Real-Time Model-Checking: Parameters Everywhere

Véronique Bruyère
Institut d'Informatique, Université de Mons-Hainaut,
Le Pentagone, Avenue du Champ de Mars 6, B-7000 Mons, Belgium,
Email: Veronique.Bruyere@umh.ac.be
Jean-François Raskin
Département d'Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP 212, B-1050-Bruxelles, Belgium
Email: Jean-Francois.Raskin@ulb.ac.be

Abstract

In this paper ${ }^{1}$, we study the model-checking and parameter synthesis problems of the logic TCTL over timed automata where parameters are allowed both in the model (timed automaton) and in the property (temporal formula). Our results are as follows. On the negative side, we show that the model-checking problem of TCTL extended with parameters is undecidable over timed automata with only one parametric clock. The undecidability result needs equality in the logic. On the positive side, we show that when equality is not allowed in the logic, the model-checking and the parameter synthesis problems become decidable. Our method is based on automata theoretic principles and an extension of our method to express duration of runs in timed automata using Presburger arithmetic.

1 Introduction

In this paper, we further investigate the model-checking problem of real-time formalisms with parameters. In recent works, parametric real-time model-checking problems have been studied by several authors. Alur et al study in [?] the analysis of timed automata where clocks are compared to parameters. They showed that when only one clock is compared to parameters, the emptiness problem is decidable. But this problem becomes undecidable when three clocks are compared to parameters. Hune et al study in [?] a subclass of parametric timed automata (L / U automata) such that each parameter occurs either as a lower bound or as an upper bound. Wang in [?, ?], Emerson et al in [?], Alur et al

[^0]Figure 1: A parametric timed automaton
in [?] and the authors of this paper in [?] study the introduction of parameters in temporal logics. The model-checking problem for TCTL extended with parameters over timed automata (without parameters) is decidable. On the other hand, only a fragment of LTL extended with parameters is decidable.

Unfortunately, in all those previous works, the parameters are only in the model (expressed as a timed automaton) or only in the property (expressed as a temporal logic formula). Nevertheless, when expressing a temporal property of a parametric system, it is natural to refer in the temporal formula to the parameters used in the system. In this paper, we study the model-checking problem of the logic TCTL extended with parameters over the runs of a timed automaton with one parametric clock. To the best of our knowledge, this is the first work that study the model-checking and parameter synthesis problems with parameters both in the model and in the property.

Let us illustrate the kind of properties that we can express with a parametric temporal logic over a parametric timed automaton. The automaton \mathcal{A} of Figure 1 is a discrete timed automaton with one clock x and two parameters θ_{1} and θ_{2}. Here we explicitely model the elapse of time by self loops labelled by 1. Other transitions are instantaneous. State q_{0} is labelled with atomic proposition σ and in all other states this proposition is false. The possible runs of this automaton starting at q_{0} are as follows. The control instantaneously leaves q_{0} and goes through q_{1}, q_{2}, q_{3} to come back in q_{0}, the time spent in this cycle is constrained by the parameters θ_{1} and θ_{2}. In fact, the control has to leave q_{1} at most θ_{1} time units after entering it and the control has to stay exactly θ_{2} time units in state q_{2}. To express properties of those behaviors, we use TCTL logic augmented with parameters. Let us consider the next three formulae for configuration ($q_{0}, 0$), i.e. the control is in state q_{0} and clock x has value 0 :
(i) $\forall \square\left(\sigma \rightarrow \forall \diamond_{\leq \theta_{3}} \sigma\right)$
(ii) $\left.\forall \theta_{1} \forall \theta_{2} \cdot\left(\theta_{2} \leq \theta_{1} \rightarrow \forall \square(\sigma \rightarrow \forall\rangle_{\leq 2 \theta_{1}+2} \sigma\right)\right)$
(iii) $\left.\forall \theta_{1} \cdot\left(\theta_{1} \geq 5 \rightarrow \forall \square(\sigma \rightarrow \forall\rangle_{<2 \theta_{1}+2} \sigma\right)\right)$

The parameter synthesis problem associated to formula (i), asks for which values of θ_{1}, θ_{2} and θ_{3}, the formula is TRUE at configuration ($\left.q_{0}, 0\right)$. By observing the model and the formula, we can deduce the following constraint on the parameters: $\theta_{3} \geq \theta_{1}+\theta_{2}+2$. This means that any cycle throught the four states has duration bounded by $\theta_{1}+\theta_{2}+2$. Formula (ii) formalizes the next question "In all the cases where the value assigned to parameter θ_{1} is greater than the value assigned to parameter θ_{2}, is it true that any cycle has a duration bounded by $2 \theta_{1}+2^{\prime \prime}$. As there is no free parameter in the question, the question has a YES-NO answer. This is a model-checking problem. For formula (ii), the answer is YES in configuration $\left(q_{0}, 0\right)$. Finally, formula (iii) lets parameter θ_{2} free and
formalizes the question "What are the possible values that can be given to θ_{2} such that for any value of $\theta_{1} \geq 5$, a cycle throught the four states lasts at most $2 \theta_{1}+1$ time units". This is again a parameter synthesis problem and the answer is $\theta_{2} \leq 4$.

In this paper, we study the algorithmic treatment of such problems. Our results are as follows. On the negative side, we show that the model-checking problem of TCTL extended with parameters is undecidable over timed automata with only one parametric clock. The undecidability result needs equality in the logic. On the positive side, we show that when equality is not allowed in the logic, the model-checking problem becomes decidable and the parameter synthesis problem is solvable. Our algorithm is based on automata theoretic principles and an extension of our method (see [?]) to express durations of paths in a timed automata using Presburger arithmetic. As a corollary, we obtain the decidability of the reachability problem for timed automata with one parametric clock proved by Alur et al in [?]. All the formulae given in the example above are in the decidable fragment.

The paper is organized as follows. In Section 2, we introduce the model of one parametric clock timed automaton and the parametric extension of TCTL that we consider. In Section 3, we establish the undecidability of the modelchecking problem if equality can be used in the logic and we show how to solve the problem algorithmically if the use of equality is not allowed in the logic. Proofs of two important propositions introduced in Section 3 are postponed in Section 4. We finish the paper in Section 5 by drawing some conclusions.

2 Parameters Everywhere

In this section, we introduce parameters in the automaton used to model the system as well as in the logic used to specify properties of the system. The automata are parametric timed automata as defined in [?] with a discrete time domain and one parametric clock. The logic is Parametric Timed CTL Logic as defined in [?].

Notation 1 Let Θ be a fixed finite set of parameters θ that are shared by the automaton and the logical formulae. A parameter valuation for Θ is a function $v: \Theta \rightarrow \mathbb{N}$ which assigns a natural number to each parameter $\theta \in \Theta$. In the sequel, α, β, \ldots mean any linear term $\Sigma_{i \in I} c_{i} \theta_{i}+c$, with $c_{i}, c \in \mathbb{N}$ and $\left\{\theta_{i} \mid i \in I\right\} \subseteq \Theta$. A parameter valuation v is naturally extended to linear terms by defining $v(c)=c$ for any $c \in \mathbb{N}$.

We denote by x the unique parametric clock. The same notation x is used for both the clock and a value of the clock. A guard g is any conjunction of $x \sim \alpha$ with $\sim \in\{=,<, \leq,>, \geq\}$. We denote by \mathcal{G} the set of guards. Notation $x \not \models_{v} g$ means that x satisfies g under valuation v. We use notation Σ for the set of atomic propositions.

2.1 Parametric Timed Automata

We recall the definition of one parametric clock timed automata as introduced in [?]. We make the hypothesis that non-parametric clocks have all been eliminated by a technique related to the region construction, see [?] for details.

Definition 2 A parametric timed automaton \mathcal{A} is a tuple $(Q, E, \mathcal{L}, \mathcal{I})$, where Q is a finite set of states, $E \subseteq Q \times\{0,1\} \times \mathcal{G} \times 2^{\{x\}} \times Q$ is a finite set of edges, $\mathcal{L}: Q \rightarrow 2^{\Sigma}$ is a labeling function and $\mathcal{I}: Q \rightarrow \mathcal{G}$ assigns an invariant $\mathcal{I}(q) \in \mathcal{G}$ to each state q.

A configuration of \mathcal{A} is a pair (q, x), where q is a state and x is a clock value.
Whenever a parameter valuation v is given, \mathcal{A} becomes a usual one-clock timed automaton denoted by \mathcal{A}^{v}. We recall the next definitions of transition and run in \mathcal{A}^{v}.

Definition 3 Let v be a parameter valuation. A transition $(q, x) \xrightarrow{\tau}\left(q^{\prime}, x^{\prime}\right)$ between two configurations (q, x) and $\left(q^{\prime}, x^{\prime}\right)$, with time increment $\tau \in\{0,1\}$, is allowed in \mathcal{A}^{v} if (1) $x \models_{v} \mathcal{I}(q)$ and $x^{\prime} \models_{v} \mathcal{I}\left(q^{\prime}\right)$, (2) there exists an edge $\left(q, \tau, g, r, q^{\prime}\right) \in E$ such that $x+\tau=_{v} g$ and $x^{\prime}=0$ if $r=\{x\}, x^{\prime}=x+\tau$ if $r=\varnothing .^{2}$

A run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ of \mathcal{A}^{v} is an infinite sequence of transitions $\left(q_{i}, x_{i}\right) \xrightarrow{\tau_{i}}$ $\left(q_{i+1}, x_{i+1}\right)$ such that $\Sigma_{i \geq 0} \tau_{i}=\infty^{3}$. The duration $t=\mathrm{D}_{\rho}\left(q_{i}, x_{i}\right)$ at configuration $\left(q_{i}, x_{i}\right)$ of ρ is equal to $t=\Sigma_{0 \leq j<i} \tau_{j}$. A finite run ρ is a finite sequence of transitions. It is shortly denoted by $(q, x) \rightsquigarrow\left(q^{\prime}, x^{\prime}\right)$ such that (q, x) (resp. $\left.\left(q^{\prime}, x^{\prime}\right)\right)$ is its first (resp. last) configuration. Its duration D_{ρ} is equal to $\mathrm{D}_{\rho}\left(q^{\prime}, x^{\prime}\right)$.

2.2 Parametric Timed CTL Logic

Formulae of Parametric Timed CTL logic, PTCTL for short, are formed by a bloc of quantifiers over some parameters followed by a quantifier-free temporal formula. They are defined as follows. Notation σ means any atomic proposition $\sigma \in \Sigma$ and α, β are linear terms as before.

Definition 4 A PTCTL formula f is of the form

$$
f=Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \varphi
$$

such that $k \geq 0,\left\{\theta_{1}, \ldots, \theta_{k}\right\} \subseteq \Theta, Q_{j} \in\{\exists, \forall\}$ for each $j, 1 \leq j \leq k$, and φ is given by the following grammar

$$
\varphi::=\sigma|\alpha \sim \beta| \neg \varphi|\varphi \vee \varphi| \exists \bigcirc \varphi\left|\varphi \exists \mathrm{U}_{\sim \alpha} \varphi\right| \varphi \forall \mathrm{U}_{\sim \alpha} \varphi
$$

[^1]Note that usual operators $\exists \mathrm{U}$ and $\forall \mathrm{U}$ are obtained as $\exists \mathrm{U}_{\geq 0}$ and $\forall \mathrm{U}_{\geq 0}$. We also use the following abbreviations: $\exists \diamond_{\sim \alpha} \varphi$ for $T \exists \mathrm{U}_{\sim \alpha} \varphi, \forall \diamond_{\sim \alpha} \varphi$ for $\mathrm{T} \forall \mathrm{U}_{\sim \alpha} \varphi$, $\exists \square_{\sim \alpha} \varphi$ for $\left.\neg \forall\right\rangle_{\sim \alpha} \neg \varphi$, and $\forall \square_{\sim \alpha} \varphi$ for $\neg \exists \diamond_{\sim \alpha} \neg \varphi$.

We use notation QF-PTCTL for the set of quantifier-free formulae φ of PTCTL. The set of parameters of Θ that are free in f, that is, not under the scope of a quantifier, is denoted by Θ_{f}. Thus, for a QF-PTCTL formula φ, we have $\Theta_{\varphi}=\Theta$ (recall that Θ is the set of parameters that appear in the formula and in the automaton).

We now give the semantics of PTCTL.
Definition 5 Let \mathcal{A} be a parametric timed automaton and (q, x) be a configuration of \mathcal{A}. Let $f=Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \varphi$ be a PTCTL formula. Given a paramater valuation v on Θ_{f}, the satisfaction relation $(q, x) \models_{v} f$ is defined inductively as follows. If $f=\varphi$, then $(q, x) \models_{v} \varphi$ according to following rules:

- $(q, x) \models_{v} \sigma$ iff there exists ${ }^{4}$ a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ in \mathcal{A}^{v} with $(q, x)=\left(q_{0}, x_{0}\right)$ and $\sigma \in \mathcal{L}(q)$
- $(q, x) \models_{v} \alpha \sim \beta$ iff there exists a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ in \mathcal{A}^{v} with $(q, x)=$ $\left(q_{0}, x_{0}\right)$ and $v(\alpha) \sim v(\beta)$
- $(q, x) \models_{v} \neg \varphi$ iff $(q, x) \not \vDash_{v} \varphi$
- $(q, x) \models_{v} \varphi \vee \psi$ iff $(q, x) \models_{v} \varphi$ or $(q, x) \models_{v} \psi$
- $(q, x) \models_{v} \exists \bigcirc \varphi$ iff there exists a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ in \mathcal{A}^{v} with $(q, x)=$ $\left(q_{0}, x_{0}\right)$ and $\left(q_{1}, x_{1}\right) \models_{v} \varphi$
- $(q, x) \models_{v} \varphi \exists \mathrm{U}_{\sim \alpha} \psi$ iff there exists a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ in \mathcal{A}^{v} with $(q, x)=$ $\left(q_{0}, x_{0}\right)$, there exists $i \geq 0$ such that $\mathrm{D}_{\rho}\left(q_{i}, x_{i}\right) \sim v \overline{(\alpha)},\left(q_{i}, x_{i}\right) \models_{v} \psi$ and $\left(q_{j}, x_{j}\right) \models_{v} \varphi$ for all $j<i$
- $(q, x) \models_{v} \varphi \forall \mathrm{U}_{\sim \alpha} \psi$ iff for any run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ in \mathcal{A}^{v} with $(q, x)=$ $\left(q_{0}, x_{0}\right)$, there exists $i \geq 0$ such that $\mathrm{D}_{\rho}\left(q_{i}, x_{i}\right) \sim v(\alpha),\left(q_{i}, x_{i}\right) \models_{v} \psi$ and $\left(q_{j}, x_{j}\right) \models_{v} \varphi$ for all $j<i$
If $f=\exists \theta f^{\prime}$, then $(q, x) \models_{v} f$ iff there exists $c \in \mathbb{N}$ such that $(q, x) \models_{v^{\prime}} f^{\prime}$ where v^{\prime} is defined on $\Theta_{f^{\prime}}$ by $v^{\prime}=v$ on Θ_{f} and $v^{\prime}(\theta)=c$. If $f=\forall \theta f^{\prime}$, then $(q, x) \neq_{v} f$ iff for all $c \in \mathbb{N},(q, x) \models_{v^{\prime}} f^{\prime}$ where v^{\prime} is defined on $\Theta_{f^{\prime}}$ by $v^{\prime}=v$ on Θ_{f} and $v^{\prime}(\theta)=c$.

2.3 Problems

The problems that we want to solve in this paper are the following ones. The first problem is the model-checking problem for PTCTL formulae f with no free parameters. In this case, we omit the index by v in the satisfaction relation $(q, x) \models f$ since no parameter (neither in the automaton nor in the formula) has to receive a valuation.

[^2]Problem 6 The model-checking problem is the following. Given a parametric timed automaton \mathcal{A} and a PTCTL formula f such that $\Theta_{f}=\varnothing$, given a configuration (q, x) of \mathcal{A}, does $(q, x) \models f$ hold ?

The second problem is the more general problem of parameter synthesis for PTCTL formulae f such that Θ_{f} is any subset of Θ.

Problem 7 The parameter synthesis problem is the following. Given a parametric timed automaton \mathcal{A} and a configuration (q, x) of \mathcal{A}, given a PTCTL formula f, compute a symbolic representation of the set of parameter valuations v on Θ_{f} such that $(q, x) \models v f^{5}$.

Example We consider the example given in the introduction with the parametric timed automaton \mathcal{A} of Figure 1 and the PTCTL formulae equal to

$$
f: \forall \theta_{1} \forall \theta_{2} \cdot\left(\theta_{2} \leq \theta_{1} \rightarrow \forall \square\left(\sigma \rightarrow \forall \diamond_{\leq 2 \theta_{1}+2} \sigma\right)\right)
$$

and

$$
\left.g: \forall \theta_{1} \cdot\left(\theta_{1} \geq 5 \rightarrow \forall \square(\sigma \rightarrow \forall\rangle_{<2 \theta_{1}+2} \sigma\right)\right)
$$

Then $\Theta=\left\{\theta_{1}, \theta_{2}\right\}, \Theta_{f}=\varnothing$ and $\Theta_{g}=\left\{\theta_{2}\right\}$. The model-checking problem "does $\left(q_{0}, 0\right) \models f$ hold" has a YES answer. The parameter synthesis problem "for which parameter valuations v on Θ_{g} does $\left(q_{0}, 0\right) \models_{v} g$ hold" receives the answer $\theta_{2} \leq 4$.

3 Decision Problems

In this section, we will prove that the model-checking problem is undecidable. The undecidability comes from the use of equality of the operators $\exists \mathrm{U}_{\sim \alpha}$ and $\forall \mathrm{U}_{\sim \alpha}$. When equality is forbidden in these operators, we will prove that the model-checking problem becomes decidable. In this case, we will also positively solve the parameter synthesis problem. Our proofs use Presburger arithmetics and its extension with integer divisibility.

In the sequel, we use subscripts to indicate what are the limitations imposed to \sim in operators $\exists \mathrm{U}_{\sim \alpha}$ and $\forall \mathrm{U}_{\sim \alpha}$. For instance, notation $\mathrm{PTCTL}_{\{=\}}$means that \sim can only be equality.

3.1 Undecidability Result for Equality

We prove here that Problem 6 is undecidable for $\mathrm{PTCTL}_{\{=\}}$. The proof relies on the undecidability of Presburger arithmetic with divisibility.

Presburger arithmetic with divisibility is an extention of Presburger arithmetic with integer divisibility relation. The additional divisibility relation is

[^3]Figure 2: Automaton for $z \mid z^{\prime}$
denoted by $z \mid z^{\prime}$ and means " z divides $z^{\prime \prime}$. Every formula of Presburger arithmetic with divisibility can be put into normal form:

$$
Q z_{1} Q z_{2} \ldots Q z_{n} \cdot(\neg) \phi_{1} \star(\neg) \phi_{2} \star \cdots \star(\neg) \phi_{m}
$$

where \star belongs to $\{\vee, \wedge\},(\neg)$ means that negation is optional and each ϕ_{i} is one of the following atomic formulae: (i) $\alpha=z$, (ii) $\alpha<z,($ iii $) z \mid z^{\prime}$ such that α is a linear term and $z^{\prime}>0$. While Presburger arithmetic has a decidable theory, Presburger arithmetic with divisibility is undecidable [?].

Theorem 8 For any sentence Φ of Presburger arithmetic with divisibility, we can construct a parametric timed automaton \mathcal{A}, a configuration $\left(q, x_{0}\right)$ and a PTCTL formula f such that Φ is TRUE iff the answer to the model checking $\operatorname{problem}\left(q, x_{0}\right) \models f$ for \mathcal{A} is YES.

Proof Let us make the assumption that the sentence Φ is in normal form, that is

$$
Q z_{1} Q z_{2} \ldots Q z_{n} \cdot(\neg) \phi_{1} \star(\neg) \phi_{2} \star \cdots \star(\neg) \phi_{m}
$$

We are going to construct a $\operatorname{PTCTL}_{\{=\}}$formula f and a paramatric timed automaton \mathcal{A}. The set Θ of parameters is equal to the set of variables used in Φ.

For each subformula ϕ_{l} of the form $\alpha=z$ or $\alpha<z$, we define the $\operatorname{PTCTL}_{\{=\}}$ formula $\hat{\phi}_{l}=\phi_{l}$. For each subformula ϕ_{l} of the form $z \mid z^{\prime}$, we construct the next parametric timed automaton $\mathcal{A}_{\phi_{l}}$ and $\mathrm{PTCTL}_{\{=\}}$formula $\hat{\phi}_{l}$. The automaton $\mathcal{A}_{\phi_{l}}$ is given in Figure 2. We label the unique initial state i_{l} of this automaton by σ_{1}^{l} and the unique final f_{l} state by σ_{2}^{l}. It is easy to see that there is a run ρ from the initial configuration $\left(i_{l}, 0\right)$ to the final configuration $\left(f_{l}, z\right)$ with duration D_{ρ} iff $z \mid D_{\rho}$. For formula $\hat{\phi}_{l}$, we take $\left.\sigma_{1}^{l} \wedge \exists\right\rangle_{=z^{\prime}} \sigma_{2}^{l}$.

Now we construct formula f as follows

$$
Q z_{1} Q z_{2} \ldots Q z_{n} \cdot(\neg) \hat{\phi}_{1} \star(\neg) \hat{\phi}_{2} \star \cdots \star(\neg) \hat{\phi}_{m}
$$

We construct the automaton \mathcal{A} by first taking the union of all the previous automata $\mathcal{A}_{\phi_{l}}$ (introduced for the divisibility subformulae). We then merge their initial states into a unique state of \mathcal{A} that we call q. The label $\mathcal{L}(q)$ of q is the union of the labels σ_{1}^{l}. Finally, we add a new state q^{\prime} to \mathcal{A} and an edge $\left(f_{l}, 0, \top, \varnothing, q^{\prime}\right)$ from any final state f_{l} of $\mathcal{A}_{\phi_{l}}$ to state q^{\prime} labelled with $\tau=0$ and without guard and reset. To complete the construction, we add a self-loop $\left(q^{\prime}, 1, \top, \varnothing, q^{\prime}\right)$ on q^{\prime} that allows time to progress.

It is easy to see that given \mathcal{A}, we have $(q, 0) \models f$ iff Φ is TRUE.
As a direct consequence of Theorem 8, we have:
Corollary 9 The model-checking problem for $\mathrm{PTCTL}_{\{=\}}$is undecidable.

3.2 Decidability for PTCTL without Equality

In this section, we provide solutions to the model-checking problem and the parameter synthesis problem for $\mathrm{PTCTL}_{\{<, \leq,>, \geq\}}$. Our approach is as follows. Given a formula φ of QF-PTCTL we will construct a Presburger formula $\Delta_{q, \varphi}(x, \Theta)$ with free variables x and all $\theta \in \Theta$ such that

$$
\left(q, x_{0}\right) \models_{v} \varphi \quad \text { iff } \quad \Delta_{q, \varphi}\left(x_{0}, v(\Theta)\right) \text { is TRUE }
$$

for any valuation v on Θ and any value x_{0} of the clock (see Theorem 11). Solutions to Problems 6 and 7 will be obtained as a corollary (see Corollaries 14 and 15). For instance, the decidability of the model-checking problem will derive from the decidability of Presburger arithmetic. Indeed, if we denote by $Q \Theta \varphi$ a PTCTL formula f with no free parameters, then to test if $\left(q, x_{0}\right) \models f$ is equivalent to test if the sentence $Q \Theta \Delta_{q, \varphi}\left(x_{0}, \Theta\right)$ is TRUE.
Example Consider the parametric timed automaton of Figure 1 and the QFPTCTL formula φ equal to $\left.\forall \square(\sigma \rightarrow \forall\rangle_{\leq \theta_{3}} \sigma\right)$. Then $\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$. Presburger formula $\Delta_{q_{0}, \varphi}(x, \Theta)$ is here equal to $\theta_{1}+\theta_{2}+2 \leq \theta_{3}$ with no reference to x since it is reset along the edge from q_{0} to q_{1}. Thus $\left(q, x_{0}\right)=_{v} \varphi$ for any clock value x_{0} and any valuation v such that $v\left(\theta_{1}\right)+v\left(\theta_{2}\right)+2 \leq v\left(\theta_{3}\right)$. The modelchecking problem $\left(q, x_{0}\right) \models \forall \theta_{1} \forall \theta_{2} \exists \theta_{3} \varphi$ has a YES answer for any x_{0} because the sentence $\forall \theta_{1} \forall \theta_{2} \exists \theta_{3} \cdot\left(\theta_{1}+\theta_{2}+2 \leq \theta_{3}\right)$ is TRUE in Presburger arithmetic. If clock x was not reset along the edge from q_{0} to q_{1}, then the formula $\Delta_{q_{0}, \varphi}(x, \Theta)$ would be equal to $\left(\theta_{1}+\theta_{2}+2 \leq \theta_{3}\right) \wedge\left(x \leq \theta_{1}\right)$ and the above model-checking problem would have a YES answer iff $\forall \theta_{1} \forall \theta_{2} \exists \theta_{3} \cdot\left(\theta_{1}+\theta_{2}+2 \leq \theta_{3}\right) \wedge\left(x_{0} \leq \theta_{1}\right)$, that is $x_{0}=0$.

As indicated by this example, the Presburger formula $\Delta_{q, \varphi}(x, \Theta)$ constructed from the QF-PTCTL formula φ is a boolean combination of terms of the form $\theta \sim \alpha$ or $x \sim \alpha$ where θ is a parameter, x is the clock and α is a linear term over parameters. Formula $\Delta_{q, \varphi}(x, \Theta)$ must be seen as a syntactic translation of formula φ to Presburger arithmetic. The question "does $\left(q, x_{0}\right) \models f$ holds" with $f=Q \Theta \varphi$ is translated into the question "does the Presburger sentence $Q \Theta \Delta_{q, \varphi}\left(x_{0}, \Theta\right)$ is TRUE". At this point only, semantic inconsistencies inside $Q \Theta \Delta_{q, \varphi}\left(x_{0}, \Theta\right)$ are looked for to check if this sentence is TRUE or not.

Our proofs require to work with a set \mathcal{G} of guards that is more general than in Notation 1.

Notation 10 Linear terms α, β, \ldots are any $\Sigma_{i} c_{i} \theta_{i}+c$, with $c_{i}, c \in \mathbb{Z}$ (instead of \mathbb{N}). Comparison symbol \sim used in expressions like $x \sim \alpha$ and $\alpha \sim \beta$ belongs to the extended set $\left\{=,<, \leq,>, \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$. For any constant $a \in \mathbb{N}^{+}$, notation $z \equiv{ }_{a, \leq} z^{\prime}$ means $z \equiv z^{\prime} \bmod a$ and $z \leq z^{\prime}$. Equivalently, this means that there exists $y \in \mathbb{N}$ such that $z+a y=z^{\prime}$. Notation $z \equiv_{a, \geq} z^{\prime}$ means $z \equiv z^{\prime} \bmod a$ and $z \geq z^{\prime}$.

Any $x \sim \alpha$ is called an x-atom, any $\alpha \sim \beta$ is called a θ-atom. An x conjunction is any conjunction of x-atoms, and a θ-conjunction is any conjunction of θ-atoms. We denote by $\mathcal{B}_{x, \Theta}$ the set of boolean combinations of x-atoms
and θ-atoms. A guard is any element of $\mathcal{B}_{x, \Theta}$. Thus the set \mathcal{G} of Notation 1 is now equal to the set $\mathcal{B}_{x, \Theta}$.

From now on, it is supposed that the guards and the invariants appearing in parametric timed automata belong to the generalized set $\mathcal{G}=\mathcal{B}_{x, \Theta}$. It should be noted that the extension of \sim to $\left\{=,<, \leq,>, \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$ is only valid inside automata, and not inside PTCTL formulae. We shortly call automaton any parametric timed automaton \mathcal{A}. Let us state our main result.

Theorem 11 Let \mathcal{A} be an automaton and q be a state of \mathcal{A}. Let φ be a QF$\operatorname{PTCTL}_{\{<, \leq,>, \geq\}}$formula. Then there exists a $\mathcal{B}_{x, \Theta}$ formula $\Delta_{q, \varphi}(x, \Theta)$ with free variables x and all $\theta \in \Theta$ such that

$$
\left(q, x_{0}\right) \neq_{v} \varphi \quad \text { iff } \quad \Delta_{q, \varphi}\left(x_{0}, v(\Theta)\right) \text { is TRUE }
$$

for any valuation v on Θ and any clock value x_{0}. The construction of formula $\Delta_{q, \varphi}$ is effective.

The proof of Theorem 11 is by induction on the way formula φ is constructed. The main ideas are roughly the following ones. First, suppose for instance that along a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ of \mathcal{A}^{v} showing that $\left(q_{0}, x_{0}\right) \models_{v} \varphi$, some configuration, say $\left(q_{j}, x_{j}\right)$, needs to satisfy $\left(q_{j}, x_{j}\right) \models_{v} \psi$ with ψ a subformula of φ. The automaton \mathcal{A} is modified into \mathcal{A}^{\prime} such that the invariant $\mathcal{I}\left(q_{j}\right)$ is augmented ${ }^{6}$ by the $\mathcal{B}_{x, \Theta}$ formula $\Delta_{q_{j}, \psi}$ constructed by induction. Along the run ρ seen in the modified automaton \mathcal{A}^{\prime}, the satisfaction relation $\left(q_{j}, x_{j}\right) \not \models_{v} \psi$ holds automatically thanks to the augmented invariant of q_{j}. Second, what we also need is a $\mathcal{B}_{x, \Theta}$ formula that expresses the existence of an infinite run starting at a given configuration (for operator $\exists \square$ for instance) and another one that expresses the existence of a finite run ρ starting and ending at given configurations such that $\mathrm{D}_{\rho} \sim v(\alpha)$ (for operator $\exists \mathrm{U}_{\sim \alpha}$ for instance). This is possible by the next two propositions. Their proof is postponed till Section 4.

Proposition 12 Let \mathcal{A} be an automaton and q be a state. Then there exists a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{Run}_{q}(x, \Theta)$ such that for any valuation v and any clock value x_{0},

$$
\operatorname{Run}_{q}\left(x_{0}, v(\Theta)\right) \text { is TRUE }
$$

iff there exists an infinite run in \mathcal{A}^{v} starting with $\left(q, x_{0}\right)$. The construction of $\operatorname{Run}_{q}(x, \Theta)$ is effective.

Proposition 13 Let \mathcal{A} be an automaton and q, q^{\prime} be two states. Let $\sim \in\{<, \leq$ $,>, \geq\}$ and α be a linear term. Then there exists a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{Duration}_{q, q^{\prime}}^{\sim \alpha}(x, \Theta)$ such that for any valuation v and any clock value x_{0},

$$
\text { Duration }_{q, q^{\prime}}^{\sim \alpha}\left(x_{0}, v(\Theta)\right) \text { is TRUE }
$$

iff there exists a finite run $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, \cdot\right)$ in \mathcal{A}^{v} with $D_{\rho} \sim v(\alpha)$. The construction of Duration $\underset{q, q^{\prime}}{\sim \alpha}(x, \Theta)$ is effective.

[^4]For the proof of Theorem 11, instead of the grammar given in Definition 4, we prefer to work with the grammar

$$
\varphi::=\sigma|\alpha \sim \beta| \neg \varphi|\varphi \vee \varphi| \exists \bigcirc \varphi\left|\varphi \exists \mathrm{U}_{\sim \alpha} \varphi\right| \exists \square_{<\alpha} \varphi \mid \exists \square \varphi
$$

This grammar is equivalent because formula $\exists \square_{\leq \alpha} \varphi$ can be replaced by $\exists \square_{<\alpha+1} \varphi$, formula $\exists \square_{\geq \alpha} \varphi$ by $\left(\exists \square_{>\alpha-1} \varphi\right) \vee(\exists \square \varphi \wedge \alpha=\overline{0})$, formula $\exists \square_{>\alpha} \varphi$ by $\exists \diamond_{\leq \alpha} \exists \bigcirc$ $\exists \square \varphi$, and formula $\varphi \forall \mathrm{U}_{\sim \alpha} \psi$ by $\neg\left(\neg \psi \exists \mathrm{U}_{\sim \alpha}(\neg \varphi \wedge \neg \psi)\right) \vee \neg\left(\exists \square_{\sim \alpha} \neg \psi\right)$. It is not difficult to check that the semantics of the new operator $\exists \square_{<\alpha} \varphi$ is given by
$(q, x) \neq_{v} \exists \square_{<\alpha} \varphi$ iff there exists a run $\rho=\left(q_{i}, x_{i}\right)_{i \geq 0}$ of \mathcal{A}^{v} with $(q, x)=$ $\left(q_{0}, x_{0}\right)$, there exists $j \geq 0$ such that $D_{\rho}\left(q_{j}, x_{j}\right) \geq v(\bar{\alpha})$ and $\left(q_{i}, x_{i}\right) \models_{v} \varphi$ for any $i<j$.
Proof of Theorem 11 (by induction on φ). If $\varphi=\sigma$, then $\left(q, x_{0}\right) \models_{v} \varphi$ iff there exists an infinite run starting with $\left(q, x_{0}\right)$ and $\sigma \in \mathcal{L}(q)$. Therefore

$$
\begin{aligned}
\Delta_{q, \varphi}(x, \Theta) & =\perp & & \text { if } \sigma \notin \mathcal{L}(q) \\
& =\operatorname{Run}_{q}(x, \Theta) & & \text { otherwise. }
\end{aligned}
$$

Similarly, if $\varphi=\alpha \sim \beta$ with $\sim \in\{=,<, \leq,>, \geq\}$, then

$$
\Delta_{q, \varphi}(x, \Theta)=(\alpha \sim \beta) \wedge \operatorname{Run}_{q}(x, \Theta)
$$

If $\varphi=\psi \vee \phi$, then $\Delta_{q, \varphi}=\Delta_{q, \psi} \vee \Delta_{q, \phi}$. If $\varphi=\neg \psi$, then $\Delta_{q, \varphi}=\neg \Delta_{q, \psi}$.
Let us treat $\varphi=\exists \bigcirc \psi$. Recall that $\left(q, x_{0}\right)=_{v} \exists \bigcirc \psi$ iff there exists a transition $\left(q, x_{0}\right) \xrightarrow{\tau}\left(q^{\prime}, x_{0}^{\prime}\right)$ such that $\left(q^{\prime}, x_{0}^{\prime}\right) \models_{v} \psi$ and $\left(q^{\prime}, x_{0}^{\prime}\right)$ is the first configuration of an infinite run ρ^{\prime}. Let $\left(q, \tau, g, r, q^{\prime}\right)$ be the edge of E that has lead to the transition $\left(q, x_{0}\right) \xrightarrow{\tau}\left(q^{\prime}, x_{0}^{\prime}\right)$. Then (see Definition 3), $x_{0}^{\prime}=0$ if $r=\{x\}$, and $x_{0}^{\prime}=x_{0}+\tau$ if $r=\varnothing$. By induction hypothesis, $\Delta_{q^{\prime}, \psi}$ has been constructed such that $\Delta_{q^{\prime}, \psi}\left(x_{0}^{\prime}, v(\Theta)\right)$ is TRUE iff $\left(q^{\prime}, x_{0}^{\prime}\right) \models_{v} \psi$. The automaton \mathcal{A} is modified into an automaton $\overline{\mathcal{A}}$ as follows. A copy ${ }^{7} \bar{q}^{\prime}$ of q^{\prime} is added to Q such that $\mathcal{L}\left(\bar{q}^{\prime}\right)=\mathcal{L}\left(q^{\prime}\right), \mathcal{I}\left(\bar{q}^{\prime}\right)=\mathcal{I}\left(q^{\prime}\right) \wedge \Delta_{q^{\prime}, \psi}(x, \Theta)$. A copy $\left(\bar{q}^{\prime}, \tau^{\prime}, g^{\prime}, r^{\prime}, p\right)$ is also added for any edge $\left(q^{\prime}, \tau^{\prime}, r^{\prime}, g^{\prime}, p\right)$ leaving q^{\prime}. By Proposition 12 applied to $\overline{\mathcal{A}}$ and \bar{q}^{\prime}, we get a $\mathcal{B}_{x, \theta}$ formula $\operatorname{Run}_{\bar{q}^{\prime}}$ such that $\operatorname{Run}_{\bar{q}^{\prime}}\left(x_{0}^{\prime}, v(\Theta)\right)$ is true iff there exists an infinite run in $\overline{\mathcal{A}}^{v}$ starting with $\left(\bar{q}^{\prime}, x_{0}^{\prime}\right)$. By construction of \bar{q}^{\prime}, equivalently there exists an infinite run in \mathcal{A}^{v} starting with $\left(q^{\prime}, x_{0}^{\prime}\right)$ and such that $\left(q^{\prime}, x_{0}^{\prime}\right) \neq_{v} \psi$. Hence, the expected formula $\Delta_{q, \varphi}(x, \Theta)$ is equal to

$$
\begin{aligned}
\Delta_{q, \varphi}(x, \Theta)= & \bigvee_{\left(q, \tau, g, r, q^{\prime}\right) \in E_{R}}\left(\mathcal{I}(q) \wedge \operatorname{Run}_{\bar{q}^{\prime}}(0, \Theta)\right) \\
& \vee \bigvee_{\left(q, \tau, g, r, q^{\prime}\right) \in E \backslash E_{R}}\left(\mathcal{I}(q) \wedge \operatorname{Run}_{\bar{q}^{\prime}}(x+\tau, \Theta)\right)
\end{aligned}
$$

where E_{R} is the set of edges that reset the clock.
The construction of formula $\Delta_{q, \varphi}$ for $\varphi=\exists \square \psi$ is in the same vein as the previous one. Recall that $\left(q, x_{0}\right) \models_{v} \varphi$ iff there is an infinite run in \mathcal{A}^{v} with first configuration (q, x_{0}) such that all its configurations satisfy ψ. The automaton \mathcal{A} is here modified into $\overline{\mathcal{A}}$ as follows. For any state $p \in Q, \mathcal{I}(p)$ is replaced

[^5]by $\mathcal{I}(p) \wedge \Delta_{p, \psi}(x, \Theta)$. By Proposition 12 applied to $\overline{\mathcal{A}}$, we get a formula Run_{q} such that $\operatorname{Run}_{q}\left(x_{0}, v(\Theta)\right)$ is TRUE iff there exists an infinite run in \mathcal{A}^{v} starting with $\left(q, x_{0}\right)$ and such that all its configurations satisfy ψ. Therefore formula $\Delta_{q, \varphi}(x, \Theta)$ is equal to
$$
\operatorname{Run}_{q}(x, \Theta)
$$

Let us turn to formula $\varphi=\psi \exists \mathrm{U}_{\sim \alpha} \phi$. We have $\left(q, x_{0}\right) \models_{v} \varphi$ iff either (1) $0 \sim v(\alpha),\left(q, x_{0}\right) \models_{v} \phi$ and $\left(q, x_{0}\right)$ is the first configuration of an infinite run, or (2) there exists a finite run $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, x_{0}^{\prime}\right)$ such that $\mathrm{D}_{\rho} \sim v(\alpha), \psi$ is satisfied at any configuration of ρ distinct from $\left(q^{\prime}, x_{0}^{\prime}\right), \phi$ is satisfied at $\left(q^{\prime}, x_{0}^{\prime}\right)$ and $\left(q^{\prime}, x_{0}^{\prime}\right)$ is the first configuration of an infinite run. For any state $p \in Q$, formulae $\Delta_{p, \psi}$ and $\Delta_{p, \phi}$ have been constructed by induction hypothesis. So, in case (1), with the same construction of $\overline{\mathcal{A}}$ as done before for operator $\exists \bigcirc$ (with q, ϕ instead of $\left.q^{\prime}, \psi\right)$, we have the next formula

$$
(0 \sim \alpha) \wedge \operatorname{Run}_{\bar{q}}(x, \Theta)
$$

Case (2) is more involved. The automaton \mathcal{A} is first modified into $\overline{\mathcal{A}}$ as for operator $\exists \bigcirc$ (with q^{\prime}, ϕ instead of $\left.q^{\prime}, \psi\right)$ to get formula $\operatorname{Run}_{\bar{q}^{\prime}}$ such that $\operatorname{Run}_{\bar{q}^{\prime}}\left(x_{0}^{\prime}, v(\Theta)\right)$ is TRUE iff there exists an infinite run in \mathcal{A}^{v} starting with $\left(q^{\prime}, x_{0}^{\prime}\right)$ and such that $\left(q^{\prime}, x_{0}^{\prime}\right) \models_{v} \phi$. The automaton \mathcal{A} is then modified in another automaton \mathcal{A} in the following way. A copy \underline{q}^{\prime} of q^{\prime} is added to Q as well as a copy of any edge of E entering q^{\prime} as entering \underline{q}^{\prime}; we define $\mathcal{L}\left(\underline{q}^{\prime}\right)=\mathcal{L}\left(q^{\prime}\right)$ and $\mathcal{I}\left(\underline{q}^{\prime}\right)=\mathcal{I}\left(q^{\prime}\right) \wedge \operatorname{Run}_{\bar{q}^{\prime}}(x, \Theta)^{8}$. For any state p of $Q, \mathcal{I}(p)$ is replaced by $\mathcal{I}(p) \wedge \Delta_{p, \psi}(\bar{x}, \Theta)$. Thanks to Proposition 13 applied to $\underline{\mathcal{A}}$, we obtain a formula Duration $\underset{q, \underline{q}^{\prime}}{\sim \alpha}(x, \Theta)$ expressing the following: Duration $\underset{q, q^{\prime}}{\sim \alpha}\left(x_{0}, v(\Theta)\right)$ is TRUE iff there exists in $\underline{\mathcal{A}}^{v}$ a finite run $\underline{\rho}=\left(q, x_{0}\right) \rightsquigarrow\left(\underline{q}^{\prime}, x_{0}^{\prime}\right)$ with $\mathrm{D}_{\underline{\rho}} \sim v(\alpha)$. Equivalently there exists in \mathcal{A}^{v} a finite run $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, x_{0}^{\prime}\right)^{-}$with $\mathrm{D}_{\rho} \sim v(\alpha)$ such that ψ is satisfied at any configuration of ρ distinct from $\left(q^{\prime}, x_{0}^{\prime}\right), \phi$ is satisfied at $\left(q^{\prime}, x_{0}^{\prime}\right)$ and $\left(q^{\prime}, x_{0}^{\prime}\right)$ is the first configuration of an infinite run. For case (2), the expected formula is thus the disjunction

$$
\bigvee_{q^{\prime} \in Q} \text { Duration }_{q, \underline{q^{\prime}}}^{\sim \alpha}(x, \Theta) .
$$

Therefore, formula $\Delta_{q, \varphi}$ is the disjunction

$$
\left((0 \sim \alpha) \wedge \operatorname{Run}_{\bar{q}}(x, \Theta)\right) \quad \vee \quad \bigvee_{q^{\prime} \in Q} \operatorname{Duration}_{q, \underline{q}^{\prime}}^{\sim \alpha}(x, \Theta)
$$

Finally, let φ be $\exists \square_{<\alpha} \psi$. Then $\left(q, x_{0}\right) \neq_{v} \varphi$ iff there exists a finite run $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, x^{\prime}\right)$ such that $\mathrm{D}_{\rho} \geq v(\alpha),(p, x) \models_{v} \psi$ for each configuration (p, x) of ρ distinct from $\left(q^{\prime}, x^{\prime}\right)$ and $\left(q^{\prime}, x^{\prime}\right)$ is the first configuration of an infinite run. As done just before, \mathcal{A} is modified into $\underline{\mathcal{A}}$ except that we use $\mathrm{Run}_{q^{\prime}}$ instead

[^6]of $\operatorname{Run}_{\bar{q}^{\prime}}$ in the definition of $\mathcal{I}\left(\underline{q}^{\prime}\right)$. By Proposition 13 , formula $\Delta_{q, \varphi}$ is equal to
$$
\bigvee_{q^{\prime} \in Q} \text { Duration }_{q, \underline{q}^{\prime}}^{\geq \alpha}(x, \Theta) \text {. }
$$

The proof is completed since all the proposed formulae belong to $\mathcal{B}_{x, \Theta}$ and their construction is effective.

Solutions to the model-checking problem and the parameter synthesis problem are obtained as a corollary of Theorem 11.

Corollary 14 The model-checking problem for $\mathrm{PTCTL}_{\{<, \leq,>, \geq\}}$is decidable.
Proof Let $Q \Theta \varphi$ be a PTCTL formula f with no free parameters. By Theorem $11,\left(q, x_{0}\right) \models f$ iff $Q \Theta \Delta_{q, \varphi}\left(x_{0}, \Theta\right)$ is TRUE. As Presburger arithmetic has a decidable theory and $Q \Theta \Delta_{q, \varphi}\left(x_{0}, \Theta\right)$ is Presburger sentence, the model-checking problem is decidable.

The next corollary is straightforward. It states that the parameter synthesis problem is solvable.

Corollary 15 Let \mathcal{A} be an automaton and $\left(q, x_{0}\right)$ be a configuration of \mathcal{A}. Let $\left\{\theta_{1}, \ldots, \theta_{k}\right\} \subseteq \Theta$ with $k \geq 0$ and let $f=Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \varphi$ be a $\mathrm{PTCTL}_{\{<, \leq,>, \geq\}}$ formula. Then the Presburger formula $Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \Delta_{q, \varphi}(x, \Theta)$ with free parameters in Θ_{f} is an effective characterization of the set of valuations v on Θ_{f} such that $\left(q, x_{0}\right) \vDash v f$.

Let us denote by $V\left(\mathcal{A}, f, q, x_{0}\right)$ the set of valuations v on Θ_{f} such that $\left(q, x_{0}\right) \vDash v f$. Let Θ_{f} be equal to $\left\{\theta_{1}^{\prime}, \ldots, \theta_{l}^{\prime}\right\}$. Presburger arithmetics has an effective quantifier elimination, by adding to the operations + and \leq all the congruences $\equiv \bmod a, a \in \mathbb{N}^{+}$. It follows the characterization of $V\left(\mathcal{A}, f, q, x_{0}\right)$ given above by $Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \Delta_{q, \varphi}(x, \Theta)$ can be effectively rewritten without any quantifier. On the other hand, since Presburger arithmetic has a decidable theory, any question formulated in this logic about $V\left(\mathcal{A}, f, q, x_{0}\right)$ is decidable. For instance, the question "Is the set $V\left(\mathcal{A}, f, q, x_{0}\right)$ non empty" is decidable as it is formulated in Presburger arithmetic by $\exists \theta_{1}^{\prime} \cdots \exists \theta_{l}^{\prime} Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \Delta_{q, \varphi}(x, \Theta)$. The question "Does the set $V\left(\mathcal{A}, f, q, x_{0}\right)$ contain all the valuations on Θ_{f} " is also decidable as it can be formulated as $\forall \theta_{1}^{\prime} \cdots \forall \theta_{l}^{\prime} Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \Delta_{q, \varphi}(x, \Theta)$. The question "Is the set $V\left(\mathcal{A}, f, q, x_{0}\right)$ finite" is translated into

$$
\exists z \forall \theta_{1}^{\prime} \cdots \forall \theta_{l}^{\prime} Q_{1} \theta_{1} \cdots Q_{k} \theta_{k} \cdot\left(\Delta_{q, \varphi}(x, \Theta) \Rightarrow \wedge_{i} \theta_{i}^{\prime} \leq z\right)
$$

And so on.

4 Durations

The aim of this section is a proof of Propositions 12 and 13 . This will be achieved thanks to a precise description of the possible durations of finite runs in an automaton. Several steps are necessary for this purpose.

In the first subsection, we show that we can work with automata put in some normal form. This normalization allows a simplified presentation of the proofs of the next subsections.

In Subsections 4.2 and 4.3, we restrict to reset-free normalized automata \mathcal{A}, that is automata in which there is no reset of the clock. For this family of automata, we study the runs of the form $\left(i, x_{0}\right) \rightsquigarrow(f, \cdot)$ such that $i \in I, f \in F$ with I, F being two fixed subsets of states, and x_{0} is a fixed clock value. In Subsection 4.2, a sequence of transformations is performed on the automaton such that the x-atoms used in the automaton are limited to equalities $x=\alpha$. These simplifications lead in Subsection 4.3 to the description by a Presburger formula of the durations D_{ρ} of runs $\rho=\left(i, x_{0}\right) \rightsquigarrow(f, \cdot), i \in I, f \in F$.

In the last subsection, we remove the reset-free restriction imposed to \mathcal{A} and we study in details the durations D_{ρ} of runs $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, \cdot\right)$ between two fixed states q and q^{\prime}. Any such run ρ can be decomposed into a sequence of runs $\rho_{j}, 1 \leq j \leq k$, according to the reset of the clock, that is the clock is reset at the beginning and the end of ρ_{j} but not inside of ρ_{j}. The duration D_{ρ} of ρ is thus the sum of the durations $D_{\rho_{j}}, 1 \leq j \leq k$. Any $D_{\rho_{j}}$ falls into durations being studied in Section 4.3. Thanks to this description of any duration D_{ρ} in terms of durations in reset-free automata, we are finally able to prove Propositions 12 and 13.

In Subsections 4.1, 4.2 and 4.3, we are going to perform a sequence of transformations on \mathcal{A} that will preserve the set of runs in \mathcal{A}^{v} for any valuation v, in the following sense. During a transformation, state q will possibly be splitted into several copies \bar{q}_{j}. Runs before and after the splitting can be supposed identical ${ }^{9}$ up to a renaming of any \bar{q}_{j} into q.

4.1 Normalized Automata

In this subsection, the automata are put in some normal form. The aim of this normalization is a simplified presentation of the proofs in the rest of the paper.

Definition 16 An automaton \mathcal{A} is normalized if for any state $q \in Q$,

- the invariant $\mathcal{I}(q)$ is equal to a conjunction of x-atoms and θ-atoms with \sim limited to $\left\{=, \leq, \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$,
- the edges (p, τ, g, r, q) entering q are all labelled by the same g and the same r (however τ can vary).

Proposition 17 Any automaton \mathcal{A} can be effectively normalized such that the set of runs in \mathcal{A}^{v} is preserved for any valuation v.

Before giving the proof of this proposition, we need the following result.

[^7]Lemma 18 Any $\mathcal{B}_{x, \Theta}$ formula is a Presburger formula. It can be rewritten as a disjunction of conjunctions of x-atoms and θ-atoms with \sim limited to $\{=, \leq$ $\left., \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$.

Proof Operators $\equiv_{a, \leq}$ and $\equiv_{a, \geq}$ are easily rewritten in Presburger arithmetic. Even if linear terms α, β, \ldots contain constants in \mathbb{Z}, any $x \sim \alpha$ and $\alpha \sim \beta$ can also be rewritten in Presburger arithmetic. This shows that any $\mathcal{B}_{x, \Theta}$ formula is a Presburger formula. To rewrite it as described in the lemma, it is first put into disjunctive normal form. Second negation is suppressed in any $\neg\left(z \sim z^{\prime}\right)$ as follows. This is done easily for $\sim \in\{<, \leq,>, \geq\}$. Negation $\neg\left(z=z^{\prime}\right)$ is replaced by $z<z^{\prime} \vee z>z^{\prime}$. Negation $\neg\left(z \equiv_{a, \leq} z^{\prime}\right)$ is equivalent to $(z>$ $\left.z^{\prime}\right) \vee\left(\bigvee_{0<b<a} z+b \equiv_{a, \leq} z^{\prime}\right)$. Similarly for $\neg\left(z \equiv_{a, \geq} z^{\prime}\right)$. Third all inequalities $z<z^{\prime}$ and $z>z^{\prime}$ are replaced respectively by $z \leq z^{\prime}-1$ and $z \geq z^{\prime}+1$. Finally this formula is put into disjunctive normal form.

Proof of Proposition 17. Let $q \in Q$. By Lemma 18, the invariant $\mathcal{I}(q)$ can be rewritten as a disjunction of k formulae $\delta_{j}, 1 \leq j \leq k$, where each δ_{j} is a conjunction of x-atoms and θ-atoms with $\sim \in\left\{=, \leq, \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$. We modify \mathcal{A} by splitting state q into k states $\bar{q}_{j}, 1 \leq j \leq k$, such that $\mathcal{L}\left(\bar{q}_{j}\right)=\mathcal{L}(q)$ and $\mathcal{I}\left(\bar{q}_{j}\right)=\delta_{j}$. Accordingly, we split any edge of E that enters or leaves state q. The first condition of Proposition 17 is therefore satisfied.

For the second condition, the construction is similar. Suppose that are several edges (p, τ, g, r, q) entering state q with distinct couples (g, r). Then q is splitted into several copies (one copy for one couple (g, r)) and all the edges entering q are redirected to each copy, according to the couples (g, r). The copies of q have the same $\mathcal{L}(q)$ and $\mathcal{I}(q)$ as q.

4.2 Transformations of Reset-free Automata

In all this subsection, we assume the next hypothesis.
Hypothesis (*) We assume that $\mathcal{A}=(Q, I, F, E, \mathcal{L}, \mathcal{I})$ is a reset-free normalized automaton with a set $I \subseteq Q$ of initial states and a set $F \subseteq Q$ of final states. We also assume such that $I \cap F=\varnothing$, no edge enters $i \in I$ and no edge leaves $f \in F$.

Remark As \mathcal{A} is normalized and reset-free, given a state q, all edges (p, τ, g, r, q) entering q have the same guard g and satisfy $r=\varnothing$. It follows that we can move guard g from these edges to the invariant $\mathcal{I}(q)$ of q. Indeed g is simply erased from all the edges entering q and added as a conjunction to $\mathcal{I}(q)$. By this construction, the set E of edges of \mathcal{A} can be rewritten as a subset of $Q \times$ $\{0,1\} \times Q$, instead of $Q \times\{0,1\} \times \mathcal{G} \times 2^{\{x\}} \times Q$ (see Definition 2).

On the other hand, as \mathcal{A} is normalized, the invariant $\mathcal{I}(q)$ of any state q is a conjunction of x-atoms and θ-atoms. We can view $\mathcal{I}(q)$ as a set of x-atoms and θ-atoms (instead of a conjunction) and we can say that an x-atom or a θ-atom belongs to q (instead of $\mathcal{I}(q))$ or appears in q.

Given a valuation v and a clock value x_{0}, we denote by

$$
\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)
$$

the set of runs of \mathcal{A}^{v} of the form $\left(i, x_{0}\right) \rightsquigarrow(f, \cdot)$ with $i \in I$ and $f \in F$. We are going to perform a sequence of transformations on \mathcal{A} that will preserve $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$. The aim of these transformations is to simplify the form of invariants used in the automaton. The invariant $\mathcal{I}(q)$ of any state $q \in Q \backslash(I \cup F)$ will be a conjunction of at most one x-atom (of the form $x=\alpha$) and one θ-conjunction. This simplification will be possible mainly because the automaton is reset-free (see Proposition 20).

Definition 19 An reset-free normalized automaton \mathcal{A} is simplified if

- for all $q \in Q$, the invariant $\mathcal{I}(q)$ is equal to $\mathcal{I}_{x}(q) \wedge \mathcal{I}_{\theta}(q)$ such that $\mathcal{I}_{x}(q)$ is an x-conjunction and $\mathcal{I}_{\theta}(q)$ is a θ-conjunction. Among the x-atoms $x \sim \alpha$ of $\mathcal{I}_{x}(q)$, at most one is an equality $x=\alpha$. Moreover, if $q \notin I \cup F$, then $\mathcal{I}_{x}(q)$ contains no other x-atom $x \sim \beta$ with $\sim \in\left\{\leq, \geq, \equiv_{a, \leq}, \equiv_{a, \geq}\right\}$, and if $q \in I$ (resp. $q \in F$), then the other x-atoms of $\mathcal{I}_{x}(q)$ are of the form $x \geq \beta$ (resp. $x \leq \beta$).
- for any run $\rho \in \mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$, for any x-atom $x=\alpha$, there exists at most one configuration $\left(q^{\prime}, x^{\prime}\right)$ of ρ such that $\mathcal{I}_{x}\left(q^{\prime}\right)$ contains $x=\alpha$.

Proposition 20 Any reset-free normalized automaton \mathcal{A} can be effectively simplified such that the set $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ is preserved for any valuation v and any clock value x_{0}.

Proof The proof of Proposition 20 needs several steps. The transformations described in the proof are based on standard constructions of automata theory. Each of them will preserve $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ for any valuation v and any clock value x_{0}. In the first step, we are going to eliminate in $\mathcal{I}_{x}(q)$ all x-atoms of the form $x \equiv_{a, \leq} \alpha$.

First step $\quad x$-atoms $x \equiv_{a, \leq} \alpha$.
Let us show that any x-atom $x \equiv_{a, \leq} \alpha$ belonging to some state q can be eliminated at the cost of a new x-atom $x \leq \alpha$. The idea is the following. If $\alpha \equiv b \bmod a$ for some $b \in\{0,1, \ldots, a-1\}$, then

$$
x \equiv_{a, \leq} \alpha \quad \text { iff } \quad x \equiv b \bmod a \text { and } x \leq \alpha
$$

The automaton is transformed in a way to compute modulo a. New states are of the form (q, c) with $q \in Q$ and $c \in\{0, \ldots, a-1\}$ expressing that $x \equiv c \bmod a$. Formally we construct $\mathcal{A}_{b}=\left(Q^{\prime}, I^{\prime}, F^{\prime}, E^{\prime}, \mathcal{L}^{\prime}, \mathcal{I}^{\prime}\right)$ where $Q^{\prime}=Q \times\{0, \ldots, a-$ $1\}, I^{\prime}=I \times\{0, \ldots, a-1\}, F^{\prime}=F \times\{0, \ldots, a-1\}, \mathcal{L}^{\prime}(q, c)=\mathcal{L}(q)$ and $\left((q, c), \tau,\left(q^{\prime}, c^{\prime}\right)\right) \in E^{\prime}$ iff $\left(q, \tau, q^{\prime}\right) \in E$ and $c^{\prime} \equiv c+\tau \bmod a$. Function \mathcal{I}^{\prime} is defined as follows. For any $(q, c) \in Q^{\prime}$, let $\mathcal{I}^{\prime}(q, c)=\mathcal{I}(q)$. If (q, c) contains
$x \equiv_{a, \leq} \alpha$, eliminate this state if $c \neq b$, replace $x \equiv_{a, \leq} \alpha$ by $x \leq \alpha$ if $c=b$. If $(q, c) \in I^{\prime}$, add the x-atom $x \equiv_{a, \geq} c$ and the θ-atom $\alpha \equiv_{a, \geq} b$ to recall that $\alpha \equiv b \bmod a$ and $x \equiv c \bmod a$ initially. As α depends on the parameter valuation, value b such that $\alpha \equiv b \bmod a$ is not known in advance. Therefore the final automaton is the disjoint union of the automata \mathcal{A}_{b}, with $b \in\{0, \ldots, a-1\}$.

The elimination of x-atoms $x \equiv_{a, \geq} \alpha$ in any $\mathcal{I}_{x}(q)$ is performed similarly. In the next step, we are going to eliminate x-atoms $x \geq \alpha$. This will be possible except inside states $q \in I$.

Second step $\quad x$-atoms $x \geq \alpha$.

Let us consider a fixed x-atom $x \geq \alpha$. Recall that the automaton is reset-free. Along a run $\rho \in \mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$, as soon as $x \geq \alpha$ is satisfied at some configuration of ρ, the next occurrences of $x \geq \alpha$ are automatically satisfied and can be thus eliminated. The automaton is transformed in a way to count occurrences of $x \geq \alpha$ thanks to a counter equal to 0 (1 or 2 resp.) in case of 0 (1 or 2 and more resp.) occurrence(s) of $x \geq \alpha$ is (are) encountered. Thus when the counter c has value 2, any incrementation $c+1$ lets it at value 2. Formally we construct $\mathcal{A}^{\prime}=\left(Q^{\prime}, I^{\prime}, F^{\prime}, E^{\prime}, \mathcal{L}^{\prime}, \mathcal{I}^{\prime}\right)$ where $Q^{\prime}=Q \times\{0,1,2\}, F^{\prime}=F \times\{0,1,2\}$, $\mathcal{L}^{\prime}(q, c)=\mathcal{L}(q)$ and $\mathcal{I}^{\prime}(q, c)=\mathcal{I}(q)$. Sets I^{\prime} and E^{\prime} are defined as follows. For any $q \in I$, state (q, c) belongs to I^{\prime} with $c=1$ if $x \geq \alpha$ belongs to q, and $c=0$ otherwise. For any $\left(q, \tau, q^{\prime}\right) \in E$, edge $\left((q, c), \tau,\left(q^{\prime}, c^{\prime}\right)\right)$ belongs to E^{\prime} with $c^{\prime}=c+1$ if q^{\prime} contains $x \geq \alpha$, and $c^{\prime}=c$ otherwise. Finally, we suppress $x \geq \alpha$ in any state $(q, 2)$ containing it.

Now, consider a run $\rho^{\prime} \in \mathcal{R}\left(\mathcal{A}^{\prime v}, x_{0}\right)$ equal to $\left(q_{i}, c_{i}, x_{i}\right)_{0 \leq i \leq n}$ such that some state $\left(q_{k}, c_{k}\right)$ contains $x \geq \alpha$. Necessarily, $c_{k}=1$ and $c_{i}=0$ for $0 \leq i<k$ by construction of \mathcal{A}^{\prime}. So x-atom $x \geq \alpha$ is satisfied at configuration $\left(q_{k}, c_{k}, x_{k}\right)$ iff either $x \geq \alpha$ is satisfied at configuration $\left(q_{0}, c_{0}, x_{0}\right)$ or $x=\alpha$ is satisfied at some configuration $\left(q_{i}, c_{i}, x_{i}\right)$ of ρ^{\prime} such that $0<i \leq k$. Therefore, x-atom $x \geq \alpha$ can be eliminated at the cost of a new x-atom $x=\alpha$, except inside the initial state $\left(q_{0}, c_{0}\right)$. This can be achieved by modifying \mathcal{A}^{\prime} thanks to a construction which is not difficult but tedious. This construction is not detailled. Roughly speaking, to express that $x=\alpha$ could be satisfied at some configuration $\left(q_{i}, c_{i}, x_{i}\right)$ of ρ^{\prime}, the non determinism is used at state q_{i} to go either to state q_{i+1} or to a new state containing the x-atom $x=\alpha$.

The elimination of x-atoms $x \leq \alpha$ can be performed in a similar way. Note that here, as soon as the last (instead of the first) occurrence of $x \leq \alpha$ is satisfied along a run $\rho \in \mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$, then the previous occurrences of $x \leq \alpha$ are automatically satisfied. It follows that x-atoms $x \leq \alpha$ can be eliminated except inside states $q \in F$.

At this point of the proof, for any state $q,(1)$ if $q \notin I \cup F$, then the x-atoms contained in q are of the form $x=\alpha$, (2) if $q \in I$, then they are of the form $x=\alpha$ or $x \geq \alpha$, and (3) if $q \in F$, then they are the form $x=\alpha$ or $x \leq \alpha$.

It remains to prove two facts about x-atoms which are equalities. First for any state $q \in Q$, among the x-atoms contained in q, at most one is an equality
$x=\alpha$. Second, for any run $\rho \in \mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$, for any x-atom $x=\alpha$, there exists at most one configuration $\left(q^{\prime}, x^{\prime}\right)$ of ρ such that $\mathcal{I}_{x}\left(q^{\prime}\right)$ contains $x=\alpha$.

Third step x-atoms $x=\alpha$.
The first fact can be easily proved. Suppose that $\mathcal{I}_{x}(q)=\bigwedge_{\alpha \in A}(x=\alpha)$ for some set A of linear terms. Let $\alpha^{\prime} \in A$. Then $\mathcal{I}_{x}(q)$ is equivalent to

$$
\left(x=\alpha^{\prime}\right) \wedge \bigwedge_{\alpha \in A}\left(\alpha^{\prime}=\alpha\right)
$$

Thus $\mathcal{I}_{x}(q)$ can be replaced by $x=\alpha^{\prime}$ and $\mathcal{I}_{\theta}(q)$ by $\mathcal{I}_{\theta}(q) \wedge \wedge_{\alpha \in A}\left(\alpha^{\prime}=\alpha\right)$.
Let us prove the second fact. Let ρ be a run in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$. Assume that there are several configurations $\left(q_{j}, x_{j}\right), 1 \leq j \leq k$, in ρ such that q_{j} contains a given x-atom $x=\alpha$. Time does not progress from $\left(q_{1}, x_{1}\right)$ to $\left(q_{k}, x_{k}\right)$, that is, $x_{j}=x_{1}$ for all j. Only the first occurrence of $x=\alpha$ at state q_{1} is useful, the next ones can be forgotten. Therefore, \mathcal{A} is transformed in a way to count occurrences of $x=\alpha$ and to remember any progress of time. As before, a counter has value 0 (1 or 2 resp.) in case of 0 (1 or 2 and more resp.) occurrences of $x=\alpha$. Moreover, values 1 and 2 are indexed by + if time has progressed since the first occurrence of $x=\alpha$. Formally we construct $\mathcal{A}^{\prime}=\left(Q^{\prime}, I^{\prime}, F^{\prime}, E^{\prime}, \mathcal{L}^{\prime}, \mathcal{I}^{\prime}\right)$ where $Q^{\prime}=Q \times\left\{0,1,1_{+}, 2,2_{+}\right\}, F^{\prime}=F \times\left\{0,1,1_{+}, 2,2_{+}\right\}, \mathcal{L}^{\prime}(q, c)=\mathcal{L}(q)$ and $\mathcal{I}^{\prime}(q, c)=\mathcal{I}(q)$. For any $q \in I$, state (q, c) belongs to I^{\prime} with $c=1$ if $x=\alpha$ belongs to q, and $c=0$ otherwise. For any $\left(q, \tau, q^{\prime}\right) \in E$, edge $\left((q, c), \tau,\left(q^{\prime}, c^{\prime}\right)\right)$ belongs to E^{\prime} where c^{\prime} is computed according Table 1. Finally, for any state

$\tau \backslash c$	0	1	1_{+}	2	2_{+}
0	1	2	2_{+}	2	2_{+}
1	1	2_{+}	2_{+}	2_{+}	2_{+}
if q^{\prime} contains $x=\alpha$					

$\tau \backslash c$	0	1	1_{+}	2	2_{+}
0	0	1	1_{+}	2	2_{+}
1	0	1_{+}	1_{+}	2_{+}	2_{+}
otherwise					

Table 1: Computation of c^{\prime}
(q, c) containing $x=\alpha$, we suppress this state if $c=2_{+}$, we suppress $x=\alpha$ from this state if $c=2$. Indeed recall that counter 2 indicates that it is at least the second occurrence of $x=\alpha$, and the presence of index + means a progress of time since the first occurrence of $x=\alpha$.

4.3 Durations in Reset-free Automata

In this subsection, we again make Hypothesis (*). By Proposition 20, we know that the reset-free normalized automaton \mathcal{A} can be supposed simplified. Thanks to this property of \mathcal{A}, we are going to construct a Presburger formula describing all the possible durations of runs in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$. We need the next notation.
Notation Let t be a variable used to denote a duration and x be a variable for a clock value. We call t-atom any $t \sim \alpha$ or $t \sim \alpha-x$. A t-atom is of first type

Figure 3: A simplified automaton
if it is of the form

$$
\begin{aligned}
& t=\alpha \\
& t \equiv a, \geq \alpha \\
& t=\alpha-x \\
& t \equiv a, \geq \alpha-x
\end{aligned}
$$

it is of second type if it is of the form

$$
t \leq \alpha-x
$$

A t-conjunction is a conjunction of t-atoms of second type.
Proposition 21 Let \mathcal{A} be an automaton. There exists a Presburger formula $\lambda(t, x, \Theta)$ such that for any valuation v and any clock value x_{0},

$$
\lambda\left(t_{0}, x_{0}, v(\Theta)\right) \text { is TRUE }
$$

iff there exists a run in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ with duration t_{0}. This formula is a disjunction of formulae of the form

$$
\lambda_{t} \wedge \lambda_{\leq} \wedge \lambda_{x} \wedge \lambda_{\theta}
$$

where λ_{t} is a first type t-atom, λ_{\leq}is a t-conjunction, λ_{x} is an x-conjunction and λ_{θ} is a θ-conjunction. Its construction is effective.

Let us explain this proposition on the next example.
Example Consider the simplified automaton \mathcal{A} of Figure 3 with one initial state i and one final state f. We denote by t_{0} the duration of any run $\left(i, x_{0}\right) \rightsquigarrow(f, \cdot)$ in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$, where v is a fixed parameter valuation. Every run has to pass through state q which contains the x-atom $x=\theta_{1}$. Let us study the possible durations t_{1} of runs $\rho_{1}=\left(i, x_{0}\right) \rightsquigarrow(q, \cdot)$. Each duration t_{1} must be equal to $v\left(\theta_{1}\right)-x_{0}$. For runs ρ_{1} using the cycle, constraint $v\left(\theta_{1}\right)>v\left(\theta_{2}\right)$ holds and t_{1} has the form $m+3, m \geq 0$. The unique run ρ_{1} not using the cycle is not constrained and its duration equals $t_{1}=2$. Now any duration t_{0} can be decomposed as $t_{0}=t_{1}+2 n+1=v\left(\theta_{1}\right)-x_{0}+2 n+1, n \geq 0$. Due to the x-atom $x \leq \theta_{2}$ of state f, we get another constraint $x_{0}+t_{0} \leq v\left(\theta_{2}\right)$. In summary, we have

$$
\begin{array}{ll}
& {\left[\left(v\left(\theta_{1}\right)-x_{0} \equiv_{1, \geq} 3 \wedge v\left(\theta_{1}\right)>v\left(\theta_{2}\right)\right) \quad \vee \quad v\left(\theta_{1}\right)-x_{0}=2\right]} \\
\wedge & {\left[t_{0} \equiv_{2, \geq} v\left(\theta_{1}\right)-x_{0}+1\right]} \\
\wedge & {\left[x_{0}+t_{0} \leq v\left(\theta_{2}\right)\right]}
\end{array}
$$

We get the next Presburger formula $\lambda(t, x, \Theta)$

$$
\begin{array}{lll}
& {\left[\left(x \equiv_{1, \leq} \theta_{1}-3 \wedge \theta_{1}>\theta_{2}\right) \quad \vee \quad x=\theta_{1}-2\right]} \\
\wedge & {\left[t \equiv_{2, \geq} \theta_{1}+1-x\right]} \\
\wedge & {\left[t \leq \theta_{2}-x\right]}
\end{array}
$$

such that there exists a run in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ with duration t_{0} iff $\lambda\left(t_{0}, x_{0}, v(\Theta)\right)$ is True. This formula is in the form of Proposition 21 if it is rewritten as a disjunction of conjunctions of t-atoms, x-atoms and θ-atoms.

Thanks to the previous example, we can give some ideas of the proof of Proposition 21. Except for the initial and final states, the states of a simplified automaton contain at most one x-atom which is of the form $x=\alpha$. The proof will be by induction on these x-atoms. Given an x-atom $x=\alpha$ contained in some state q, any run ρ in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ passing through this state q can be decomposed as $\left(i, x_{0}\right) \rightsquigarrow\left(q, x_{1}\right)$ and $\left(q, x_{1}\right) \rightsquigarrow\left(f, x_{2}\right)$. Its duration t_{0} can also be decomposed as $t_{1}+t_{2}$ with the constraint that the clock value $x_{0}+t_{1}$ must satisfy $x=\alpha$. It follows that $t_{0}=v(\alpha)-x_{0}+t_{2}$. The durations t_{1} and t_{2} and the related constraints will be computed by induction. When there is no x-atom in the automaton (base case), only θ-atoms can appear in states. Runs will therefore be partitioned according to the set of θ-atoms that constrain them. Their durations will be described as fixed values or arithmetic progressions.

Proof of Proposition 21. It is supposed that $\mathcal{A}=(Q, I, F, E, \mathcal{L}, \mathcal{I})$ is simplified.
(1) We can suppose that I is reduced to one initial state i and F to one final state f. At the end of the proof, it will remain to take a disjunction over $i \in I$ and $f \in F$ of the constructed formulae. From now on, we suppose that $I=\{i\}$ and $F=\{f\}$.
(2) Assumption. We make the assumption that i contains no x-atom and f contains no x-atom $x \leq \alpha$. As \mathcal{A} is simplified, this means that for any state $q \in Q$, either $\mathcal{I}_{x}(q)=\top$ or $\mathcal{I}_{x}(q)$ equals some $x=\alpha$. The proof is done by induction on the x-atoms $x=\alpha$ that appear as $\mathcal{I}_{x}(q)$ with $q \in Q$. The formula $\lambda(t, x, \Theta)$ that we will construct will have no t-conjunction, that is $\lambda(t, x, \Theta)$ will be a disjunction of formulae of the form $\lambda_{t} \wedge \lambda_{x} \wedge \lambda_{\theta}$.

Base case. Suppose that $\mathcal{I}_{x}(q)=\top$ for all $q \in Q$, that is $\mathcal{I}(q)=\mathcal{I}_{\theta}(q)$. Durations of runs in $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ are thus independent on the clock values. They are simply equal to the number of edges labeled by $\tau=1$ along runs from i to f. And to any of these runs is associated a constraint which is a conjunction of the θ-atoms contained in the states of the run.

The proof is based on the classical Kleene theorem [?] using the particular alphabet

$$
B=\left\{(\tau, \varsigma) \mid \tau \in\{0,1\}, \varsigma \in\left\{\mathcal{I}_{\theta}(q), q \in Q\right\}\right\}
$$

To any edge $\left(q, \tau, q^{\prime}\right)$ of \mathcal{A} corresponds the letter $\left(\tau, \mathcal{I}_{\theta}\left(q^{\prime}\right)\right)$ of B. The concatenation • of two letters $\left(\tau_{1}, \varsigma_{1}\right)$ and $\left(\tau_{2}, \varsigma_{2}\right)$ is defined as $\left(\tau_{1}+\tau_{2}, \varsigma_{1} \wedge \varsigma_{2}\right)$. Thus a word over B is equal to (t, ς) where t is a positive integer (a duration) and ς is a θ-conjunction (a constraint on the parameters). In particular, the empty word is equal to $(0, \top)$. The star operation $*$ is defined as usual and the plus operation + is defined by $L^{+}=L^{*} \backslash\{(0, \top)\}$. We denote by $\operatorname{Rat}_{B}(\cdot,+)$ the smallest family of languages containing B and closed under • and + . The elements of a set $L \in \operatorname{Rat}_{B}(\cdot,+)$ have a simple form. The second components of these elements are all identical because operation \wedge is idempotent. The first
components constitute a set which is the union of a finite set and a finite number of arithmetic progressions [?]. In other words L is described by a disjunction of formulae of the form $\lambda_{t} \wedge \lambda_{\theta}$ such that λ_{θ} equals a fixed θ-conjunction ς and λ_{t} equals either $t=\alpha$ or $t \equiv_{a, \geq} \alpha$ with $\alpha \in \mathbb{N}$.

Now by Kleene's theorem applied to \mathcal{A}, we get a rational language over B whose first components describe the durations of all runs of $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ and the second components describe the related constraints. It is not difficult to prove that this rational language can be rewritten as a finite union of languages in $\operatorname{Rat}_{B}(\cdot,+)$. We thus get the required formula $\lambda(t, x, \Theta)$ as a disjunction of formulae $\lambda_{t} \wedge \lambda_{\theta}$ where λ_{t} is a first-type t-atom and λ_{θ} is a θ-conjunction.

General case. Now consider a particular x-atom $x=\alpha$. Let us denote by P the set of states q such that $\mathcal{I}_{x}(q)$ is equal to $x=\alpha$. As \mathcal{A} is simplified, any run ρ of $\mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ contains 0 or 1 state of P (see the second part of Definition 19). We are going to prove that the expected formula $\lambda(t, x, \Theta)$ is equal to

$$
\lambda^{Q \backslash P}(t, x, \Theta) \vee \bigvee_{p \in P} \lambda^{p}(t, x, \Theta)
$$

where $\lambda^{Q \backslash P}$ describes durations of runs containing no state of P, and λ^{p} describes durations of runs containing one occurrence of the state p of P.

All runs containing no state of P constitute the set $\mathcal{R}\left(\mathcal{A}^{\prime v}, x_{0}\right)$ of an automaton \mathcal{A}^{\prime} obtained from \mathcal{A} by erasing all states in P. As \mathcal{A}^{\prime} has one x-atom less, $\lambda^{Q \backslash P}(t, x, \Theta)$ can be constructed by induction hypothesis.

Let us now fix $p \in P$ and a run $\rho \in \mathcal{R}\left(\mathcal{A}^{v}, x_{0}\right)$ that contains it. This run is decomposed into a run $\rho_{1}=\left(i, x_{0}\right) \rightsquigarrow\left(p, x_{1}\right)$ with duration t_{1}, and a run $\rho_{2}=\left(p, x_{1}\right) \rightsquigarrow\left(f, x_{2}\right)$ with duration t_{2}. Duration t_{0} of ρ is equal to $t_{1}+t_{2}$ such that $x_{1}=x_{0}+t_{1}, x_{2}=x_{1}+t_{2}$ and x_{1} satisfies $x=\alpha$. Durations t_{1} and t_{2} can be computed by induction in the following way.

Let us begin with t_{1}. The automaton \mathcal{A} is modified into $\mathcal{A}^{p, 1}$ by erasing states of $P \backslash\{p\}$ and edges leaving p. Invariant $\mathcal{I}_{x}(p)$ is replaced by \top. The new unique final state is p. The new automaton has one x-atom less, so $\lambda^{p, 1}(t, x, \Theta)$ can be constructed by induction hypothesis such that $\lambda^{p, 1}\left(t_{1}, x_{0}, v(\Theta)\right)$ is TRUE. Formula $\lambda^{p, 1}$ is a disjunction of formulae $\lambda_{t}^{1} \wedge \lambda_{x}^{1} \wedge \lambda_{\theta}^{1}$ where λ_{t}^{1} is a first type t-atom, λ_{x}^{1} is an x-conjunction and λ_{θ}^{1} is a θ-conjunction. Suppose that λ_{t}^{1} is one among

$$
\begin{equation*}
t=\alpha_{1}, \quad t \equiv \equiv_{a, \geq} \alpha_{1}, \quad t=\alpha_{1}-x, \quad t \equiv_{a, \geq} \alpha_{1}-x . \tag{1}
\end{equation*}
$$

As x_{1} satisfies $x=\alpha$ and $x_{1}=x_{0}+t_{1}$, then

$$
\begin{equation*}
x_{1}=v(\alpha), \quad t_{1}=v(\alpha)-x_{0} . \tag{2}
\end{equation*}
$$

So in (1), t can be replaced by $\alpha-x$ and (1) becomes

$$
\alpha-x=\alpha_{1}, \quad \alpha-x \equiv_{a, \geq} \alpha_{1}, \quad \alpha=\alpha_{1}, \quad \alpha \equiv_{a, \geq} \alpha_{1}
$$

Thus λ_{t}^{1} becomes an x-atom or a θ-atom. The modified formula $\lambda_{t}^{1} \wedge \lambda_{x}^{1} \wedge \lambda_{\theta}^{1}$ is denoted by

$$
\begin{equation*}
\lambda_{x}^{\prime 1} \wedge \lambda_{\theta}^{\prime 1} \tag{3}
\end{equation*}
$$

Let us now describe t_{2}. We modify \mathcal{A} into $\mathcal{A}^{p, 2}$ by erasing states of $P \backslash\{p\}$ and edges entering p. Formula $\mathcal{I}_{x}(p)$ is replaced by \top. The new unique initial state is p. By induction hypothesis, $\lambda^{p, 2}(t, x, \Theta)$ is constructed as a disjunction of formulae $\lambda_{t}^{2} \wedge \lambda_{x}^{2} \wedge \lambda_{\theta}^{2}$ where λ_{t}^{2} is one among

$$
\begin{equation*}
t=\alpha_{2}, \quad t \equiv \equiv_{a, \geq} \alpha_{2}, \quad t=\alpha_{2}-x, \quad t \equiv_{a, \geq} \alpha_{2}-x . \tag{4}
\end{equation*}
$$

Recall that $\lambda^{p, 2}(t, x, \Theta)$ describes the duration t_{2} of runs $\rho_{2}=\left(p, x_{1}\right) \rightsquigarrow\left(f, x_{2}\right)$ for which x_{1} satisfies $x=\alpha$. Thus in (4), x can be replaced by α and (4) becomes

$$
t=\alpha_{2}, \quad t \equiv_{a, \geq} \alpha_{2}, \quad t=\alpha_{2}-\alpha, \quad t \equiv_{a, \geq} \alpha_{2}-\alpha
$$

This shows that λ_{t}^{2} is now of the form

$$
\begin{equation*}
t=\beta \quad \text { or } \quad t \equiv_{a, \geq} \beta \tag{5}
\end{equation*}
$$

Moreover λ_{x}^{2} becomes a θ-conjunction when x is replaced by α. The modified formula $\lambda_{x}^{2} \wedge \lambda_{\theta}^{2}$ is denoted by

$$
\begin{equation*}
\lambda_{\theta}^{\prime 2} \tag{6}
\end{equation*}
$$

Finally, we can describe $t_{0}=t_{1}+t_{2}$. By (2) and (5), it has the form

$$
\begin{equation*}
t_{0}=v(\alpha)-x_{0}+v(\beta) \quad \text { or } \quad t_{0} \equiv_{a, \geq} v(\alpha)-x_{0}+v(\beta) \tag{7}
\end{equation*}
$$

Hence formula $\lambda^{p}(t, x, \Theta)$ for t_{0} is a disjunction of formulae $\lambda_{t} \wedge \lambda_{x} \wedge \lambda_{\theta}$ such that λ_{t} has the form (see (7)) $t=\alpha-x+\beta$ or $t \equiv_{a, \geq} \alpha-x+\beta$ and $\lambda_{x} \wedge \lambda_{\theta}$ has the form (see (3 and (6)) $\lambda_{x}^{\prime 1} \wedge \lambda_{\theta}^{\prime 1} \wedge \lambda_{\theta}^{\prime 2}$.
(3) Under the assumption that i contains no x-atoms and f contains no x-atom $x \leq \alpha$, we have constructed a formula $\lambda(t, x, \Theta)$ with no t-conjunction. So we have to take into account the x-conjunction $\mathcal{I}_{x}(i)$ and the x-atoms $x \leq \alpha$ appearing in f. Thus x_{0} must satisfy $\mathcal{I}_{x}(i)$ and $x_{0}+t_{0}$ must satisfy all $x \leq \alpha$ in f. It follows that the final formula is equal to

$$
\begin{equation*}
\lambda(t, x, \Theta) \wedge \mathcal{I}_{x}(i)(x, \Theta) \wedge \bigwedge_{x \leq \alpha \in f} t \leq \alpha-x \tag{8}
\end{equation*}
$$

Remark 22 Suppose that \mathcal{A} is an automaton such that $\mathcal{I}(i)$ equals $x=0$ for each initial state $i \in I$. Then formula $\lambda(t, x, \Theta)$ of Proposition 21 contains the x-atom $x=0$ (see (8)). Hence, if $\lambda\left(t_{0}, x_{0}, v(\Theta)\right)$ is TRUE, then necessarily $x_{0}=0$, which can been interpreted as a reset of the clock. This remark will be used in the next subsection.

4.4 Durations in General

This subsection is devoted to the proofs of Propositions 12 and 13. Here there is no longer a restriction on the automaton: it is any automaton as in Definition 2. This automaton is supposed to be normalized by Proposition 17. Thus, given a state q, the edges (p, τ, g, r, q) entering q all have the same r. We call q a reset-state in case $r=\{x\}$. The set of reset-states of \mathcal{A} is denoted by Q_{R}.

Let $\mathcal{A}=(Q, E, \mathcal{L}, \mathcal{I})$ be an automaton. Let us fix two states q, q^{\prime}, a parameter valuation v, a clock value x_{0}. We denote by

$$
\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)
$$

the set of runs $\rho=\left(q, x_{0}\right) \rightsquigarrow\left(q^{\prime}, \cdot\right)$ in \mathcal{A}^{v}. Let us study this set.
A run ρ in $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ possibly contains some reset-states. It thus decomposes as a sequence of $k \geq 1$ runs $\rho_{j}, 1 \leq j \leq k$, such that for any j, ρ_{j} contains no reset-state, except possibly for the first and the last configurations of ρ_{j}. The duration $\mathrm{D}_{\rho_{j}}$ of each ρ_{j} can be computed thanks to Proposition 21. For any j, $1 \leq j \leq k$, let us denote by $\lambda^{j}(t, x, \Theta)$ the Presburger formula corresponding to $D_{\rho_{j}}$ which is a disjunction of formulae $\lambda_{t} \wedge \lambda_{\leq} \wedge \lambda_{x} \wedge \lambda_{\theta}$. So the total duration D_{ρ} is equal to the sum $\Sigma_{1 \leq j \leq k} \mathrm{D}_{\rho_{j}}$. We will see that the durations D_{ρ} of runs $\rho \in \mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ can be symbolically represented thanks to rational expressions on an alphabet whose letters are the formulae $\lambda_{t} \wedge \lambda_{\leq} \wedge \lambda_{x} \wedge \lambda_{\theta}$ that appear in the $\lambda^{j}(t, x, \Theta)$'s. Thanks to this symbolic description and because our logic is restricted to $\mathrm{PTCTL}_{\{<, \leq,>, \geq\}}$, we will be able to prove Propositions 12 and 13. Let us explain in details all these ideas.

In a first step, we construct from \mathcal{A} several reset-free normalized automata as in Hypothesis $(*)$. The construction is a standard one in automata theory. Runs ρ_{j} mentioned before will be runs in these automata and their durations will be described thanks to Proposition 21.

First construction For each couple $\left(p, p^{\prime}\right)$ of states of \mathcal{A} such that $p \in\{q\} \cup$ Q_{R} and $p^{\prime} \in\left\{q^{\prime}\right\} \cup Q_{R}$, we construct from \mathcal{A} the following reset-free automaton $\mathcal{A}_{p, p^{\prime}}=\left(Q^{\prime}, I^{\prime}, F^{\prime}, E^{\prime}, \mathcal{L}^{\prime}, \mathcal{I}^{\prime}\right)$. The set Q^{\prime} of states is $\left(Q \backslash Q_{R}\right) \cup\left\{\bar{p}, \bar{p}^{\prime}\right\}$ where $\bar{p}, \bar{p}^{\prime}$ are copies of p, p^{\prime}. The unique initial state is \bar{p} and the unique final state is \bar{p}^{\prime}. Let $\mathcal{L}^{\prime}(\bar{p})=\mathcal{L}(p)$ and $\mathcal{L}^{\prime}\left(\bar{p}^{\prime}\right)=\mathcal{L}\left(p^{\prime}\right)$. Let $\mathcal{I}^{\prime}(\bar{p})$ be equal to $\mathcal{I}(p)$ if $p=q$ and to $(\mathcal{I}(p) \wedge x=0)^{10}$ if $p \neq q$. Let $\mathcal{I}^{\prime}\left(\bar{p}^{\prime}\right)$ be equal to $\mathcal{I}\left(p^{\prime}\right)$ if $p^{\prime} \notin Q_{R}$ and to $\left(\mathcal{I}\left(p^{\prime}\right) \wedge x=0\right)^{11}$ if $p^{\prime} \in Q_{R}$. The set E^{\prime} of edges is the union of E restricted to $Q \backslash Q_{R}$ with the next set of new edges ${ }^{11}$

$$
\begin{array}{ll}
\left(\bar{p}, \tau, g, r, p_{1}\right) & \text { if }\left(p, \tau, g, r, p_{1}\right) \in E \\
\left(p_{1}, \tau, g, \varnothing, \bar{p}^{\prime}\right) & \text { if }\left(p_{1}, \tau, g, r, p^{\prime}\right) \in E \\
\left(\bar{p}, \tau, g, \varnothing, \bar{p}^{\prime}\right) & \text { if }\left(p, \tau, g, r, p^{\prime}\right) \in E .
\end{array}
$$

In this way, automaton $\mathcal{A}_{p, p^{\prime}}$ satisfies Hypothesis (*).

[^8]Let $p \in\{q\} \cup Q_{R}$ and $p^{\prime} \in\left\{q^{\prime}\right\} \cup Q_{R}$. We define x_{1} to be equal to x_{0} if $p=q$, and to 0 if $p \neq q$. The runs of $\mathcal{R}\left(\mathcal{A}_{p, p^{\prime}}^{v}, x_{1}\right)$ are exactly the non-empty runs $\left(p, x_{1}\right) \rightsquigarrow\left(p^{\prime}, \cdot\right)$ of \mathcal{A}^{v} that pass through no reset-state (except possibly the first and the last states of the run). The durations of runs in $\mathcal{R}\left(\mathcal{A}_{p, p^{\prime}}^{v}, x_{1}\right)$ are described by formula $\lambda^{p, p^{\prime}}(t, x, \Theta)$ of Proposition 21. This formula is a disjunction $\bigvee_{j} \lambda^{p, p^{\prime}, j}$ of formulae

$$
\begin{equation*}
\lambda^{p, p^{\prime}, j}=\lambda_{t}^{p, p^{\prime}, j} \wedge \lambda_{\leq}^{p, p^{\prime}, j} \wedge \lambda_{x}^{p, p^{\prime}, j} \wedge \lambda_{\theta}^{p, p^{\prime}, j} \tag{9}
\end{equation*}
$$

For each couple (p, p^{\prime}) and each j, we associate a distinct letter $b_{p, p^{\prime}, j}$ to each formula $\lambda^{p, p^{\prime}, j}$. The set of all these letters is denoted by B. We say that letter $b_{p, p^{\prime}, j}$ is a reset-letter if p is a reset-state. The set of reset-letters is denoted B_{R}.

In a second step, we construct another automaton from \mathcal{A} in a way to show how a run of $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ is decomposed into a sequence of runs ρ_{j} according to reset-states of \mathcal{A}. This automaton will be a classical automaton [?].

Second construction We construct an automaton \mathcal{B} over the alphabet B as follows. The set of states equals $Q_{R} \cup\left\{q, q^{\prime}\right\}$ and the set of edges equals $\left\{\left(p, b, p^{\prime}\right) \mid b=b_{p, p^{\prime}, j}\right.$ for some $\left.j\right\}$. The unique initial (resp. final) state is q (resp. q^{\prime}).

So, any run ρ of $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ is map into a path in \mathcal{B} from q to q^{\prime} which indicates how ρ is decomposed according to reset-states of \mathcal{A}. The duration of ρ is symbolically represented by the word that labels the corresponding path in \mathcal{B}. Hence the set of durations of runs of $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ is symbolically represented by the rational subset accepted by \mathcal{B}. We denote by

$$
L_{q, q^{\prime}}
$$

this subset of B^{*}. Any word of $L_{q, q^{\prime}}$ has at most one letter that is non reset (the first letter of the word).

We now study in details rational expressions over the alphabet B and in particular the rational expression defining $L_{q, q^{\prime}}$.

Rational expressions Let L^{+}be denoting $L^{*} \backslash\{\epsilon\}$ with ϵ denoting the empty word and $\operatorname{Rat}_{B}(\cdot,+)$ be the smallest family closed under • and + , and containing B. One can prove that any rational language over B can be effectively rewritten as a finite union of languages in $\{\epsilon\} \cup \operatorname{Rat}_{B}(\cdot,+)$. Therefore

$$
\begin{equation*}
L_{q, q^{\prime}}=\bigcup_{i} L_{i} \tag{10}
\end{equation*}
$$

with

$$
L_{i}=\{\epsilon\} \quad \text { or } \quad L_{i}=\left\{b_{i}\right\} \quad \text { or } \quad L_{i}=b_{i} \cdot K_{i}
$$

such that $b_{i} \in B, K_{i} \in \operatorname{Rat}_{B_{R}}(\cdot,+)$. The set $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ is decomposed into

$$
\begin{equation*}
\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)=\bigcup_{i} \mathcal{R}_{i} \tag{11}
\end{equation*}
$$

according to (10).
An non empty word of $L_{q, q^{\prime}}$ is a sequence $b_{1} b_{2} \cdots b_{n} \in B^{+}$. The first letter b_{1} describes runs from state q to some reset-state p_{1}, the clock value at q is x_{0}. Each letter $b_{i}, i \geq 2$, is a reset-letter. If $2 \leq i<n, b_{i}$ describes runs from resetstate p_{i-1} to reset-state p_{i}, the clock value at p_{i-1} is 0 . If $i=n, b_{i}$ describes runs from reset-state p_{n-1} to state q^{\prime}, the clock value at p_{n-1} is 0 . Let

$$
\begin{equation*}
\lambda_{t}^{i} \wedge \lambda_{\leq}^{i} \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i} \tag{12}
\end{equation*}
$$

be the formula associated to each letter $b_{i}, i \geq 1$ (see (9)). Whenever $i \geq 2, \lambda_{x}^{i}$ contains the x-atom $x=0$ by Remark 22 and Definition of automaton $\mathcal{A}_{p, p^{\prime}}$. In this case, we prefer ${ }^{12}$ to work with the equivalent formula

$$
\begin{equation*}
\kappa_{t}^{i} \wedge \kappa_{\leq}^{i} \wedge \kappa_{\theta}^{i} \tag{13}
\end{equation*}
$$

such that x has been replaced by 0 in (12) (in particular, λ_{x} becomes a θ conjunction). In this formula κ_{t}^{i} is a t-atom of the form $t=\alpha$ or $t \equiv_{a, \geq} \alpha, \kappa_{\leq}^{i}$ is a conjunction of t-atoms of the form $t \leq \alpha$ and κ_{θ}^{i} is a θ-conjunction.

The concatenation $b_{1} \cdot b_{2} \cdots b_{n}$ is interpreted as follows. It is the sum $t_{1}+$ $t_{2}+\cdots+t_{n}$ of the durations $t_{1}, t_{2}, \ldots, t_{n}$ respectively described by $\lambda_{t}^{1}, \kappa_{t}^{2}, \ldots, \kappa_{t}^{n}$. It is the conjunction of the related constraints

$$
\left(\lambda_{\leq}^{1} \wedge \kappa_{\leq}^{2} \wedge \cdots \kappa_{\leq}^{n}\right) \wedge \lambda_{x}^{1} \wedge\left(\lambda_{\theta}^{1} \wedge \kappa_{\theta}^{2} \wedge \cdots \kappa_{\theta}^{n}\right)
$$

Formulae $\lambda_{\leq}^{1}, \kappa_{\leq}^{2}, \ldots \kappa_{\leq}^{n}$ impose upper bounds on $t_{1}, t_{2}, \ldots, t_{n}$. The x-conjunction imposes constraints on the clock value x_{0}. The θ-conjunction $\left(\lambda_{\theta}^{1} \wedge \kappa_{\theta}^{2} \wedge \cdots \kappa_{\theta}^{n}\right)$ impose contraints on the parameters.

In the next lemmas, we show that certain properties of runs in \mathcal{R}_{i} can be expressed in Presburger arithmetics thanks to the symbolic representation L_{i} of \mathcal{R}_{i} (see (10) and (11)). After these lemmas, we will be fully equiped to prove Propositions 12 and 13.

Lemma 23 One can construct a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{NonEmpty}_{L_{i}}(x, \theta)$ such that for any valuation v and any clock value x_{0}, $\operatorname{NonEmpty}_{L_{i}}\left(x_{0}, v(\theta)\right)$ is TRUE iff \mathcal{R}_{i} is non empty.

Proof Runs of \mathcal{R}_{i} have durations that are symbolically represented by the words of L_{i}. Let us construct formula NonEmpty ${ }_{L_{i}}$ by induction on the rational expression defining L_{i} (see (10)). This formula will be equal to $\eta_{x} \wedge \eta_{\theta}$ with η_{x} an x-conjunction imposing constraints on the clock and η_{θ} a θ-conjunction imposing constraints on the parameters.

Suppose $L_{i}=\{\epsilon\}$, then NonEmpty ${L_{i}}(x, \Theta)$ equals $x=0$ is q is a reset-state and $\mathcal{I}(q)(x, \Theta)$ otherwise. Indeed, under these contraints, \mathcal{R}_{i} is non empty since it contains the empty run with the null duration. Suppose that $L_{i}=\left\{b_{i}\right\}$ with

[^9]$b_{i} \in B$ and associated formula $\lambda_{t}^{i} \wedge \lambda_{\leq}^{i} \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. Recall that λ_{t}^{i} is one among the t-atoms $t=\alpha, t=\alpha-x, t \equiv_{a, \geq} \alpha$ or $t \equiv_{a, \geq} \alpha-x$ and that λ_{\leq}^{i} is of the form $\bigwedge_{\beta} t \leq \beta-x$. It follows that the non emptiness of \mathcal{R}_{i} can be expressed thanks to the minimum duration $t=\alpha\left(t=\alpha-x\right.$ resp.) of runs in \mathcal{R}_{i}. Then
\[

$$
\begin{align*}
\operatorname{NonEmpty}_{L_{i}}(x, \Theta) & =\left(\bigwedge_{\beta} \alpha \leq \beta-x\right) \wedge \lambda_{x} \wedge \lambda_{\theta} \tag{14}\\
(& \left.=\left(\bigwedge_{\beta} \alpha \leq \beta\right) \wedge \lambda_{x} \wedge \lambda_{\theta} \quad \text { resp. }\right)
\end{align*}
$$
\]

Suppose now that $L_{i}=b_{i} \cdot K_{i}$ with $b_{i} \in B$ and $K_{i} \in \operatorname{Rat}_{B_{R}}(\cdot,+)$. Let us first prove by induction on the rational expression defining K_{i} that NonEmpty ${ }_{K_{i}}(\Theta)$ equals some θ-conjunction $\eta_{\theta}{ }^{13}$. Let $K_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B_{R}$. We obtain a formula similar to (14) where x is replaced by 0 (see(13)), so

$$
\operatorname{NonEmpty}_{K_{i}}(\Theta)=\left(\bigwedge_{\beta} \alpha \leq \beta\right) \wedge \kappa_{\theta}
$$

Suppose that $K_{i}=K \cdot K^{\prime}$ and formulae NonEmpty ${ }_{K}$, NonEmpty $_{K^{\prime}}$ have been constructed by induction. Then $\operatorname{NonEmpty}_{K_{i}}(\Theta)=\operatorname{NonEmpty}_{K}(\Theta) \wedge$ NonEmpty $K_{K^{\prime}}(\Theta)$ because the non emptiness of \mathcal{R}_{i} requires the non emptiness of both K and K^{\prime}. If $K_{i}=K^{+}$, then $\operatorname{NonEmpty}_{K_{i}}(\Theta)=\operatorname{NonEmpty}_{K}(\Theta)$ because conjunction in an idempotent operation. Finally for $L_{i}=b_{i} \cdot K_{i}$, we get $\operatorname{NonEmpty}_{L_{i}}(x, \Theta)=\operatorname{NonEmpty}_{\left\{b_{i}\right\}}(x, \Theta) \wedge \eta_{\theta}$ where $\operatorname{NonEmpty}_{\left\{b_{i}\right\}}(x, \Theta)$ is formula (14) and η_{θ} is the formula just constructed for K_{i}.

Lemma 24 One can construct a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{NonNull}_{L_{i}}(x, \theta)$ such that for any valuation v and any clock value x_{0}, $\operatorname{NonNull}_{L_{i}}\left(x_{0}, v(\theta)\right)$ is TRUE iff \mathcal{R}_{i} contains a run with a non null duration.

Proof The proof is in the same vein as for Lemma 23 with a similar form $\eta_{x} \wedge \eta_{\theta}$ for $\operatorname{NonNull}_{L_{i}}(x, \theta)$.

If $L_{i}=\{\epsilon\}$, then clearly $\operatorname{NonNull}_{L_{i}}(x, \theta)=\perp$. If $L_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B$ and associated formula $\lambda_{t}^{i} \wedge \lambda_{\leq}^{i} \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. Let us study as before formulae λ_{t}^{i} and λ_{\leq}^{i}, where $\lambda_{\leq}^{i}=\bigwedge_{\beta}(t \leq \bar{\beta}-x)$. If λ_{t}^{i} equals $t=\alpha$, then t is non null iff $\alpha>0$. Then $\operatorname{NonNull}_{L_{i}}(x, \Theta)$ is the formula $(\alpha>0) \wedge\left(\bigwedge_{\beta} \alpha \leq \beta-x\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. When λ_{t}^{i} is $t=\alpha-x$, we have a similar formula with t non null if $\alpha-x>0$. If λ_{t}^{i} equals $t \equiv{ }_{a, \geq} \alpha$, then a possible non null value for t is either α if $\alpha>0$ or a if $\alpha=0$. We get formula $\operatorname{NonNull}_{L_{i}}(x, \Theta)$ equal to $\left(\left(\alpha>0 \wedge \bigwedge_{\beta}(\alpha \leq\right.\right.$ $\left.\beta-x)) \vee\left(\alpha=0 \wedge \bigwedge_{\beta}(a \leq \beta-x)\right)\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. A similar argument holds if λ_{t}^{i} equals $t \equiv_{a, \geq} \alpha-x$.

Let $L_{i}=b_{i} \cdot K_{i}$, with $b_{i} \in B$ and $K_{i} \in \operatorname{Rat}_{B_{R}}(\cdot,+)$. Let us first construct formula $\mathrm{NonNull}_{K_{i}}(\Theta)$ by induction on K_{i}. This formula will be a θ conjunction. If $K_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B_{R}$, we get a formula NonNull K_{i} as for the

[^10]case $L_{i}=\left\{b_{i}\right\}$ such that x is replaced by 0 . If $K_{i}=K \cdot K^{\prime}$, then there exists a non null duration in K_{i} iff there exists some duration in K and some other in K^{\prime} and one of them is non null. Thus $\operatorname{NonNull}_{K_{i}}(\Theta)$ equals ($\operatorname{NonNull}_{K}(\Theta) \wedge$ $\left.\operatorname{NonEmpty}_{K^{\prime}}(\Theta)\right) \vee\left(\operatorname{NonEmpty}_{K}(\Theta) \wedge \operatorname{NonNull}_{K^{\prime}}(\Theta)\right)$. If $K_{i}=K^{+}$, then $\operatorname{NonNull}_{K_{i}}(\Theta)=\operatorname{NonNull}_{K}(\Theta)$. Finally, for $L_{i}=b_{i} \cdot K_{i}$, we get the formula $\left(\operatorname{NonNull}_{\left\{b_{i}\right\}}(x, \Theta) \wedge \operatorname{NonEmpty}_{K_{i}}(\Theta)\right) \vee\left(\operatorname{NonEmpty}_{\left\{b_{i}\right\}}(x, \Theta) \wedge \operatorname{NonNull}_{K_{i}}(\Theta)\right)$.

Lemma 25 One can construct a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{NonZeno~}_{L_{i}}(x, \theta)$ such that for any valuation v and any clock value x_{0}, $\operatorname{NonZeno~}_{L_{i}}\left(x_{0}, v(\theta)\right)$ is TRUE iff \mathcal{R}_{i} contains runs with arbitrarily large durations.

Proof The proof is again similar.
Suppose $L_{i}=\{\epsilon\}$, then clearly $\operatorname{NonZeno~}_{L_{i}}(x, \Theta)=\perp$. Let $L_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B$ and associated formula $\lambda_{t}^{i} \wedge \lambda_{<}^{i} \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. If λ_{t}^{i} equals $t=\alpha$ or $t=\alpha-x$, then $\operatorname{NonZeno}_{L_{i}}(x, \Theta)=\perp$. If λ_{t}^{i} equals $t \equiv_{a, \geq} \alpha$ or $t \equiv_{a, \geq} \alpha-x$, then t is arbitrarily large iff $\lambda_{\leq}^{i}=T$. In this case, $\operatorname{NonZeno~}_{L_{i}}(x, \Theta)=\lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$, otherwise $\operatorname{NonZeno}_{L_{i}}(x, \Theta)=\bar{L}$.

Suppose now that $L_{i}=b_{i} \cdot K_{i}$. We begin to construct a θ-conjunction NonZeno $_{K_{i}}(\Theta)$ by induction on K_{i}. If $K_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B_{R}$, then the formula is as in the case $L_{i}=\left\{b_{i}\right\}$ with x replaced by 0 . If $K_{i}=K \cdot K^{\prime}$, then $\operatorname{NonZeno~}_{K_{i}}(\Theta)$ equals $\left(\operatorname{NonZeno~}_{K}(\Theta) \wedge \operatorname{NonEmpty}_{K^{\prime}}(\Theta)\right) \vee\left(\operatorname{NonEmpty}_{K}(\Theta) \wedge\right.$ NonZeno $_{K^{\prime}}(\Theta)$). If $K_{i}=K^{+}$, then K_{i} has arbitrarily large durations iff K contains a non null duration, that is $\operatorname{NonZeno~}_{K_{i}}(\Theta)=\operatorname{NonNull}_{K}(\Theta)$. Thus we get for $L_{i}=b_{i} \cdot K_{i}$ the formula $\left(\operatorname{NonZeno~}_{\left\{b_{i}\right\}}(x, \Theta) \wedge \operatorname{NonEmpty}_{K_{i}}(\Theta)\right) \vee$ $\left(\operatorname{NonEmpty}_{\left\{b_{i}\right\}}(x, \Theta) \wedge\right.$ NonZeno $\left._{K_{i}}(\Theta)\right)$.

Lemma 26 One can construct a Presburger formula $\operatorname{Min}_{L_{i}}(t, x, \theta)$ such that for any valuation v and any clock value $x_{0}, \operatorname{Min}_{L_{i}}\left(t_{0}, x_{0}, v(\theta)\right)$ is TRUE iff t_{0} is the minimum duration of runs of \mathcal{R}_{i}. This formula is equal to $\mu_{t} \wedge \mu_{x} \wedge \mu_{\theta}$ such that μ_{t} is of the form $t=\alpha$ or $t=\alpha-x, \mu_{x}$ is an x-conjunction and μ_{θ} is a θ-conjunction.

Proof In this proof, we have to describe the minimum duration by the variable t and the contraints on it by μ_{x} and μ_{θ}.

Let $L_{i}=\{\epsilon\}$, then $\operatorname{Min}_{L_{i}}(t, x, \Theta)$ is equal to $(t=0) \wedge(x=0)$ if q is a reset-state, and to $(t=0) \wedge \mathcal{I}(q)(x, \Theta)$ otherwise. Let $L_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B$. Then looking at the form of λ_{t}^{i}, the minimum duration equals α ($\alpha-x$ resp.) (see (14)). Therefore formula $\operatorname{Min}_{L_{i}}(t, x, \Theta)$ is equal to

$$
\begin{align*}
& (t=\alpha) \wedge\left(\bigwedge_{\beta} \alpha \leq \beta-x\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i} \tag{15}\\
& \left.(t=\alpha-x) \wedge\left(\bigwedge_{\beta} \alpha \leq \beta\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i} \quad \text { resp. }\right)
\end{align*}
$$

Suppose $L_{i}=b_{i} \cdot K_{i}$. Let us begin to construct formula $\operatorname{Min}_{K_{i}}(t, \Theta)$ the form of which will be $\mu_{t} \wedge \mu_{\theta}$. If $K_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B_{R}$, then $\operatorname{Min}_{K_{i}}(t, \Theta)$ equals (15)
with x replaced by 0 . If $K_{i}=K \cdot K^{\prime}$, then the minimum duration in K_{i} equals the sum of the minimum durations in K and K^{\prime}. Hence, if $\operatorname{Min}_{K}(t, \Theta)=(t=\alpha) \wedge \mu_{\theta}$ and $\operatorname{Min}_{K^{\prime}}=\left(t=\alpha^{\prime}\right) \wedge \mu_{\theta}^{\prime}$, then $\operatorname{Min}_{K_{i}}(t, \Theta)$ is equal to $\left(t=\alpha+\alpha^{\prime}\right) \wedge \mu_{\theta} \wedge \mu_{\theta}^{\prime}$. If $K_{i}=K^{+}$, then the minimum duration in K_{i} is the minimum duration in K, i.e. $\operatorname{Min}_{K_{i}}(t, \Theta)=\operatorname{Min}_{K}(t, \Theta)$. Let us come back to $L_{i}=b_{i} \cdot K_{i}$. Let $\operatorname{Min}_{\left\{b_{i}\right\}}(t, x, \Theta)$ be equal to (15) and $\operatorname{Min}_{K_{i}}(t, \Theta)$ be equal $\left(t=\alpha^{\prime}\right) \wedge \mu_{\theta}$. Then $\operatorname{Min}_{L_{i}}(t, \Theta)$ is equal to $\left(t=\alpha+\alpha^{\prime}\right) \wedge\left(\bigwedge_{\beta} \alpha \leq \beta-x\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i} \wedge \mu_{\theta}$ (resp. $\left.\left(t=\alpha+\alpha^{\prime}-x\right) \wedge\left(\bigwedge_{\beta} \alpha \leq \beta\right) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i} \wedge \mu_{\theta}\right)$.

In the next lemma, we are going to construct a formula $\operatorname{Max}_{L_{i}}(t, x, \Theta)$ that describes the maximum duration t in L_{i}. Note that durations t in L_{i} can be arbitrarily large (see Lemma 25). We will thus denote symbolically by $t=\infty$ the (non existing) maximum duration.

Lemma 27 One can construct a formula $\operatorname{Max}_{L_{i}}(t, x, \theta)$ such that for any valuation v and any clock value $x_{0}, \operatorname{Max}_{L_{i}}\left(t_{0}, x_{0}, v(\theta)\right)$ is TRUE iff t_{0} is the maximum duration of runs of \mathcal{R}_{i}. This formula is equal to a disjunction of formulae $M_{t} \wedge M_{x} \wedge M_{\theta}$ such that M_{t} is of the form $t=\alpha, t=\alpha-x$ or $t=\infty, M_{x}$ is an x-conjunction and M_{θ} is a θ-conjunction.

Proof If $L_{i}=\{\epsilon\}$, then $\operatorname{Max}_{L_{i}}$ is $(t=0) \wedge(x=0)$ if q is a reset-state, and to $(t=0) \wedge \mathcal{I}(q)(x, \Theta)$ otherwise. Let $L_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B$. Let us study λ_{t}^{i} and $\lambda_{<}^{i}$ equal to $\bigwedge_{\beta}(t \leq \beta-x)$. If λ_{t}^{i} is $t=\alpha$, then $\operatorname{Max}_{L}(t, x, \Theta)$ equals $\lambda_{t}^{i} \wedge \bigwedge_{\beta}(\alpha \leq \beta-x) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. A similar formula holds when λ_{t}^{i} equals $t=\alpha-x$. If λ_{t}^{i} is $t \equiv{ }_{a, \geq} \alpha$ with $\lambda_{\leq}^{i}=\top$, then $\operatorname{Max}_{L}(t, x, \Theta)$ equals $(t=\infty) \wedge \lambda_{x}^{i} \wedge \lambda_{\theta}^{i}$. Suppose that λ_{t}^{i} is $t \equiv_{a, \geq} \alpha$ with λ_{\leq}^{i} being a non empty conjunction $\bigwedge_{\beta}(t \leq \beta-x)$. Then the maximum duration is the greatest value $\alpha+a y$, for some $y \in \mathbb{N}$, which is less than the smallest among the $\beta-x$'s, denoted by $\beta^{\prime}-x$. Assume that $\beta^{\prime}-x \equiv b \bmod a$ and $\alpha \equiv c \bmod a$ for some $b, c \in\{0, \cdots, a-1\}$. If $b \geq c$, then the maximum duration is given by formula M_{t} equal to $t=\beta^{\prime}-x-(b-c)$ under the condition m_{θ} equal to $t \geq \alpha$, i.e. $\beta^{\prime}-x-(b-c) \geq \alpha$. If $b<c$, then M_{t} equals $t=\beta^{\prime}-x-(a+b-c)$ under the condition m_{θ} equal to $\beta^{\prime}-x-(a+b-c) \geq \alpha$. Thus $\operatorname{Max}_{L}(t, x, \Theta)$ is a disjunction over the different possible values of β^{\prime}, b and c of formulae

$$
M_{t} \wedge m_{\theta} \wedge \lambda_{\theta} \wedge M_{\beta^{\prime}, x, b, c}
$$

such that $M_{\beta^{\prime}, b, c}$ is the conjunction

$$
\left(\bigwedge_{\beta} \beta^{\prime} \leq \beta\right) \wedge\left(\beta^{\prime}-x \equiv_{a, \geq} b\right) \wedge\left(\alpha \equiv_{a, \geq} c\right)
$$

A similar argument can be done when λ_{t}^{i} is $t \equiv_{a, \geq} \alpha-x$.
Let $L_{i}=b_{i} \cdot K_{i}$. Let us first construct $\operatorname{Max}_{K_{i}}$. This formula will contain no M_{x}. If $K_{i}=\left\{b_{i}\right\}$ with $b_{i} \in B_{R}$, then all the proof done before for $L_{i}=\left\{b_{i}\right\}$ can be repeated with x replaced by 0 . Suppose that $K_{i}=K \cdot K^{\prime}$ and that $\operatorname{Max}_{K}(t, \Theta)$ and $\operatorname{Max}_{K^{\prime}}(t, \Theta)$ are a disjunction of formulae $M_{t} \wedge M_{\theta}$ and $M_{t}^{\prime} \wedge M_{\theta}^{\prime}$ respectively. If $M_{t}=(t=\alpha)$ and $M_{t}^{\prime}=\left(t=\alpha^{\prime}\right)$, then $\operatorname{Max}_{K_{i}}(t, \Theta)$ contains
the conjunction $\left(t=\alpha+\alpha^{\prime}\right) \wedge M_{\theta} \wedge M_{\theta}^{\prime}$. If $M_{t}=(t=\infty)$ or $M_{t}^{\prime}=(t=\infty)$, then $\operatorname{Max}_{K_{i}}(t, \Theta)$ contains the conjunction $(t=\infty) \wedge M_{\theta} \wedge M_{\theta}^{\prime}$. Suppose that $K_{i}=K^{+}$, then the maximum duration equals ∞ if L contains a non null duration (see Lemma 24), and 0 otherwise. Thus $\operatorname{Max}_{K_{i}}(t, \Theta)$ is the formula $\left((t=\infty) \wedge \operatorname{NonNull}_{K}(\Theta)\right) \vee\left((t=0) \wedge \neg \operatorname{NonNull}_{K}(\Theta)\right)$. Formula $\operatorname{Max}_{L_{i}}(t, x, \Theta)$ for $L_{i}=b_{i} \cdot K_{i}$ can be easily constructed (as done before for $K \cdot K^{\prime}$).

Proof of Proposition 12. Let us prove that one can construct a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{Run}_{q}(x, \Theta)$ such that for any valuation v and any clock value $x_{0}, \operatorname{Run}_{q}\left(x_{0}, v(\Theta)\right)$ is TRUE iff there exists an infinite run in \mathcal{A}^{v} starting with $\left(q, x_{0}\right)$. Such a run exists iff for some $q^{\prime} \in Q$, there exist runs in $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ with arbitrarily large durations. As $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)=\bigcup_{i} \mathcal{R}_{i}$, this is equivalent to say that some \mathcal{R}_{i} contains runs with arbitrarily large durations. By Lemma 25, it follows that formula $\operatorname{Run}_{q}(x, \Theta)$ is equal to $\bigvee_{q^{\prime} \in Q} \bigvee_{i} \operatorname{NonZeno~}_{L_{i}}(x, \Theta)$.

Proof of Proposition 13. Let γ be a linear term and $\sim \in\{<, \leq,>, \geq\}$. We have to show that there exists a $\mathcal{B}_{x, \Theta}$ formula $\operatorname{Duration}_{q, q^{\prime}}^{\sim \gamma}(x, \Theta)$ such that for any valuation v and any clock value x_{0}, $\operatorname{Duration}_{q, q^{\prime}}^{\sim \gamma}\left(x_{0}, v(\Theta)\right)$ is TRUE iff there exists a run in $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ with duration $t \sim v(\gamma)$.
(1) We begin with $\sim \in\{<, \leq\}$. To test if there exists a run in $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$ with duration $t \sim v(\gamma)$ is equivalent to test that $t_{\text {min }} \sim v(\gamma)$ with $t_{\text {min }}$ being the minimum duration of runs in $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$. By Lemma 26 , the minimum duration for each \mathcal{R}_{i} is expressed by formula $\operatorname{Min}_{L_{i}}(t, x, \Theta)$. This formula is of the form $\mu_{t} \wedge \mu_{x} \wedge \mu_{\theta}$ with μ_{t} equal to $t=\alpha$ or $t=\alpha-x$. Therefore Duration $_{q, q^{\prime}}^{\sim \gamma}(x, \Theta)$ is equal to \bigvee_{i} Duration $_{i}$, where each Duration ${ }_{i}$ is obtained by modifying $\operatorname{Min}_{L_{i}}$ as follows: any formula μ_{t} equal to $t=\alpha(t=\alpha-x$ resp.) is replaced by formula $\alpha \sim \gamma(\alpha-x \sim \gamma$ resp. $)$.
(2) We now turn to $\sim \in\{>, \geq\}$. The approach is similar but with the maximum (instead of minimum) duration. By Lemma 27, the maximum duration for each \mathcal{R}_{i} is expressed by formula $\operatorname{Max}_{L_{i}}(t, x, \Theta)$. This formula is a disjunction of formulae $M_{t} \wedge M_{x} \wedge M_{\theta}$ with M_{t} equal to $t=\alpha, t=\alpha-x$ or $t=\infty$. It follows that Duration $\sim_{q, q^{\prime}}^{\sim \gamma}(x, \Theta)$ is equal to \bigvee_{i} Duration $_{i}$, where each Duration ${ }_{i}$ is obtained by modifying $\operatorname{Max}_{L_{i}}$ in the following way. If M_{t} equals $t=\alpha, t=\alpha-x$ or $t=\infty$, then it is replaced by formula $\alpha \sim \gamma, \alpha-x \sim \gamma$ or \top respectively.

5 Conclusion

In this paper, we have completely studied the model-checking problem and the parameter synthesis problem of the logic PTCTL, an extension of TCTL with parameters, over one parametric clock timed automata. On the negative side, we showed that the model-checking problem is undecidable. The undecidability result needs equality in the logic. On the positive side, we showed that when equality is not allowed in the logic, the model-checking problem becomes decidable and the parameter synthesis problem is solvable. Our algorithm is based on automata theoretic principles and an extension of our method (see [?]) to
express durations of runs of a timed automaton using Presburger arithmetic. With this approach, the model-checking problem and the parameter synthesis problem are syntactically translated into Presburger arithmetic which has a decidable theory and an effective quantifier elimination. The model checking problem is translated into a Presburger sentence inside which the Presburger decidability process looks for semantic inconsistencies between the parameters and the parametric clock. The parameter synthesis problem asks for which values of the parameters is a PTCTL formula true at a given configuration of the timed automaton. Thanks to Presburger quantifier elimination, this problem is solved by expressing the values of the parameters in terms of the operations + , \leq and $\equiv \bmod a, a \in \mathbb{N}^{+}$.

To the best of our knowledge, this is the first work that studies the modelchecking and parameter synthesis problems with parameters both in the model (timed automaton) and in the property (PTCTL formula). The problems solved in this paper are important as it is very natural to refer in the properties of the system to parameters appearing in the model of the system. We illustrated in the introduction the kind of properties that can be expressed and automatically verified in our framework. With the Presburger approach, we obtained complete solutions and clearly indicated the borderline between decidability and undecidability.

Future works could be the following ones. No complexities issues are given in this paper and only the discrete time is considered. Presburger theory is decidable with the high 3ExpTime complexity. More efficient algorithms should be designed for particular fragments of $\mathrm{PTCTL}_{\{<, \leq,>, \geq\}}$. The extension to dense timed models of the method proposed in this paper should be investigated.

[^0]: ${ }^{1}$ Supported by the FRFC project "Centre Fédéré en Vérification" funded by the Belgian National Science Fundation (FNRS) under grant nr 2.4530.02

[^1]: ${ }^{2}$ Note that time increment τ is first added to x, guard g is then tested, and finally x is reset according to r.
 ${ }^{3}$ Non Zenoness property.

[^2]: ${ }^{4}$ We verify the existence of a run starting in (q, x) to ensure that time can progress in \mathcal{A}^{v} from that configuration.

[^3]: ${ }^{5}$ For instance this representation could be given in a decidable logical formalism.

[^4]: ${ }^{6}$ Such kind of invariant is allowed in Notation 10.

[^5]: ${ }^{7}$ The copy \bar{q}^{\prime} of q^{\prime} is needed to focus on the first configuration $\left(q^{\prime}, x_{0}^{\prime}\right)$ of ρ^{\prime}.

[^6]: ${ }^{8}$ The copy \underline{q}^{\prime} of q^{\prime} is needed to focus on the last configuration $\left(q^{\prime}, x_{0}^{\prime}\right)$ of ρ; the augmented invariant is needed to express that ϕ is satisfied at $\left(q^{\prime}, x_{0}^{\prime}\right)$ and $\left(q^{\prime}, x_{0}^{\prime}\right)$ is the first configuration of an infinite run.

[^7]: ${ }^{9}$ Such an identification of runs is already present in the proof of Theorem 11

[^8]: ${ }^{10}$ The x-atom $x=0$ imposes a reset of the clock at state p (see Remark 22)
 ${ }^{11}$ As $\mathcal{A}_{p, p^{\prime}}$ must satisfy Hypothesis $(*)$, no reset can appears on the edges

[^9]: ${ }^{12}$ The sequence $b_{1} b_{2} \cdots b_{n}$ symbolically represents certain runs of $\mathcal{R}_{q, q^{\prime}}\left(\mathcal{A}^{v}, x_{0}\right)$. We are only interested in the initial clock value x_{0} treated by formula λ_{x}^{i} of b_{1}.

[^10]: ${ }^{13}$ There is no term η_{x} since $K_{i} \subseteq B_{R}^{+}$, that is, $x=0$ (see (13)).

