) and x(k) = 0 for k ∈ Ci \ {j}. It is routine to check that A · x = y.

α ◦ γ(Y ) = α({x | A·x ∈ Y })
= {A·x | A·x ∈ Y } def. 3.3
= Y by above ut

In the sequel we use the property that the abstraction function α is additive (i.e. α(A ∪ B) = α(A) ∪
α(B)) and that γ is co-additive (i.e. γ(A ∩B) = γ(A) ∩ γ(B)).

The Petri Net N depicted on the right has three
places {p1, p2, p3} and three transitions {t1, t2, t3},
and its initial marking m0 is given by 〈0, 1, 0〉. Let

A =

(
1 0 1
0 1 0

)
be the matrix associated to

the partition {{p1, p3}, {p2}} of the places of N .
We have that α(m0) = A· (0 1 0)T = 〈0, 1〉 by
def. 3.3, hence that γ ◦ α(m0) = γ(〈0, 1〉) =
〈0, 1, 0〉 by def. 3.3, and so m0 is represented ex-
actly. However γ ◦ α(〈1, 1, 0〉) = γ(〈1, 1〉) =
{〈1, 1, 0〉, 〈0, 1, 1〉}, hence 〈1, 1, 0〉 is not repre-
sented exactly by α(〈1, 1, 0〉) = 〈1, 1〉.

p1

•p2

p3t1

t2

t3

2

Figure 2. An example of abstraction associated to a Petri Net .

Fig. 2 illustrates the above definitions. Given a Galois insertion, the theory of abstract interpreta-
tion [9] provides us with a theoretical framework to systematically derive approximate semantics. The
concrete forward semantics of a Petri net N is given by post∗N (m0). Since we have a Galois insertion,
post∗N (m0) has a unique best approximation in the abstract domain. This value is α(post∗N (m0)).

Unfortunately, there is no general method to compute this approximation without computing post∗N (m0)
first. So instead of trying to compute this abstract value, we compute an overapproximation. Let F be an
overapproximation of α(post∗N (m0)) and let B be an overapproximation α(p̃re∗N (S)). The following
lemma which easily follows from the results of [7] shows the usefulness of such approximations.

Lemma 3.1. Given a Petri net N and a 6-dc-set S we have γ(F) ⊆ S → post∗N (m0) ⊆ S and
{m0} * γ(B)→ post∗N (m0) * S.

Abstract interpretation [9] tells us that to compute an overapproximation of fixpoints of a concrete
function f , what we can do is to define a function f ] over the abstract domain which is such that f ] is
an abstract counterpart of f . Intuitively, it means that f ] must approximate the function f . In [9] the
authors show that, in the context of a Galois insertion, the most precise approximation of f is unique
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and coincides with α ◦ f ◦ γ which is called the best abstract counterpart of f so that each abstract
counterpart f ] of f is less precise than α ◦ f ◦ γ.

So to approximate α(lfpf) (resp. lfpf ) a solution is to compute lfpf ] (resp. γ(lfpf ])) where f ] is
an abstract counterpart of f . A similar reasoning holds for gfp expressions. As a possible instantiation
for our context, we obtain the following:

α(post∗N (m0)) ⊆ lfpλX.α({m0} ∪ post(γ(X))) andα(p̃re∗N (S)) ⊆ gfpλX.α(S ∩ p̃re(γ(X))) (3)

It is worth pointing that using properties of Galois insertions we deduce the following:

post∗N (m0) ⊆ γ
(
lfpλX.α({m0} ∪ post(γ(X)))

)
and p̃re∗N (S) ⊆ γ

(
gfpλX.α(S ∩ p̃re(γ(X)))

)
.

(4)

Note that the specification α ◦ f ◦ γ of the best abstract counterpart of f naturally suggests to con-
cretize the argument, then apply f and finally to abstract its result. In practice applying this methodology
leads to inefficient algorithms. Indeed the explicit computation of γ is in general costly. In our settings
it happens that given an effective representation of M the effective representation of the set γ(M) could
be exponentially larger. In fact, let A be a partition of [1..k] given by {Ci}i∈[1..kA] and let m̂ ∈ NkA , we
have |γ(m̂)| =

∏
i∈[1..kA]

(m̂(i)+|Ci|−1
|Ci|−1

)
. Section 4 is devoted to the definition of the abstract counterpart

of predicate transformers (possibly the best one) without explicitly evaluating γ.

3.3. Refinement

As mentioned in Sect. 2, our algorithm is based on the abstraction refinement paradigm. In that context,
if the current abstractionAi is inconclusive we refine it into an abstractionAi+1 which overapproximates
sets of markings and predicate transformers more precisely than Ai.

The first result states that the concretization function for the �-minimal partition defines a bijection
on ℘(Nk) which implies that every two distinct sets of markings match distinct abstract values.

Lemma 3.2. Let A⊥ denote the partition {{1}, . . . {k}}. We have γA⊥(℘(Nk)) = ℘(Nk).

Proof:
Each class of the partition A⊥ is a singleton. Hence the associated matrix is the identity matrix (up to a
permutation of the rows) and so the result follows. ut

The next lemma relates partitions and the precision of the abstract domains thereof.

Lemma 3.3. LetA1, A2 be two partitions of [1..k] s.t. A1 � A2, we have γA1(℘(NkA1 )) ⊆ γA2(℘(NkA2 ))

Proof:
By definition of γA, we have that γA(X) =

⋃
m∈X γA({m}). Hence, it is sufficient to prove that

γA1({{m} | m ∈ NkA1}) ⊆ γA2({{m} | m ∈ NkA2}) .

Also by the surjectivity of the abstract function (recall that α ◦ γ = λx. x holds by Galois insertion) it
is sufficient to prove the following. Let m̂ ∈ Nk, we denote by m and m′ the markings αA1(m̂) and
αA2(m̂), respectively; we show that γA1(m) ⊆ γA2(m

′).
We conclude from A1 � A2 that for each C ′ ∈ A2 the set ℘(C ′)∩A1 is a partition of C ′, hence that∑

C∈℘(C′)
C∈A1

m(C) = m′(C ′) (5)
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by definition of m′,m. Then, we have

{m1 ∈ Nk |
∑

s′∈C′

m1(s′) = m′(C ′)}

= {m1 ∈ Nk |
∑

s′∈C′

m1(s′) =
∑

C∈℘(C′)
C∈A1

m(C)} by (5)

⊇ {m1 ∈ Nk |
∧

C∈℘(C′)
C∈A1

∑
s∈C

m1(s) = m(C)}

(
a = b ∧
c = d

)
→

(
a+ c =
b+ d

)

=
⋂

C∈℘(C′)
C∈A1

{m1 ∈ Nk |
∑
s∈C

m1(s) = m(C)} (6)

Finally,

γA2({m′}) =
⋂

C′∈A2

{m1 ∈ Nk |
∑

s′∈C′

m1(s′) = m′(C ′)} by def. of γA2

⊇
⋂

C′∈A2

⋂
C∈℘(C′)

C∈A1

{m1 ∈ Nk |
∑
s∈C

m1(s) = m(C)} by (6)

=
⋂

C∈A1

{m1 ∈ Nk |
∑
s∈C

m1(s) = m(C)} A1 � A2

= γA1({m}) def. of γA1

ut

Corollary 3.1. Let A1, A2 be two partitions of [1..k] and let A = A1 fA2, we have

γA1(℘(NkA1 )) ∪ γA2(℘(NkA2 )) ⊆ γA(℘(NkA)) .

So by refining partitions, we refine abstractions. The following result tells us that if two partitions
are able to represent exactly a set then their join is also able to represent that set.

Lemma 3.4. Let A1, A2 be two partitions of [1..k] and let A = A1 gA2. For all M ⊆ Nk we have

if

{
γA1

◦ αA1(M) = M

γA2
◦ αA2(M) = M

}
then γA ◦ αA(M) = M . (7)

Proof:
We first observe that by property of Galois insertion we have that γ′A ◦ α′A(M) ⊇ M for each partition
A′ and each set of markings M . We thus concentrate on the reverse inclusion property. Given an
abstraction A, we define µA = γA ◦ αA. Let m ∈ M and m′ ∈ µA({m}). We will show that there
exists a finite sequence µAi1

, µAi2
, . . . , µAin

such that m′ ∈ µAi1
◦ µAi2

◦ . . . ◦ µAin
({m}) and

∀j ∈ [1..n] : ij ∈ [1..2]. Then we will conclude that m′ ∈M by the left hand side of (7).
It is well known that given a set S, the set of partitions of S coincides with the set of equivalence

classes in S. So we denote by ≡A the equivalence relation defined by the partition A.
We thus getm′ ∈ µA({m}) iffm′ may be obtained fromm by moving tokens inside the equivalence

classes of≡A. More precisely, let v ∈ N, and a, b be two distinct elements of [1..k] such that 〈a, b〉 ∈≡A
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and two markings m1,m2 ∈ Nk such that

m2(q) =


m1(q) + v if q = a

m1(q)− v if q = b

m1(q) otherwise.

Intuitively the marking m2 is obtained from m1 by moving v tokens from b into a. So, since on the one
hand b and a belong to the same equivalence class and, on the other hand m2 and m1 contain an equal
number of tokens, we find that m2 ∈ µA({m1}).

Now, we use the result of [4, Thm. 4.6] over the equivalence classes of a set. The theorem states that
〈a, b〉 ∈≡A iff there is a sequence of elements c1, . . . , cn′ of [1..k] such that

〈ci, ci+1〉 ∈≡A1 or 〈ci, ci+1〉 ∈≡A2 (8)

for i ∈ [1..n′ − 1] and a = c1, b = cn′ . From c1, . . . , cn′ we define a sequence of n′ moves whose
global effect is to move v tokens from b into a. So given m1, the marking obtained by applying this
sequence of n′ moves is m2. Moreover, by (8) we have that each move of the sequence is defined inside
an equivalence class of≡A1 or≡A2 . Hence each of those moves can be done using operator µA1 or µA2 .

Repeated application of the above reasoning shows thatm′ is obtained by moving tokens ofmwhere
moves are given by operators µA1 and µA2 . Formally this finite sequence of moves µAi1

, µAi2
, . . . , µAin

is such that ∀j ∈ [1..n] : ij ∈ [1..2] and m′ ∈ µAi1
◦ µAi2

◦ . . . ◦ µAin
({m}). Finally, left hand side of

(7) and monotonicity of µA1 , µA2 shows that m′ ∈M . ut

Corollary 3.2. Let A1, A2 be two partitions of [1..k] and let A = A1 gA2, we have

γA1(℘(NkA1 )) ∩ γA2(℘(NkA2 )) ⊆ γA(℘(NkA)) .

Proposition 3.2. Given k ∈ N and M ⊆ Nk, the coarsest partition of [1..k] which represents exactly
M exists and is given by

b
{A | γA ◦ αA(M) = M}.

Proof:
From Lem. 3.2 there is at least one partition that represents exactly M . Moreover Cor. 3.2 shows thatb
{A | γA ◦ αA(M) = M} is unique by definition of the lattice of partitions, represents exactly M and

is the coarsest. ut

We end this section by a series a technical results that are needed in the sequel.

Lemma 3.5. Let A ∈ AkA×k and X,Y ⊆ Nk,

γ ◦
y(X) = ↓ ◦ γ(X), γ ◦

x(X) = ↑ ◦ γ(X)

α ◦
y(X) = ↓ ◦ α(X), α ◦

x(X) = ↑ ◦ α(X)

∀m1,m2 ∈ Nk : m1 � m2 implies α(m1) � α(m2) (strict monotonicity)

∀m3 ∈ γ(m1)∃m4 ∈ γ(m2) : m4 � m3 for each m1,m2 ∈ NkA such that m1 � m2

γ(¬X) = ¬ ◦ γ(X)
α(¬X) = ¬ ◦ α(X) provided γ ◦ α(X) = X

α(Y ∩X) = α(Y ) ∩ α(X) provided γ ◦ α(X) = X
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Lemma 3.6. Let A ∈ AkA×k, the set γA(NkA) is closed under union, intersection and complement.

Proof:
We know that each Galois connection satisfies the Moore closure property, which means that the set
γA(NkA) is closed to intersection. Next we have that

γA ◦ αA(S) = S ⇔ ¬ ◦ γA ◦ αA(S) = ¬S
⇔ γA ◦ ¬ ◦ αA(S) = ¬S Lem. 3.5
⇒ γA ◦ αA(¬S) = ¬S Lem. 3.5

Finally, note that S1 ∪ S2 = ¬(¬S1 ∩ ¬S2). Hence, the closure under intersection and complement
implies the closure under union. ut

Moreover, Lemma 3.6 implies that the concretization function is additive as shown below.

Lemma 3.7. Let A ∈ AkA×k and S1, S2 ⊆ NkA , we have that γA(S1 ∪ S2) = γA(S1) ∪ γA(S2).

Proof:

γA(S1 ∪ S2) = γA(αA ◦ γA(S1) ∪ αA ◦ γA(S2)) Si = αA ◦ γA(Si) by Galois insertion
= γA ◦ αA(γA(S1) ∪ γA(S2)) αA is additive

Finally, applying Lemma 3.6, we conclude that γA ◦ αA(γA(S1) ∪ γA(S2)) = γA(S1) ∪ γA(S2). ut

4. Efficient Abstract Semantics

In this section, we show how to compute a precise overapproximation of the abstract semantics effi-
ciently without evaluating the concretization function γ. For that, we show that to each Petri net N of
dimensionality k and each abstraction A ∈ AkA×k, we can associate a Petri net N̂ of dimensionality kA

whose concrete forward and backward semantics gives precise overapproximations of the abstraction by
A of the semantics of N as we previously stated in (3), p. 8.

4.1. Abstract net

To evaluate the best abstract counterpart of postN [t] and p̃reN [t] for each t ∈ T , without explicitly
evaluating γ, we associate for each Petri net N and abstraction A a Petri net N̂ .

Definition 4.1. Let N be a Petri net given by (P, T, F,m0) and let A ∈ AkA×k. We define the tuple
(P̂ , T, F̂ , m̂0) where P̂ is a set of kA places (one for each class of the partition A); F̂ = (Î, Ô) is such

that Î def= A· I and Ô def= A· O; m̂0 is given by A·m0. The tuple is a Petri net since m̂0 ∈ N|P̂ |, and
Î, Ô ∈ N(|P̂ |,|T |). We denote by N̂ this Petri net. �

Fig. 3 illustrates the definition of abstract net given the partition {{p1, p3}, {p2}}. At this early stage
we already can noticed that the forward semantics of the abstracted net N̂ fails to establish that the
place p2 is 1-safe, which holds on the original net N . In fact, post N̂ (m̂0) = {(2i, j) | 2i + j ≥ 1}.
Accordingly a refinement step has to take place. In this paper, our refinement refines the partition
defining the abstract net, i.e. it splits classes of the partition. Hence a new abstrated net is defined.
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p1

•p2

p3t1

t2

t3

2
A =

(
1 0 1
0 1 0

) p1,3

•

p2t1

t2

t3

2

Figure 3. A Petri net N , a partition A of its places, and the associated abstract Petri net N̂ .

4.2. Forward overapproximation

The next proposition states that the best abstract counterpart of the predicate transformer postN is given
by the predicate transformer post N̂ of the abstract net.

Proposition 4.1. Given a Petri net N = (P, T, F,m0), A ∈ AkA×k and N̂ the Petri net given by
def. 4.1, we have that λX.α ◦ postN ◦ γ(X) = λX. post N̂ (X).

Proof:
Definition 2.4 states that postN = λX.

⋃
t∈T postN [t](X). Thus, for t ∈ T , we show that α ◦ postN [t] ◦

γ = post N̂ [t]. Then the additivity of α shows the desired result.
For each t ∈ T , for each m̂ ∈ NkA ,

α ◦ postN [t] ◦ γ(m̂)
= α ◦ postN [t]({m | m ∈ γ(m̂)})
= α({m− I(t) +O(t) | m ∈ γ(m̂) ∧ I(t) 6 m}) def. 2.2
= {A· (m− I(t) +O(t)) | m ∈ γ(m̂) ∧ I(t) 6 m} def. 3.3
= {A·m−A· I(t) +A· O(t) | m ∈ γ(m̂) ∧ I(t) 6 m}
= {α(m)−A· I(t) +A· O(t) | m ∈ γ(m̂) ∧ I(t) 6 m} def. of α

= {m̂−A· I(t) +A· O(t) | m ∈ γ(m̂) ∧ I(t) 6 m} −−→−→←−−−
α

γ

= {m̂− Î(t) + Ô(t) | m ∈ γ(m̂) ∧ I(t) 6 m} def. 4.1

= {m̂− Î(t) + Ô(t) | {I(t)} ⊆ ↓ ◦ γ(m̂)} def. of ↓

= {m̂− Î(t) + Ô(t) | {I(t)} ⊆ γ ◦
y(m̂)} Lem. 3.5

= {m̂− Î(t) + Ô(t) | α({I(t)}) ⊆
y(m̂)} −−→−→←−−−

α

γ

= {m̂− Î(t) + Ô(t) | Î(t) 6 m̂} def. 4.1
= post N̂ [t](m̂) def. 2.2

ut

The consequences of Prop 4.1 are twofold. First, it gives a way to compute α ◦ postN ◦ γ without
computing explicitly γ and second since post N̂ = α ◦ postN ◦ γ and N̂ is a Petri net we can use any
state of the art tool to check whether post∗

N̂
(m̂0) ⊆ α(S) and conclude, provided γ ◦ α(S) = S, that

γ(post∗
N̂

(m̂0)) ⊆ S, hence that post∗N (m0) ⊆ S by Lem. 3.1.
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4.3. Backward overapproximation

Below we show that given a Petri Net N = (P, T, F,m0) the best abstract counterpart of the predi-
cate transformer p̃reN [t] (for t ∈ T ) can be computed using p̃reN̂ [t] where N̂ is given as in def. 4.1.
However, as we will see this result does not extend to p̃reN [T ]. To obtain those results, we need some
intermediary lemmas (i.e. Lem. 4.1, 4.2 and 4.3).

Lemma 4.1. Given a Petri net N = (P, T, F,m0), A ∈ AkA×k and N̂ the Petri net given by def. 4.1,
we have that λX.α ◦ preN ◦ γ(X) = λX. preN̂ (X).

Proof:
The proof is similar to the proof of Prop. 4.1 withO (resp. Ô) replaced by I (resp. Î) and vice versa. ut

Lemma 4.2. Given a Petri net N = (P, T, F,m0) and a partition A = {Cj}j∈[1..kA] of [1..k], if ∃i ∈
[1..k] : I(i, t) > 0 and {i} 6∈ A then α({m ∈ Nk | I(t) 
 m}) = NkA .

Proof:
Besides the hypothesis assume i ∈ Cj and consider l ∈ [1..k] such that l ∈ Cj and l 6= i. The set
{m ∈ Nk | I(t) 
 m} is a 6-dc-set given by the following formula:∨

p∈[1..k]
I(p,t)>0

xp < I(p, t) .

We conclude from i ∈ [1..k] and I(i, t) > 0 that Jxi < I(i, t)K = {〈v1, . . . , vi, . . . , vk〉 | vi < I(i, t)},
hence that α(Jxi < I(i, t)K) = NkA by {i, l} ⊆ Cj ∈ A, and finally that α(Jxi < I(i, t)K) ⊆
α(J
∨

p∈[1..k]
I(p,t)>0

xp < I(p, t)K) by additivity of α. It follows that α({m ∈ Nk | I(t) 
 m}) =

α(J
∨

p∈[1..k]
I(p,t)>0

xp < I(p, t)K) = NkA . ut

Lemma 4.3. Given a Petri net N = (P, T, F,m0), a partition A = {Cj}j∈[1..kA] of [1..k] and N̂ the
Petri net given by def. 4.1, if for each i ∈ [1..k] : I(i, t) > 0 implies {i} ∈ A, then α({m ∈ Nk | I(t) 

m}) = {m ∈ NkA | Î(t) 
 m)}.

Proof:

α({m ∈ Nk | I(t) 
 m})
= {A ·m | m ∈ Nk ∧ I(t) 
 m} def. of α

= {A ·m | m ∈ Nk ∧A · I(t) 
 A ·m} if I(i, t) > 0 then {i} ∈ A for each i ∈ [1..k]

= {A ·m | m ∈ Nk ∧ Î(t) 
 A ·m} def. of Î
= {m̂ ∈ NkA | ∃m ∈ Nk : m̂ = A ·m ∧ Î(t) 
 m̂}
= {m̂ ∈ NkA | Î(t) 
 m̂} tautology

ut

We are now ready to state and prove that p̃reN̂ [t] is the best abstract counterpart of p̃reN [t].
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Proposition 4.2. Given a Petri net N = (P, T, F,m0), a partition A = {Cj}j∈[1..kA] of [1..k] and N̂
the Petri net given by def. 4.1, we have

λX.α ◦ p̃reN [t] ◦ γ(X) =

{
NkA if ∃i ∈ [1..kA] : |Ci| > 1 ∧ Î(i, t) > 0
λX. p̃reN̂ [t](X) otherwise.

Proof:

α ◦ p̃reN [t] ◦ γ(S)

= α ◦ p̃reN [t]({m ∈ Nk | m ∈ γ(S)})
= α({m | (I(t) 
 m) ∨ (I(t) 6 m ∧m− I(t) +O(t) ∈ γ(S))}) def. of p̃reN [t]
= α({m | I(t) 
 m}) ∪ α({m | I(t) 6 m ∧m− I(t) +O(t) ∈ γ(S)}) additivity of α
= α({m | I(t) 
 m}) ∪ α ◦ preN [t] ◦ γ(S) def. of preN [t]
= α({m | I(t) 
 m}) ∪ preN̂ [t](S) by Lem. 4.1

We now consider two cases:

• ∃i ∈ [1..k] : I(i, t) > 0 and {i} 6∈ A. Lemma 4.2 shows that α ◦ p̃reN [t] ◦ γ(S) = NkA ;

• ∀i ∈ [1..k] : I(i, t) > 0 implies {i} ∈ A. In this case we have

α ◦ p̃reN [t] ◦ γ(S) = {m ∈ NkA | Î(t) 
 m} ∪ preN̂ [t](S) by Lem. 4.3
= p̃reN̂ [t](S) def. of p̃reN̂ [t]

ut

Definition 4.2. Given a Petri Net N = (P, T, F,m0), a partition A = {Cj}j∈[1..kA] of [1..k] and t ∈ T
we denote by φA

t the following formula: ∃i ∈ [1..kA] : |Ci| > 1∧ Î(i, t) > 0. We also use TA to denote
the set of transitions {t ∈ T | φA

t is false}. �

From the result of Prop. 4.2, let us see how to approximate p̃re∗N (S) for S ⊆ Nk without evaluating
γ explicitly. To this end we recall the result of (3), p. 8 which is based on the best abstract counterpart
of p̃reN and states that: α(p̃re∗N (S)) ⊆ gfp(λX.α(S ∩ p̃reN ◦ γ(X))). This latter fixpoint is in turn
approximated as follows:

gfpλX.α(S ∩ p̃reN ◦ γ(X))

= gfpλX.α(S) ∩ α ◦ p̃reN ◦ γ(X) Lem. 3.5 provided γ ◦ α(S) = S2

= gfpλX.α(S) ∩ α ◦
⋂
t∈T

p̃reN [t] ◦ γ(X) def. of p̃reN

⊆ gfpλX.α(S) ∩
⋂
t∈T

α ◦ p̃reN [t] ◦ γ(X) α(A ∩B) ⊆ α(A) ∩ α(B)

= gfpλX.α(S) ∩ p̃reN̂ [TA](X) Prop. 4.2, def. of TA

Note that if TA = ∅ then gfpλX. S ∩ p̃reN̂ [TA](X) is defined to be S.
We see that this result for the backward semantics is weaker then what we obtained for the forward

semantics. This difference stems from the fact that α is not co-additive (i.e. α(A∩B) 6= α(A)∩α(B)).

2As we will see later, this hypothesis is going verified in the context of our algorithm.
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5. The Algorithm

The algorithm we propose is given in Alg. 1. In that algorithm, we use the following notations: αi and
γi instead of αAi and γAi , and given a set S ⊆ Nk, we denote by dSe the partition of [1..k] given by
(
b
{A | γA ◦ αA(S) = S}), i.e. the coarsest partition that allows to represent exactly S. Given a Petri

net N and a 6-dc-set S, the algorithm builds abstract nets N̂ with smaller dimensionality than N (line
4), analyses them (lines 5–10), and refines them (line 13) until it concludes. To analyse an abstraction
N̂ , the algorithm first uses a model-checker that answers the coverability problem for N̂ and the 6-
dc-set αi(S) using any algorithm proposed in [22, 18, 16]. Besides an answer those algorithms return
an overapproximation of the fixpoint post∗

N̂
(m̂0) that satisfies A1–4. If the model-checker returns a

positive answer then, following the abstract interpretation theory, Alg. 1 concludes that post∗N (m0) ⊆ S
(line 6). Otherwise, Alg. 1 tries to decide if {m0} * p̃re∗N (S) checking the inclusion given by (2) (line
9–13). The fixpoint of (2) is computable by [1] but practically difficult to build for the net N and S.
Hence, our algorithm only builds an overapproximation by evaluating the fixpoint on the abstract net
N̂ instead of N , i.e. we evaluate the fixpoint gfpλX.αi(S) ∩ p̃reN̂ [TA](X) which overapproximates
α
(
gfpλX. S ∩ p̃reN (X)

)
by (3), p. 8. Since the abstractions N̂ have a smaller dimensionality than

N , the greatest fixpoint can be evaluated more efficiently on N̂ . Moreover, at the ith iteration of the
algorithm (i) we restrict the fixpoint to the overapproximation Ri of post∗

N̂
(αi(m0)) computed at line

5, and (ii) we consider αi(Zi) instead of αi(S). Point (i) allows the algorithm to use the information
given by the forward analysis of the model-checker, and point (ii) is motivated by the fact that at each
step i we have gfpλX.αi(S) ∩ Ri ∩ p̃reN̂ [TA](X) ⊆ αi(Zi) ⊆ αi(S). That allows us to consider
αi(Zi) instead of αi(S) without changing the fixpoint, leading to a more efficient computation of it (see
[1] for more details). Those optimisations are safe in the sense that if the fixpoint we evaluate at line 9
does not contain αi(m0) then post∗N (m0) 6⊆ S, hence its usefulness to detect negative instances (line
10).

If the algorithm cannot conclude, it refines the abstraction. The main property of the refinement
is that the sequences of Z ′

is computed at line 12 is strictly decreasing and converge in a finite number
of steps to p̃re∗N (S) ∩ R where R is an inductive overapproximation of post∗N (m0). Suppose that at
step i, we have Zi+1 = p̃re∗N (S) ∩ R. Hence, γi+1 ◦ αi+1(p̃re

∗
N (S) ∩ R) = p̃re∗N (S) ∩ R. If

post∗N (m0) ⊆ S then post∗N (m0) ⊆ p̃re∗N (S)∩R and the abstract interpretation theory guarantees that
post∗

N̂
(αi+1(m0)) ⊆ αi+1(p̃re

∗
N (S) ∩ R) ⊆ αi+1(S), hence the Checker will return the answer OK

at iteration i+1. Moreover, if post∗N (m0) 6⊆ S thenm0 6∈ p̃re∗N (S), hencem0 6∈ p̃re∗N (S)∩R, and the
algorithm will return KO at step i+ 1 because we have Zi+1 = p̃re∗N (S)∩R, hence m̂0 6∈ αi+1(Zi+1)
by monotonicity of αi+1 and Zi+1 does not include m̂0. Again, we do not evaluate the greatest fixpoint
p̃re∗N (S) because the dimensionality of N is too high and the evaluation is in general too costly in
practice. Hence, we prefer to build overapproximations that can be computed more efficiently.

We now formally prove that our algorithm is sound, complete and terminates.

Lemma 5.1. In Alg. 1, at the ith iteration, we have γi ◦ αi(Zi) = Zi.

Proof:
We prove, by induction on i, that Zi ∈ γi(℘(Nki)) where ki is the number of elements in the partition
Ai, hence that there exists a ⊆ ℘(Nki) such that γi(a) = Zi, and finally that γi ◦ αi(Zi) = Zi by
property of Galois insertion. For the base case, line 1 (Z0 = S) and assumption S ∈ γ0(℘(Nk0)) show
that Z0 ∈ γ0(℘(Nk0)). The inductive case follows immediately by line 13. ut

Lemma 5.2. In Alg. 1, at the ith iteration, we have

Zi+1 ⊆ γi(Si) ⊆ Zi ⊆ · · · ⊆ Z1 ⊆ γi(S0) ⊆ Z0 ⊆ S .
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Algorithm 1: Algorithm for the coverability problem, assume {m0} ⊆ S
Data: A Petri net N = (P, T, F,m0), a 6-dc-set S
Z0 = S1

A0 = dZ0e2

for i = 0, 1, 2, 3, . . . do3

Abstract: Given Ai, compute N̂ given by def. 4.1.4

Verify: (answer ,Ri) = Checker(m̂0, post N̂ , αi(Zi))5

if answer == OK then6

return OK7

else8

Let Si = gfpλX.αi(Zi) ∩Ri ∩ p̃reN̂ [TAi ](X)9

if m̂0 6∈ Si then return KO10

end11

Let Zi+1 = γi(Si) ∩ p̃reN (γi(Si))12

Refine: Let Ai+1 = Ai f dZi+1e13

end14

Proof:
We establish the inclusions from right to left. First, line 1 shows that Z0 = S which concludes the first
case. Then we show that for each value of i we have γi(Si) ⊆ Zi and finally Zi+1 ⊆ γi(Si).

We conclude from line 9 that Si ⊆ αi(Zi), hence that γi(Si) ⊆ γi ◦ αi(Zi) by monotonicity of γi

and finally that γi(Si) ⊆ Zi by Lem. 5.1. Finally, it is clear from line 12 that Zi+1 ⊆ γi(Si). ut

Lemma 5.3. In Alg. 1, at the ith iteration, we have post∗N (m0) ⊆ γi(Ri).

Proof:
Eq. (3), p. 8 shows thatαi(post∗N (m0)) ⊆ lfpλX.αi(m0∪postN (γi(X))), hence thatαi(post∗N (m0)) ⊆
post∗

N̂
(m̂0) by Prop. 4.1, and finally that αi(post∗N (m0)) ⊆ Ri by (A1). The last step concludes, by

−−−→−→←−−−−
αi

γi
, that post∗N (m0) ⊆ γi(Ri). ut

Proposition 5.1. (Soundness)
If Alg. 1 says “OK” then we have post∗(m0) ⊆ S.

Proof:
If Alg. 1 says “OK” then

Ri ⊆ αi(Zi)⇒ γi(Ri) ⊆ γi ◦ αi(Zi) γi is monotonic
⇒ γi(Ri) ⊆ Zi Lem. 5.1
⇒ γi(Ri) ⊆ S Lem. 5.2
⇒ post∗N (m0) ⊆ S Lem. 5.3

ut

We need the intermediary result of Lem. 5.4 to establish the completeness of Alg. 1.

Lemma 5.4. In Alg. 1 if at some iteration i we have post∗N (m0) * Zi then post∗N (m0) * S.
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Proof:
The proof is by induction on i.

base case. Trivial since line 1 defines Z0 to be S.

inductive case.

post∗N (m0) * Zi+1

⇔ post∗N (m0) * γi(Si) ∩ p̃reN (γi(Si)) def. of Zi+1

⇒ post∗N (m0) * p̃re∗N (γi(Si)) p̃re∗N (γi(Si)) ⊆ γi(Si) ∩ p̃reN (γi(Si))
⇒ post∗N (m0) * γi(Si) p̃re∗N (Y ): the markings stuck in Y

⇔ post∗N (m0) * γi

(
gfpλX.αi(Zi) ∩Ri ∩ p̃reN̂ [TA](X)

)
def. of Si

⇒ post∗N (m0) * gfpλX.Zi ∩ γi(Ri) ∩ p̃reN (X) (4), p. 8
⇔ post∗N (m0) * p̃re∗N (Zi ∩ γi(Ri)) def. of p̃re∗N
⇒ post∗N (m0) * Zi ∩ γi(Ri) p̃re∗N (Y ): the markings stuck in Y
⇒ post∗N (m0) * Zi Lem. 5.3
⇒ post∗N (m0) * S induction hypothesis

ut

Proposition 5.2. (Completeness)
If Alg. 1 says “KO” then we have post∗N (m0) ⊆ S.

Proof:
If Alg. 1 says “KO” then

m̂0 6∈ Si ⇔ αi(m0) * Si def. of m̂0

⇒ αi(m0) * αi(gfpλX.Zi ∩ γi(Ri) ∩ p̃reN (X)) (3)
⇒ m0 6∈ gfpλX.Zi ∩ γi(Ri) ∩ p̃reN (X) αi monotonicity
⇔ lfpλX.m0 ∪ post(X) * Zi ∩ γi(Ri) (1) iff (2)
⇒ lfpλX.m0 ∪ post(X) * Zi Lem. 5.3
⇒ lfpλX.m0 ∪ post(X) * S Lem. 5.4

ut

Proposition 5.3. (Termination)
Algorithm 1 terminates.

Proof:
We start by recalling the result of Lem. 5.2 which shows that

Z0 ⊇ Z1 ⊇ · · · ⊇ Zi ⊇ Zi+1 ⊇ · · ·

Consider the sequence of Zi’s and assume that from index i we have Zi+1 = Zi.
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Zi+1 = γi(Si) ∩ p̃reN (γi(Si)) def. of Zi+1

⇒ Zi+1 ⊆ p̃reN (γi(Si))
⇒ Zi+1 ⊆ p̃reN (Zi) Lem. 5.2, p̃reN monotonicity
⇔ Zi+1 ⊆ p̃reN (Zi+1) Zi+1 = Zi

⇔ Zj ⊆ p̃reN (Zj) let j = i+ 1
⇔ postN (Zj) ⊆ Zj (Gc)
⇒ αj ◦ postN (Zj) ⊆ αj(Zj) αj is monotonic
⇒ αj ◦ postN (γj ◦ αj(Zj)) ⊆ αj(Zj) Lem. 5.1
⇒ post N̂ (αj(Zj)) ⊆ αj(Zj) Prop. 4.1

Then, provided m̂0 ∈ αj(Zj) holds, so does lfpλX. m̂0∪post N̂ (X) ⊆ αj(Zj) and line 6 shows that the
Alg. 1 terminates by property A4 of the Checker called at line 5. Or we have, m̂0 6∈ αj(Zj) which yields
m̂0 6∈ Sj as follows. We conclude from Lem. 5.2 that γj(Sj) ⊆ Zj , hence that αj ◦ γj(Sj) ⊆ αj(Zj)
by monotonicity of αj and finally that Sj ⊆ αj(Zj) since αj ◦ γj = λx. x by Galois insertion. To
conclude this part of the proof, we see that the test of line 10 succeeds and Alg. 1 terminates.

Now we assume that the sequence of Zi’s strictly decreases, i.e. Zi+1 ⊂ Zi. First recall that the
ordered set 〈DCS (Nk),⊆〉 is a wqo. We conclude from A2, Lem. 3.5, 6-dc-set are closed to p̃re and ∩
that for each value of i in Alg. 1 we have Zi ∈ DCS (Nk). However 6 defines a wqo and following [16,
Lem. 2] there is no infinite strictly decreasing sequence of 〈DCS (Nk),⊆〉, hence a contradiction. ut

6. Efficient implementation

We implemented Alg. 1 with the checker of [18] in a naïve way and presented experimental results
in [17]. Those results showed that our algorithm is able to build Petri nets N̂ that are small but pre-
cise enough to conclude. Hence, preliminary experiments validated our new approach. However, the
resources (time/memory) needed by our prototype was huge for large Petri nets. In particular the refine-
ment step (line 13) and the p̃reN operator are not efficient. In the sequel, we present improvements that
dramatically decrease the resources used by our algorithm. We assume from now that Checker does
not take in input a 6-dc-set S but its complement3. To simplify the correction proof of our improved
algorithm, we also assume the following for every Petri net N = (P, T, F,m0) and every 6-uc-sets U
and I such that post∗N (m0) ∩ U 6= ∅ and post∗N (m0) ∩ I = ∅: The overapproximations R1 and R2

returned by Checker when applied, resp., to the target sets U and U ∪ I are such that

R1 = R2 . (A5)

This last assumption is verified by most of the model checking algorithms [22, 18, 19].
For the same reason, we will also assume that Checker returns refined results over refined domains:

ifRi andRi+1 are computed by Algorithm 1, then we have that

γi(Ri) ⊆ γi+1(Ri+1) . (A6)

If A6 is not enforced by Checker itself then it can be enforced at each iteration i (for i ≥ 1) by defining
Ri to be the intersection of the set returned by Checker(m̂0, post N̂ , αi(Zi)) with αi ◦ γi−1(Ri−1).

3Notice that it is in general the case in practice.
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Algorithm 2: solves the coverability problem without p̃re and complement, assume {m0} ⊆ S
Data: A Petri net N = (P, T, F,m0), a 6-dc-set S
Z ′

0 = ¬S1

A′
0 = dZ ′

0e2

for i = 0, 1, 2, 3, . . . do3

Abstract: Given A′
i, compute N̂ ′ given by def. 4.1.4

Verify: (answer ,R′
i) = Checker(m̂0, post N̂ ′ , α

′
i(Z

′
i))5

if answer == OK then6

return OK7

else8

Let S ′i = lfpλX.
x((α′i(Z ′

i) ∪ preN̂ ′ [TAi ](X)
)
∩R′

i

)
9

if m̂0 ∈ S ′i then return KO10

end11

Let Z ′
i+1 =

x((γ′i(S ′i) ∪ preN (γ′i(S ′i))) ∩ γ′i(R′
i))12

Refine: Let A′
i+1 = A′

i f dZ ′
i+1e13

end14

6.1. Replacing the greatest fixpoint by a least fixpoint

In practice, the abstract greatest fixpoint Si given by gfpλX.αi(Zi) ∩ Ri ∩ p̃reN̂ [TAi ](X) is costly to
compute, and, in particular, the operator p̃re. To avoid that problem, we can compute its complement
instead. Following the same idea, we could avoid to compute the set Zi+1 but computing its complement
instead. This is equivalent since Zi+1 can be represented exactly with an abstraction if and only if its
complement can be represented exactly with the same abstraction as shown in Lem. 3.6. For the sake of
clarity, the proofs of the subsection are given in appendix.

We first give a characterization of the complement of the sets Si and Zi that uses pre instead of p̃re.

Proposition 6.1. In Alg. 1, at the ith iteration, we have

¬Si = lfpλX.αi(¬Zi) ∪ ¬Ri ∪ preN̂ [TAi ](X) and ¬Zi = ¬γi(Si) ∪ preN (¬γi(Si)) .

The formulation of the set ¬Si given by Prop. 6.1 contains the negation of the set Ri that may be
costly to compute in practice. Hence, that formulation is not satisfactory to design an efficient algorithm.
Since the set Ri is computed at each iteration, we propose to take implicitly into account the set ¬Ri

when computing ¬Si. In other words, we do not compute ¬Si but a set S ′i such that ¬Si = S ′i ∪ ¬Ri.
Algorithm 2 computes such sets without using p̃re and complement. In that algorithm, we use the

notation α′i and γ′i instead of αA′
i

and γA′
i
. Instead of computing the sets Si and Zi, the algorithm com-

putes, respectively, the sets S ′i andZ ′
i. Intuitively, the sets S ′i are (6-upward closed) over-approximations

of the set of markings of the Petri net N̂ ′ that are inRi allowing to reach α′i(Z
′
i). To prove its correction,

we first prove Lem. 6.1 that states the relation between the sets computed by Alg. 1 and Alg. 2.

Lemma 6.1. Let N be a Petri net given by (P, T, F,m0) and a 6-dc-set S ⊆ Nk. Assume that Algo-
rithm 1 and 2 compute the sets Si,S ′i, Zi+1, Z

′
i+1 and for all 0 ≤ j ≤ i, Aj = A′

j . Then, we have that
¬Si = S ′i ∪ ¬Ri and ¬Zi+1 = Z ′

i+1 ∪ γi(¬Ri).

The next lemma validates the assumption that the abstract domains computed by the two algorithms
are the same.
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Lemma 6.2. Let a Petri net N = (P, T, F,m0) and a 6-dc-set S ⊆ Nk. Assume that Algorithm 1 and
2 compute at least i iterations. Then, we have that Ai = A′

i.

We are now ready to prove that Algorithm 1 and Algorithm 2 returns the same answer for all the
instances of the coverability problem.

Theorem 6.1. For any Petri net N = (P, T, F,m0) and 6-dc-set S ⊆ Nk the following holds:

1. If Alg. 1 answers OK at iteration i then so does Alg. 2;

2. If Alg. 1 answers KO at iteration i then so does Alg. 2.

Finally, note that termination of Algorithm 2 is directly implied by Theorem 6.1.

6.2. Efficient computation of a new abstraction

In this section we give efficient algorithms to implement the operation needed at lines 2 and 13. Indeed,
the naïve approach to build A′

i(i ≥ 0) enumerates the set of all the partitions of P , which is exponential
in the number of places.

Instead, we present the algorithm refinement that given a set of markings M computes the coarsest
partition A which is able to represent exactly M without enumerating the partitions. The algorithm
starts from the �-minimal partition then the algorithm chooses non-deterministically two candidate
classes and merge them in a unique class. If this new partition still represents exactly M , we iterate the
procedure. Otherwise the algorithm tries choosing different candidates. The algorithm is presented in
Alg. 3 in which we use the following notation: given a partition A = {Ci}i∈[1..kA] of [1..k], we denote
by ACi the partition {Ci} ∪ {{s} | s ∈ [1..k] ∧ s /∈ Ci}.

Algorithm 3: refinement
Input: M ⊆ Nk

Let A be {{1}, {2}, . . . , {k}} ;
while ∃Ci, Cj ∈ A : Ci 6= Cj and γACi∪Cj

◦ αACi∪Cj
(M) ⊆M do

Let Ci, Cj ∈ A such that Ci 6= Cj and γACi∪Cj
◦ αACi∪Cj

(M) ⊆M ;1

A← (A \ {Ci, Cj}) ∪ {Ci ∪ Cj} ;2

We first prove the following lemma.

Lemma 6.3. Let A = {Ci}i∈[1..kA] be a partition of [1..k], M ⊆ Nk, we have:

γA ◦ αA(M) ⊆M ⇔
(
∀Ci ∈ A : γACi

◦ αACi
(M) ⊆M

)
.

Proof:
We conclude from ACi � A and Lem. 3.3 that the implication ⇒ holds. For the other direction the
result follows from Lem. 3.4 and the following equality: A =

b
{ACi}Ci∈A which follows by definition

of
b

. Indeed, ACi gACj is given by {Ci, Cj} ∪ {{s} | s ∈ [1..k] ∧ s /∈ (Ci ∪ Cj)}. ut

The following two lemmas and the corollary state the correctness and the optimality of Alg. 3.

Lemma 6.4. Given M⊆Nk, the partition A returned by refinement(M ) is such that γA ◦ αA(M) =M .
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Proof:
Initially A = {{1}, . . . , {k}} so that γA ◦ αA(M) = M , hence γA ◦ αA(M) ⊆ M which is an
invariant maintained by the iterations. Indeed, suppose the invariant holds before executing line 1:
γA ◦ αA(M) ⊆ M . We conclude from line 1 that γACi∪Cj

◦ αACi∪Cj
(M) ⊆ M , hence that the new

value for A satisfies γA ◦ αA(M) ⊆M by Lem. 6.3 and line 2. ut

Lemma 6.5. Given M ⊆ Nk, let A be the partition returned by refinement(M ). There is no partition
A′ with A � A′ and A 6= A′ such that γA′ ◦ αA′(M) = M .

Proof:
Suppose that such a partition A′ exists. Since A � A′, ∃Ci, Cj ∈ A∃C ′ ∈ A′ : (Ci 6= Cj) ∧Ci ∪Cj ⊆
C ′. We conclude from Lem. 6.3 and γA′ ◦ αA′(M) ⊆M (hence γA′ ◦ αA′(M) = M by −−−−→−→←−−−−−

αA′

γA′
), that

γAC′ ◦ αAC′ (M) = M .
Moreover, ACi∪Cj � AC′ shows that γACi∪Cj

◦ αACi∪Cj
(M) ⊆ γAC′ ◦ αAC′ (M) = M by

Lem. 3.3 and property of Galois insertions. Hence, the equality γACi∪Cj
◦ αACi∪Cj

(M) = M holds.
It follows that the condition of the while loop of the refinement algorithm is verified by A, hence

the algorithm should execute the loop at least once more before termination and return a partition A′′

such that A � A′′ and A 6= A′′, a contradiction. ut

Putting together Prop. 3.2 and Lem. 6.4 and 6.5 we get:

Corollary 6.1. Given M ⊆ Nk, the partition A returned by refinement(M ) is the coarsest partition
representing exactly M , that is refinement(M )= dMe.

In the algorithm refinement, the termination test of the while loop asks if γCi∪Cj
◦ αCi∪Cj (M) ⊆

M holds. As shown in Alg. 2, the sets of markings involved at lines 2 and 13 are 6-uc-sets of markings
which contains infinitely many markings. Hence the test is to decide whether γCi∪Cj

◦ αCi∪Cj (M) ⊆
M is far from being trivial. However, by taking into account the particular structure of 6-uc-sets, we
restrict the reasoning to the minimal elements ofM only. Now, we can prove that a 6-uc-set U is exactly
representable with an abstraction iff min(U) is exactly representable with that abstraction.

Lemma 6.6. Let A ∈ AkA×k, U ∈ UCS (Nk) and min(U) be the finite canonical minor set of U . We
have that γA ◦ αA(U) ⊆ U if and only if γA ◦ αA(min(U)) ⊆ min(U).

Proof:
⇒ In order to ease its understanding, the following proof is given together with Fig. 4.

m m′
αA(m′) = αA(m)αA

γA

γA

γA

γA
αA

αA

m4
m′′ αA(m′′)

min(U)

U

� � �

Figure 4. Graphical depiction of the reasoning given in the proof of Lem. 6.6.
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γA ◦ αA(min(U)) * min(U)
⇒ ∃m∃m′ : m ∈ min(U) ∧m′ /∈ min(U) ∧m′ ∈ γA ◦ αA({m})
⇒ ∃m∃m′ : m ∈ min(U) ∧m′ ∈ U \min(U) ∧m′ ∈ γA ◦ αA({m}) γA ◦ αA(U) ⊆ U (9)

Consider any such markings m,m′ satisfying (9) as depicted in Fig. 4. Using the fact that U is a
6-uc-set we deduce that

∃m′′ : m′′ ∈ min(U) ∧m′′ � m′

⇒ ∃m′′ : m′′ ∈ min(U) ∧ αA(m′′) � αA(m′)
Lem. 3.5

⇒ ∃m′′ : m′′ ∈ min(U) ∧ αA(m′′) � αA(m′) ∧ ∃m4 : m4 � m

Lem. 3.5 with m4 ∈ γA ◦ αA(m′′)
⇒ ∃m′′ : m′′ ∈ min(U) ∧ αA(m′′) � αA(m′) ∧ ∃m4 : m4 � m ∧m4 ∈ U

γA ◦ αA(U) ⊆ U

Hence a contradiction since m ∈ min(U) ∧m4 � m ∧m4 ∈ U .
⇐

U =
xmin(U)

⊇
xγA ◦ αA(min(U)) by hyp., monotonicity of ↑

= γA ◦ αA(
xmin(U)) Lem. 3.5

Since
xmin(U) = U , we conclude that γA ◦ αA(U) ⊆ U . ut

From Lem. 6.6 and 6.3, we concentrate on the problem to decide if γAS
◦ αAS

(M) ⊆ M where M
is a finite set of marking and S a finite set of places.

It is important to note that a direct implementation of the test γACi∪Cj
◦ αACi∪Cj

(M) ⊆ M is
not polynomial time because the number of elements of the set γACi∪Cj

◦ αACi∪Cj
(M) may be ex-

ponential with respect to the number of elements of M . To overcome that problem, we define a
polynomial algorithm to test if γACi∪Cj

◦ αACi∪Cj
(M) ⊆ M without computing explicitly the set

γACi∪Cj
◦ αACi∪Cj

(M).
Let us assume in the rest of the section a finite set M of markings. Given a marking m over the set

P of places and a set S ⊆ P , we define m(S) to be Σp∈Sm(p) and m/S to be the marking over the
places P \ S such that m/S(p) = m(p) for all p ∈ P \ S.

Alg. 4 decides if γAS
◦ αAS

(M) ⊆M . It proceeds by enumerating the markings ofM , and for each
marking m it compares the number of markings of M which contains as many tokens in S as does m
to
(m(S)+|S|−1

|S|−1

)
, the number of possible distributions of m(S) tokens into | S | places, i.e. the number

of markings in γAS
◦ αAS

({m}). If the two values are not equal for some marking m ∈ M , then we
conclude that γAS

◦ αAS
(M) 6⊆M .

We define the size of the set M , noted size(M), given as parameter of Alg. 4 as the sum of: the
number of elements in M , the number k of places, and the number of bits needed to encode the max-
imal value, denoted max, appearing into a markings of M . Let us note that the test at line 4 can be
evaluated in time polynomial in size(M). Indeed, let us consider the algorithm given in [23] to com-
pute

(m(S)+|S|−1
|S|−1

)
. That algorithm computes n = min(|S| − 1,m(S)) multiplications and n divisions.

Hence, the number of operations computed by the algorithm is bounded by a polynomial in size(M)
since |S| is bounded by k. Remember that multiplication/division can be computed in time polynomial
in the number of bits used to encode the arguments. Furthermore, the number of bits to encode the
result does not increase for division, i.e. it is bounded by the number of bits of the first argument, and
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Algorithm 4: CanIRepresentExactlyTheFiniteSet
Input: A finite set M ⊆ Nk and a finite set of places S ⊆ P
while (M 6= ∅) do1

Let m ∈M ;2

M ′ ← {m′ ∈M | m′(S) = m(S) and m′
/S = m/S};3

if |M ′| <
(m(S)+|S|−1

|S|−1

)
then return false;4

M ←M \M ′;5

return true;6

the number of bits to encode the result of a multiplication is bounded by the sum of the bits needed for
the arguments. Hence, the number of bits to encode intermediate results may increase when applying
multiplications. However, a careful examination of the algorithm reveals it multiplies n values bounded
by m(S) + |S| − 1 whose encoding uses at most dlog2(m(S) + |S| − 1)e bits. Hence, the intermediate
results are encoded with at most nd(log2(m(S) + |S| − 1))e bits. Note that log2(m(S) + |S| − 1) ≤
log2(k · max + k) ≤ log2(k · max + k · max) = log2(2k · max) = 1 + log2(k) + log2(max) for
all max > 0. Hence, log2(m(S) + |S| − 1) is bounded by a polynomial in size(M), i.e. each mul-
tiplication/division is applied on arguments whose size of the encoding is bounded by a polynomial in
size(M). We conclude that there exists a polynomial in size(M) that bounds the execution time of the
algorithm that computes

(m(S)+|S|−1
|S|−1

)
.

Proposition 6.2. Algorithm 4 has time complexity polynomial in size(M).

Proof:
First, notice that each line of the algorithm can be computed in time polynomial in size(M). Then, from
lines 2,3 and 5 we know that the number of elements in the setM decreases at each iteration of the while
loop. Since M is a finite set at the beginning of the algorithm, we conclude that M becomes empty after
a finite number of iterations bounded by size(M). Hence, the time complexity of Alg. 4 is polynomial
in size(M). ut

Theorem 6.2. Algorithm 4 returns false iff γAS
◦ αAS

(M) * M .

Proof:
⇒ Suppose that Alg. 4 returns false. From lines 3 and 4, we know that there exists a marking m ∈M

such that the size of the set {m′ ∈M | m′(S) = m(S) and m′
/S = m/S} is smaller than

(m(S)+|S|−1
|S|−1

)
.

This means that there exists a marking m′ such that m′(S) = m(S),m′
/S = m/S and m′ 6∈ M .

Indeed,
(m(S)+|S|−1

|S|−1

)
is the number of possible distributions of m(S) tokens into the places S. From the

definition of m and m′, we conclude that m′ ∈ γAS
◦ αAS

(M), hence γAS
◦ αAS

(M) * M .
⇐ Suppose that γAS

◦ αAS
(M) * M but Alg. 4 returns true. If the algorithm returns true then,

at line 4, it always considers markings m from M such that the set of markings Mm = {m′ ∈ M |
m′(S) = m(S) and m′

/S = m/S} has size s =
(m(S)+|S|−1

|S|−1

)
. Note that if the algorithm took another

marking m′ ∈ Mm from M instead of m, Mm′ would also have size s, since Mm′ = Mm, and the
algorithm would also return true. We conclude that for each marking m ∈ M we have that the set
{m′ | m′(S) = m(S) and m′

/S = m/S} is included into M . Hence, γAS
◦ αAS

(M) ⊆ M , which is a
contradiction with our hypothesis. ut
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Table 1. Var: number of places of the Petri net; Cvar: number of places of the abstraction that allow to conclude;
Ref: number of refinements before conclusion; time: execution time in seconds on Intel Xeon 3Ghz; EEC:
execution time of the algorithm defined in [18].

Unbounded PN

Example Var Cvar Ref time EEC

ME 5 4 1 <0.01s <0.01s

MultiME 12 5 1 <0.01s <0.01s

FMS 22 7 1 0.03s 6.3s

CSM 14 9 2 0.02s 0.06s

PNCSA 31 20 5 1s 2m42s

mesh2x2 32 9 2 0.04s 17m29s

mesh3x2 52 9 2 0.07s >60m

Bounded PN

Example Var Cvar Ref time EEC

lamport 11 9 2 0.02s <0.01s

dekker 16 15 2 0.14s 0.03s

peterson 14 13 2 0.06s 0.01s

7. Experimental results

We implemented Alg. 2 in C with the efficient refinement procedure given by Alg. 3 and 4. We used the
symbolic data structure of [15] to represent and manipulate sets of markings; and for the model-checker
referenced at line 5, we used the algorithm of [18].

We tested our method against a large set of examples. The properties we consider are mutual exclu-
sions and the results we obtained are shown in Table 1. We distinguish two kind of examples. Parame-
trized systems describe systems where we have a parametrized number of resources: ME [10, Fig. 1],
MultiME (Fig. 1 of Sect. 2), FMS [5], CSM [24, Fig. 76, page 154], the mesh 2x2 of [24, Fig. 130,
page 256] and its extension to the 3x2 case. For all those infinite state Petri nets, the mutual exclusion
properties depend only on a small part of the nets. We also considered the Petri net given in [13] encod-
ing the PNCSA protocol in a high-level way. For that example, we do not test mutual exclusion but if a
particular transition is firable from a reachable marking. Notice that the property holds, i.e. the PNCSA
example is a negative instance while the other examples are positive instances.

The mesh 2x2 (resp. 3x2) examples corresponds to 4 (resp. 6) processors running in parallel with a
load balancing mechanism that allow tasks to move from one processor to another. The mutual exclusion
property says that one processor never processes two tasks at the same time. That property is local to one
processor and our algorithm builds an abstraction where the behaviour of the processor we consider is
exactly described and the other places are totally abstracted into one place. In that case, we manipulate
subsets of N9 instead of subsets of N32 for mesh 2x2 or N52 for mesh 3x2.

For the other examples, we have a similar phenomenon: only a small part of the Petri nets is relevant
to prove the mutual exclusion property. The rest of the net describes other aspects of the parametrized
system and is abstracted by our algorithm. Hence, all the parametrized systems are analysed building an
abstract Petri net with few places.

The bounded Petri Net examples are classical algorithms to ensure mutual exclusion of critical sec-
tions for two processes. In those cases, our method concludes building very precise abstractions, i.e.
only few places are merged. The reasons are twofold: (i) the algorithms are completely dedicated to
mutual exclusion, and (ii) the nets have been designed by hand in a “optimal” manner. However and
quite surprisingly, we noticed that our algorithm found for those examples places that can be merged. In
our opinion, this shows that our algorithm found reductions that are (too) difficult to find by hand.

Finally, concerning the execution times we see that our method is dramatically faster than the clas-
sical method that consists to directly analyse Petri nets without first decrease their size.
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A. Proofs

Here follows the proof of Proposition 6.1.

Proof:

¬Si = ¬gfpλX.αi(Zi) ∩Ri ∩ p̃reN̂ [TAi ](X) def. of Si

= lfpλX.¬(αi(Zi) ∩Ri ∩ p̃reN̂ [TAi ](¬X)) Park’s theorem [25]
= lfpλX.¬αi(Zi) ∪ ¬Ri ∪ ¬(p̃reN̂ [TAi ](¬X))
= lfpλX.¬αi(Zi) ∪ ¬Ri ∪ ¬ ◦ ¬ ◦ preN̂ [TAi ] ◦ ¬ ◦ ¬(X) def. of p̃re
= lfpλX.¬αi(Zi) ∪ ¬Ri ∪ preN̂ [TAi ](X) ¬ ◦ ¬ = λx. x

= lfpλX.αi(¬Zi) ∪ ¬Ri ∪ preN̂ [TAi ](X) Lem. 3.5, Lem. 5.1

The second assertion is obvious. ut

Here follows the proof of Lemma 6.1

Proof:
The proof is by induction on i.

i = 0 First, A0 = A′
0, and ¬Z0 = Z ′

0 implies that R0 = R′
0, α′0 = α0, and γ′0 = γ0 (lines 4-5 of

Alg. 1 and 2 and (A5)).

S ′0 ∪ ¬R0 = ¬R0 ∪ lfpλX.
x((α0(Z ′

0) ∪ preN̂ [TA0 ](X)
)
∩R0

)
R0 = R′

0, α′0 = α0

= lfpλX.
x((α0(Z ′

0) ∪ preN̂ [TA0 ](X)
)
∩R0

)
∪ ¬R0 pre(¬R0) ⊆ ¬R0, pre is additive

= lfpλX.
x(((α0(Z ′

0) ∪ preN̂ [TA0 ](X)
)
∩R0

)
∪ ¬R0

)
¬R0: 6-uc-set

= lfpλX.
x(α0(¬Z0) ∪ preN̂ [TA0 ](X) ∪ ¬R0) Alg. 1 line 1, Alg. 2, line 1

= lfpλX.α0(¬Z0) ∪ preN̂ [TA0 ](X) ∪ ¬R0 α0(¬Z0),¬R0: 6-uc-set
= ¬S0 Prop. 6.1

and

Z ′
1 ∪ γ0(¬R0) = γ0(¬R0) ∪

x((γ0(S ′0) ∪ preN (γ0(S ′0))) ∩ γ0(R0)) R0 = R′
0, γ′0 = γ0

=
x(((γ0(S ′0) ∪ preN (γ0(S ′0))

)
∩ γ0(R0)

)
∪ γ0(¬R0)

)
γ0(¬R0): 6-uc set

=
x(γ0(S ′0) ∪ preN (γ0(S ′0)) ∪ γ0(¬R0)

)
Lem. 3.5

= γ0(S ′0) ∪ preN (γ0(S ′0)) ∪ γ0(¬R0) γ0(S ′0), γ0(¬R0): 6-uc-set
= γ0(S ′0) ∪ preN (γ0(S ′0)) ∪ preN (γ0(¬R0)) ∪ γ0(¬R0) pre(γ0(¬R0)) ⊆ γ0(¬R0)
= γ0(S ′0) ∪ preN (γ0(S ′0) ∪ γ0(¬R0)) ∪ γ0(¬R0) pre is additive
= γ0(S ′0 ∪ ¬R0) ∪ preN (γ0(S ′0 ∪ ¬R0)) Lem. 3.7
= γ0(¬S0) ∪ preN (γ0(¬S0)) see above
= ¬Z1 Lem. 3.5, Prop. 6.1
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i > 0 By ind. hyp., we have that ¬Zi = Z ′
i ∪ γi−1(¬Ri−1). Note that post∗N (m0) ⊆ γi−1(Ri−1)

and Lemma 3.5 implies that post∗N (m0) ∩ γi−1(¬Ri−1) = ∅. Furthermore, Ai = A′
i by hyp. Hence,

we have thatRi = R′
i (lines 4-5 of Alg. 1 and 2 and (A5)).

S ′i ∪ ¬Ri = ¬Ri ∪ lfpλX.
x((αi(Z ′

i) ∪ preN̂ [TAi
](X)

)
∩Ri

)
Ri = R′

i

= lfpλX.
x((αi(Z ′

i) ∪ preN̂ [TAi
](X)

)
∩Ri

)
∪ ¬Ri pre(¬Ri) ⊆ ¬Ri

pre is additive

= lfpλX.
x(((αi(Z ′

i) ∪ preN̂ [TAi
](X)

)
∩Ri

)
∪ ¬Ri

)
¬Ri: 6-uc-set

= lfpλX.
x(αi(Z ′

i) ∪ preN̂ [TAi ](X) ∪ ¬Ri

)
then we have

(A6) says γi(Ri) ⊆ γi−1(Ri−1) iff γi−1(¬Ri−1) ⊆ γi(¬Ri) (by Lem. 3.5) iff αi ◦ γi−1(¬Ri−1) ⊆ ¬Ri (Gc)

= lfpλX.
x(αi(Z ′

i) ∪ preN̂ [TAi ](X) ∪ ¬Ri ∪ αi ◦ γi−1(¬Ri−1)
)

= lfpλX.
x(αi(Z ′

i ∪ γi−1(¬Ri−1)) ∪ preN̂ [TAi
](X) ∪ ¬Ri

)
αi is additive

= lfpλX.
x(αi(¬Zi) ∪ preN̂ [TAi

](X) ∪ ¬Ri) ind. hyp.

= lfpλX.αi(¬Zi) ∪ preN̂ [TAi
](X) ∪ ¬Ri αi(Z ′

i),¬Ri: 6-uc-sets
= ¬Si Prop. 6.1

The equality ¬Zi = Z ′
i+1 ∪ γi(¬Ri) is proved similarly as for i = 0. ut

Lemma A.1. Let a Petri net N = (P, T, F,m0) and a 6-dc-set S ⊆ Nk. Assume that Algorithm 1 and
2 compute at least i > 0 iterations and for all 0 ≤ j < i,Aj = A′

j . Then, for each partition A ∈ AkA×k

such that γA ◦ αA(γi−1(Ri−1)) = γi−1(Ri−1) we find that γA ◦ αA(Zi) = Zi iff γA ◦ αA(Z ′
i) = Z ′

i.

Proof:
By hyp., we have that Ai−1 = A′

i−1. Furthermore, if i − 1 = 0 then ¬Zi−1 = Z ′
i−1 = ¬S (line

1 of Alg. 1 and 2). Otherwise, by Lemma 6.1, we have that ¬Zi−1 = Z ′
i−1 ∪ γi−2(¬Ri−2). Since

post∗N (m0) ⊆ γi−2(Ri−2), by Lemma 3.5, we obtain that post∗N (m0) ∩ γi−2(¬Ri−2) = ∅. Hence, we
have that Ri−1 = R′

i−1 (lines 4-5 of Alg. 1 and 2 and (A5)), i.e. γi−1(Ri−1) = γ′i−1(R′
i−1) = R.

Lem. 3.6, also shows that γA ◦αA(¬R) = ¬R. ⇐ Lem. 6.1 shows that ¬Zi = Z ′
i ∪¬R, hence, using

hyp. and applying Lem. 3.6 we conclude that γA ◦ αA(Zi) = Zi.
⇒ We conclude from Lem. 6.1 that ¬Zi = Z ′

i∪¬R, hence that ¬Zi∩R = Z ′
i∩R and finally that

γA ◦ αA(Z ′
i ∩R) = Z ′

i ∩R by applying Lem. 3.6 and hyp. By def., Z ′
i =

x(Z ′
i ∩R) . Then, Lem. 3.5

shows that Z ′
i =

x(Z ′
i ∩R) =

x(γA ◦ αA(Z ′
i ∩R)) = γA ◦ αA(

x(Z ′
i ∩R)) = γA ◦ αA(Z ′

i). ut

Here follows the proof of Lemma 6.2

Proof:
By induction on i. i = 0 Remark that Z0 = S, Z ′

0 = ¬S. Following Lem. 3.6, for each partition
A ∈ AkA×k, γA ◦αA(S) = S iff γA ◦αA(¬S) = ¬S. By def. ofA0 andA′

0 we conclude thatA0 = A′
0.

i > 0 By ind. hyp., we have that Ai−1 = A′
i−1. Furthermore, if i − 1 = 0 then ¬Zi−1 = Z ′

i−1 =
¬S. Otherwise, by Lemma 6.1, we have that ¬Zi−1 = Z ′

i−1 ∪ γi−2(¬Ri−2). Since post∗N (m0) ⊆
γi−2(Ri−2), by Lemma 3.5, we obtain that post∗N (m0) ∩ γi−2(¬Ri−2) = ∅. Hence, Ri−1 = R′

i−1

(lines 4-5 of Alg. 1 and 2 and (A5)), i.e. γi−1(Ri−1) = γ′i−1(R′
i−1) = R. By def., we have that

Ai = Ai−1 f dZie and A′
i = A′

i−1 f dZ ′
ie, hence A′

i = Ai−1 f dZ ′
ie by induction hyp. Furthermore, by

construction we see that Ai−1 = Ai−1 f dRe and A′
i−1 = A′

i−1 f dRe, hence that Ai = Ai−1 f Ã and
A′

i = Ai−1 f Ã′ where Ã = dZie f dRe and Ã′ = dZ ′
ie f dRe. To conclude the proof we show that

Ã = Ã′. Lemma A.1 shows that γÃ
◦ αÃ(Z ′

i) = Z ′
i, hence that Ã = Ã f dZ ′

ie. Similarly we find that
Ã′ = Ã′ f dZie. Finally, Ã = dZief dRe = dZief dRef dZ ′

ie = dZief Ã′ = Ã′. ut
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