
Real-Time Model-Checking:

Parameters Everywhere

Véronique Bruyère
Institut d’Informatique, Université de Mons-Hainaut,

Le Pentagone, Avenue du Champ de Mars 6, B-7000 Mons, Belgium,

Email: Veronique.Bruyere@umh.ac.be

Jean-François Raskin
Département d’Informatique, Université Libre de Bruxelles,

Boulevard du Triomphe CP 212, B-1050-Bruxelles, Belgium

Email: Jean-Francois.Raskin@ulb.ac.be

Abstract

In this paper1, we study the model-checking and parameter synthesis
problems of the logic TCTL over timed automata where parameters are
allowed both in the model (timed automaton) and in the property (tem-
poral formula). Our results are as follows. On the negative side, we show
that the model-checking problem of TCTL extended with parameters is
undecidable over timed automata with only one parametric clock. The
undecidability result needs equality in the logic. On the positive side, we
show that when equality is not allowed in the logic, the model-checking
and the parameter synthesis problems become decidable. Our method is
based on automata theoretic principles and an extension of our method to
express duration of runs in timed automata using Presburger arithmetic.

1 Introduction

In this paper, we further investigate the model-checking problem of real-time for-
malisms with parameters. In recent works, parametric real-time model-checking
problems have been studied by several authors. Alur et al study in [?] the anal-
ysis of timed automata where clocks are compared to parameters. They showed
that when only one clock is compared to parameters, the emptiness problem is
decidable. But this problem becomes undecidable when three clocks are com-
pared to parameters. Hune et al study in [?] a subclass of parametric timed
automata (L/U automata) such that each parameter occurs either as a lower
bound or as an upper bound. Wang in [?, ?], Emerson et al in [?], Alur et al

1Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian
National Science Fundation (FNRS) under grant nr 2.4530.02

1

Figure 1: A parametric timed automaton

in [?] and the authors of this paper in [?] study the introduction of parameters
in temporal logics. The model-checking problem for TCTL extended with pa-
rameters over timed automata (without parameters) is decidable. On the other
hand, only a fragment of LTL extended with parameters is decidable.

Unfortunately, in all those previous works, the parameters are only in the
model (expressed as a timed automaton) or only in the property (expressed as
a temporal logic formula). Nevertheless, when expressing a temporal property
of a parametric system, it is natural to refer in the temporal formula to the
parameters used in the system. In this paper, we study the model-checking
problem of the logic TCTL extended with parameters over the runs of a timed
automaton with one parametric clock. To the best of our knowledge, this is
the first work that study the model-checking and parameter synthesis problems
with parameters both in the model and in the property.

Let us illustrate the kind of properties that we can express with a paramet-
ric temporal logic over a parametric timed automaton. The automaton A of
Figure 1 is a discrete timed automaton with one clock x and two parameters θ1
and θ2. Here we explicitely model the elapse of time by self loops labelled by
1. Other transitions are instantaneous. State q0 is labelled with atomic propo-
sition σ and in all other states this proposition is false. The possible runs of
this automaton starting at q0 are as follows. The control instantaneously leaves
q0 and goes through q1, q2, q3 to come back in q0, the time spent in this cycle
is constrained by the parameters θ1 and θ2. In fact, the control has to leave q1
at most θ1 time units after entering it and the control has to stay exactly θ2
time units in state q2. To express properties of those behaviors, we use TCTL
logic augmented with parameters. Let us consider the next three formulae for
configuration (q0, 0), i.e. the control is in state q0 and clock x has value 0:

(i) ∀�(σ → ∀♦≤θ3σ)

(ii) ∀θ1∀θ2 · (θ2 ≤ θ1 → ∀�(σ → ∀♦≤2θ1+2σ))

(iii) ∀θ1 · (θ1 ≥ 5 → ∀�(σ → ∀♦<2θ1+2σ))

The parameter synthesis problem associated to formula (i), asks for which values
of θ1, θ2 and θ3, the formula is true at configuration (q0, 0). By observing the
model and the formula, we can deduce the following constraint on the param-
eters: θ3 ≥ θ1 + θ2 + 2. This means that any cycle throught the four states
has duration bounded by θ1 + θ2 + 2. Formula (ii) formalizes the next question
“In all the cases where the value assigned to parameter θ1 is greater than the
value assigned to parameter θ2, is it true that any cycle has a duration bounded
by 2θ1 + 2”. As there is no free parameter in the question, the question has a
yes-no answer. This is a model-checking problem. For formula (ii), the answer
is yes in configuration (q0, 0). Finally, formula (iii) lets parameter θ2 free and

2

formalizes the question “What are the possible values that can be given to θ2
such that for any value of θ1 ≥ 5, a cycle throught the four states lasts at most
2θ1+1 time units”. This is again a parameter synthesis problem and the answer
is θ2 ≤ 4.

In this paper, we study the algorithmic treatment of such problems. Our
results are as follows. On the negative side, we show that the model-checking
problem of TCTL extended with parameters is undecidable over timed automata
with only one parametric clock. The undecidability result needs equality in
the logic. On the positive side, we show that when equality is not allowed in
the logic, the model-checking problem becomes decidable and the parameter
synthesis problem is solvable. Our algorithm is based on automata theoretic
principles and an extension of our method (see [?]) to express durations of paths
in a timed automata using Presburger arithmetic. As a corollary, we obtain the
decidability of the reachability problem for timed automata with one parametric
clock proved by Alur et al in [?]. All the formulae given in the example above
are in the decidable fragment.

The paper is organized as follows. In Section 2, we introduce the model of
one parametric clock timed automaton and the parametric extension of TCTL
that we consider. In Section 3, we establish the undecidability of the model-
checking problem if equality can be used in the logic and we show how to solve
the problem algorithmically if the use of equality is not allowed in the logic.
Proofs of two important propositions introduced in Section 3 are postponed in
Section 4. We finish the paper in Section 5 by drawing some conclusions.

2 Parameters Everywhere

In this section, we introduce parameters in the automaton used to model the
system as well as in the logic used to specify properties of the system. The
automata are parametric timed automata as defined in [?] with a discrete time
domain and one parametric clock. The logic is Parametric Timed CTL Logic
as defined in [?].

Notation 1 Let Θ be a fixed finite set of parameters θ that are shared by
the automaton and the logical formulae. A parameter valuation for Θ is a
function v : Θ → N which assigns a natural number to each parameter θ ∈ Θ.
In the sequel, α, β, . . . mean any linear term Σi∈Iciθi + c, with ci, c ∈ N and
{θi|i ∈ I} ⊆ Θ. A parameter valuation v is naturally extended to linear terms
by defining v(c) = c for any c ∈ N.

We denote by x the unique parametric clock. The same notation x is used
for both the clock and a value of the clock. A guard g is any conjunction of
x ∼ α with ∼ ∈ {=, <,≤, >,≥}. We denote by G the set of guards. Notation
x |=v g means that x satisfies g under valuation v. We use notation Σ for the
set of atomic propositions.

3

2.1 Parametric Timed Automata

We recall the definition of one parametric clock timed automata as introduced in
[?]. We make the hypothesis that non-parametric clocks have all been eliminated
by a technique related to the region construction, see [?] for details.

Definition 2 A parametric timed automaton A is a tuple (Q,E,L, I), where
Q is a finite set of states, E ⊆ Q× {0, 1} × G × 2{x} ×Q is a finite set of edges,
L : Q→ 2Σ is a labeling function and I : Q→ G assigns an invariant I(q) ∈ G
to each state q.

A configuration of A is a pair (q, x), where q is a state and x is a clock value.

Whenever a parameter valuation v is given, A becomes a usual one-clock
timed automaton denoted by Av. We recall the next definitions of transition
and run in Av.

Definition 3 Let v be a parameter valuation. A transition (q, x) τ→ (q′, x′)
between two configurations (q, x) and (q′, x′), with time increment τ ∈ {0, 1},
is allowed in Av if (1) x |=v I(q) and x′ |=v I(q′), (2) there exists an edge
(q, τ, g, r, q′) ∈ E such that x + τ |=v g and x′ = 0 if r = {x}, x′ = x + τ if
r = ∅.2

A run ρ = (qi, xi)i≥0 of Av is an infinite sequence of transitions (qi, xi)
τi→

(qi+1, xi+1) such that Σi≥0τi = ∞3. The duration t = Dρ(qi, xi) at configuration
(qi, xi) of ρ is equal to t = Σ0≤j<iτj . A finite run ρ is a finite sequence of tran-
sitions. It is shortly denoted by (q, x) (q′, x′) such that (q, x) (resp. (q′, x′))
is its first (resp. last) configuration. Its duration Dρ is equal to Dρ(q′, x′).

2.2 Parametric Timed CTL Logic

Formulae of Parametric Timed CTL logic, PTCTL for short, are formed by a
bloc of quantifiers over some parameters followed by a quantifier-free temporal
formula. They are defined as follows. Notation σ means any atomic proposition
σ ∈ Σ and α, β are linear terms as before.

Definition 4 A PTCTL formula f is of the form

f = Q1θ1 · · · Qkθk ϕ

such that k ≥ 0, {θ1, . . . , θk} ⊆ Θ, Qj ∈ {∃,∀} for each j, 1 ≤ j ≤ k, and ϕ is
given by the following grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃U∼αϕ | ϕ∀U∼αϕ

2Note that time increment τ is first added to x, guard g is then tested, and finally x is
reset according to r.

3Non Zenoness property.

4

Note that usual operators ∃U and ∀U are obtained as ∃U≥0 and ∀U≥0. We
also use the following abbreviations: ∃♦∼αϕ for >∃U∼αϕ, ∀♦∼αϕ for >∀U∼αϕ,
∃�∼αϕ for ¬∀♦∼α¬ϕ, and ∀�∼αϕ for ¬∃♦∼α¬ϕ.

We use notation QF-PTCTL for the set of quantifier-free formulae ϕ of
PTCTL. The set of parameters of Θ that are free in f , that is, not under the
scope of a quantifier, is denoted by Θf . Thus, for a QF-PTCTL formula ϕ, we
have Θϕ = Θ (recall that Θ is the set of parameters that appear in the formula
and in the automaton).

We now give the semantics of PTCTL.

Definition 5 Let A be a parametric timed automaton and (q, x) be a configu-
ration of A. Let f = Q1θ1 · · · Qkθk ϕ be a PTCTL formula. Given a paramater
valuation v on Θf , the satisfaction relation (q, x) |=v f is defined inductively as
follows. If f = ϕ, then (q, x) |=v ϕ according to following rules:

• (q, x) |=v σ iff there exists4 a run ρ = (qi, xi)i≥0 inAv with (q, x) = (q0, x0)
and σ ∈ L(q)

• (q, x) |=v α ∼ β iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) =
(q0, x0) and v(α) ∼ v(β)

• (q, x) |=v ¬ϕ iff (q, x) 6|=v ϕ

• (q, x) |=v ϕ ∨ ψ iff (q, x) |=v ϕ or (q, x) |=v ψ

• (q, x) |=v ∃© ϕ iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) =
(q0, x0) and (q1, x1) |=v ϕ

• (q, x) |=v ϕ∃U∼αψ iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) =
(q0, x0), there exists i ≥ 0 such that Dρ(qi, xi) ∼ v(α), (qi, xi) |=v ψ and
(qj , xj) |=v ϕ for all j < i

• (q, x) |=v ϕ∀U∼αψ iff for any run ρ = (qi, xi)i≥0 in Av with (q, x) =
(q0, x0), there exists i ≥ 0 such that Dρ(qi, xi) ∼ v(α), (qi, xi) |=v ψ and
(qj , xj) |=v ϕ for all j < i

If f = ∃θf ′, then (q, x) |=v f iff there exists c ∈ N such that (q, x) |=v′ f ′

where v′ is defined on Θf ′ by v′ = v on Θf and v′(θ) = c. If f = ∀θf ′, then
(q, x) |=v f iff for all c ∈ N, (q, x) |=v′ f ′ where v′ is defined on Θf ′ by v′ = v
on Θf and v′(θ) = c.

2.3 Problems

The problems that we want to solve in this paper are the following ones. The
first problem is the model-checking problem for PTCTL formulae f with no
free parameters. In this case, we omit the index by v in the satisfaction relation
(q, x) |= f since no parameter (neither in the automaton nor in the formula)
has to receive a valuation.

4We verify the existence of a run starting in (q, x) to ensure that time can progress in Av

from that configuration.

5

Problem 6 The model-checking problem is the following. Given a paramet-
ric timed automaton A and a PTCTL formula f such that Θf = ∅, given a
configuration (q, x) of A, does (q, x) |= f hold ?

The second problem is the more general problem of parameter synthesis for
PTCTL formulae f such that Θf is any subset of Θ.

Problem 7 The parameter synthesis problem is the following. Given a para-
metric timed automaton A and a configuration (q, x) of A, given a PTCTL
formula f , compute a symbolic representation of the set of parameter valua-
tions v on Θf such that (q, x) |=v f

5.

Example We consider the example given in the introduction with the paramet-

ric timed automaton A of Figure 1 and the PTCTL formulae equal to

f : ∀θ1∀θ2 · (θ2 ≤ θ1 → ∀�(σ → ∀♦≤2θ1+2σ))

and
g : ∀θ1 · (θ1 ≥ 5 → ∀�(σ → ∀♦<2θ1+2σ)).

Then Θ = {θ1, θ2}, Θf = ∅ and Θg = {θ2}. The model-checking problem “does
(q0, 0) |= f hold” has a yes answer. The parameter synthesis problem “for
which parameter valuations v on Θg does (q0, 0) |=v g hold” receives the answer
θ2 ≤ 4.

3 Decision Problems

In this section, we will prove that the model-checking problem is undecidable.
The undecidability comes from the use of equality of the operators ∃U∼α and
∀U∼α. When equality is forbidden in these operators, we will prove that the
model-checking problem becomes decidable. In this case, we will also positively
solve the parameter synthesis problem. Our proofs use Presburger arithmetics
and its extension with integer divisibility.

In the sequel, we use subscripts to indicate what are the limitations imposed
to ∼ in operators ∃U∼α and ∀U∼α. For instance, notation PTCTL{=} means
that ∼ can only be equality.

3.1 Undecidability Result for Equality

We prove here that Problem 6 is undecidable for PTCTL{=}. The proof relies
on the undecidability of Presburger arithmetic with divisibility.

Presburger arithmetic with divisibility is an extention of Presburger arith-
metic with integer divisibility relation. The additional divisibility relation is

5For instance this representation could be given in a decidable logical formalism.

6

Figure 2: Automaton for z|z′

denoted by z|z′ and means “z divides z′”. Every formula of Presburger arith-
metic with divisibility can be put into normal form:

Qz1Qz2 . . . Qzn · (¬)φ1 ? (¬)φ2 ? · · · ? (¬)φm

where ? belongs to {∨,∧}, (¬) means that negation is optional and each φi is
one of the following atomic formulae: (i) α = z, (ii) α < z, (iii) z|z′ such that
α is a linear term and z′ > 0. While Presburger arithmetic has a decidable
theory, Presburger arithmetic with divisibility is undecidable [?].

Theorem 8 For any sentence Φ of Presburger arithmetic with divisibility, we
can construct a parametric timed automaton A, a configuration (q, x0) and a
PTCTL formula f such that Φ is true iff the answer to the model checking
problem (q, x0) |= f for A is yes.

Proof Let us make the assumption that the sentence Φ is in normal form, that
is

Qz1Qz2 . . . Qzn · (¬)φ1 ? (¬)φ2 ? · · · ? (¬)φm.

We are going to construct a PTCTL{=} formula f and a paramatric timed
automaton A. The set Θ of parameters is equal to the set of variables used in
Φ.

For each subformula φl of the form α = z or α < z, we define the PTCTL{=}
formula φ̂l = φl. For each subformula φl of the form z|z′, we construct the next
parametric timed automaton Aφl

and PTCTL{=} formula φ̂l. The automaton
Aφl

is given in Figure 2. We label the unique initial state il of this automaton
by σl1 and the unique final fl state by σl2. It is easy to see that there is a
run ρ from the initial configuration (il, 0) to the final configuration (fl, z) with
duration Dρ iff z|Dρ. For formula φ̂l, we take σl1 ∧ ∃♦=z′σl2.

Now we construct formula f as follows

Qz1Qz2 . . . Qzn · (¬)φ̂1 ? (¬)φ̂2 ? · · · ? (¬)φ̂m.

We construct the automaton A by first taking the union of all the previous
automata Aφl

(introduced for the divisibility subformulae). We then merge
their initial states into a unique state of A that we call q. The label L(q) of
q is the union of the labels σl1. Finally, we add a new state q′ to A and an
edge (fl, 0,>,∅, q′) from any final state fl of Aφl

to state q′ labelled with τ = 0
and without guard and reset. To complete the construction, we add a self-loop
(q′, 1,>,∅, q′) on q′ that allows time to progress.

It is easy to see that given A, we have (q, 0) |= f iff Φ is true. �

As a direct consequence of Theorem 8, we have:

Corollary 9 The model-checking problem for PTCTL{=} is undecidable.

7

3.2 Decidability for PTCTL without Equality

In this section, we provide solutions to the model-checking problem and the
parameter synthesis problem for PTCTL{<,≤,>,≥}. Our approach is as fol-
lows. Given a formula ϕ of QF-PTCTL we will construct a Presburger formula
∆q,ϕ(x,Θ) with free variables x and all θ ∈ Θ such that

(q, x0) |=v ϕ iff ∆q,ϕ(x0, v(Θ)) is true

for any valuation v on Θ and any value x0 of the clock (see Theorem 11).
Solutions to Problems 6 and 7 will be obtained as a corollary (see Corollaries
14 and 15). For instance, the decidability of the model-checking problem will
derive from the decidability of Presburger arithmetic. Indeed, if we denote by
QΘ ϕ a PTCTL formula f with no free parameters, then to test if (q, x0) |= f
is equivalent to test if the sentence QΘ ∆q,ϕ(x0,Θ) is true.

Example Consider the parametric timed automaton of Figure 1 and the QF-
PTCTL formula ϕ equal to ∀�(σ → ∀♦≤θ3σ). Then Θ = {θ1, θ2, θ3}. Pres-
burger formula ∆q0,ϕ(x,Θ) is here equal to θ1 +θ2 +2 ≤ θ3 with no reference to
x since it is reset along the edge from q0 to q1. Thus (q, x0) |=v ϕ for any clock
value x0 and any valuation v such that v(θ1) + v(θ2) + 2 ≤ v(θ3). The model-
checking problem (q, x0) |= ∀θ1∀θ2∃θ3ϕ has a yes answer for any x0 because
the sentence ∀θ1∀θ2∃θ3 · (θ1 + θ2 + 2 ≤ θ3) is true in Presburger arithmetic. If
clock x was not reset along the edge from q0 to q1, then the formula ∆q0,ϕ(x,Θ)
would be equal to (θ1 + θ2 + 2 ≤ θ3) ∧ (x ≤ θ1) and the above model-checking
problem would have a yes answer iff ∀θ1∀θ2∃θ3 · (θ1 + θ2 + 2 ≤ θ3)∧ (x0 ≤ θ1),
that is x0 = 0.

As indicated by this example, the Presburger formula ∆q,ϕ(x,Θ) constructed
from the QF-PTCTL formula ϕ is a boolean combination of terms of the form
θ ∼ α or x ∼ α where θ is a parameter, x is the clock and α is a linear term
over parameters. Formula ∆q,ϕ(x,Θ) must be seen as a syntactic translation
of formula ϕ to Presburger arithmetic. The question “does (q, x0) |= f holds”
with f = QΘ ϕ is translated into the question “does the Presburger sentence
QΘ ∆q,ϕ(x0,Θ) is true”. At this point only, semantic inconsistencies inside
QΘ ∆q,ϕ(x0,Θ) are looked for to check if this sentence is true or not.

Our proofs require to work with a set G of guards that is more general than
in Notation 1.

Notation 10 Linear terms α, β, . . . are any Σiciθi+c, with ci, c ∈ Z (instead of
N). Comparison symbol ∼ used in expressions like x ∼ α and α ∼ β belongs to
the extended set {=, <,≤, >,≥,≡a,≤,≡a,≥}. For any constant a ∈ N+, notation
z ≡a,≤ z′ means z ≡ z′ mod a and z ≤ z′. Equivalently, this means that there
exists y ∈ N such that z+ ay = z′. Notation z ≡a,≥ z′ means z ≡ z′ mod a and
z ≥ z′.

Any x ∼ α is called an x-atom, any α ∼ β is called a θ-atom. An x-
conjunction is any conjunction of x-atoms, and a θ-conjunction is any conjunc-
tion of θ-atoms. We denote by Bx,Θ the set of boolean combinations of x-atoms

8

and θ-atoms. A guard is any element of Bx,Θ. Thus the set G of Notation 1 is
now equal to the set Bx,Θ.

From now on, it is supposed that the guards and the invariants appearing in
parametric timed automata belong to the generalized set G = Bx,Θ. It should
be noted that the extension of ∼ to {=, <,≤, >,≥,≡a,≤,≡a,≥} is only valid
inside automata, and not inside PTCTL formulae. We shortly call automaton
any parametric timed automaton A. Let us state our main result.

Theorem 11 Let A be an automaton and q be a state of A. Let ϕ be a QF-
PTCTL{<,≤,>,≥} formula. Then there exists a Bx,Θ formula ∆q,ϕ(x,Θ) with
free variables x and all θ ∈ Θ such that

(q, x0) |=v ϕ iff ∆q,ϕ(x0, v(Θ)) is true

for any valuation v on Θ and any clock value x0. The construction of formula
∆q,ϕ is effective.

The proof of Theorem 11 is by induction on the way formula ϕ is constructed.
The main ideas are roughly the following ones. First, suppose for instance that
along a run ρ = (qi, xi)i≥0 of Av showing that (q0, x0) |=v ϕ, some configuration,
say (qj , xj), needs to satisfy (qj , xj) |=v ψ with ψ a subformula of ϕ. The
automaton A is modified into A′ such that the invariant I(qj) is augmented6

by the Bx,Θ formula ∆qj ,ψ constructed by induction. Along the run ρ seen
in the modified automaton A′, the satisfaction relation (qj , xj) |=v ψ holds
automatically thanks to the augmented invariant of qj . Second, what we also
need is a Bx,Θ formula that expresses the existence of an infinite run starting at a
given configuration (for operator ∃� for instance) and another one that expresses
the existence of a finite run ρ starting and ending at given configurations such
that Dρ ∼ v(α) (for operator ∃U∼α for instance). This is possible by the next
two propositions. Their proof is postponed till Section 4.

Proposition 12 Let A be an automaton and q be a state. Then there exists a
Bx,Θ formula Runq(x,Θ) such that for any valuation v and any clock value x0,

Runq(x0, v(Θ)) is true

iff there exists an infinite run in Av starting with (q, x0). The construction of
Runq(x,Θ) is effective.

Proposition 13 Let A be an automaton and q, q′ be two states. Let ∼ ∈ {<,≤
, >,≥} and α be a linear term. Then there exists a Bx,Θ formula Duration∼αq,q′(x,Θ)
such that for any valuation v and any clock value x0,

Duration∼αq,q′(x0, v(Θ)) is true

iff there exists a finite run ρ = (q, x0) (q′, ·) in Av with Dρ ∼ v(α). The
construction of Duration∼αq,q′(x,Θ) is effective.

6Such kind of invariant is allowed in Notation 10.

9

For the proof of Theorem 11, instead of the grammar given in Definition 4,
we prefer to work with the grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃U∼αϕ | ∃�<αϕ | ∃�ϕ

This grammar is equivalent because formula ∃�≤αϕ can be replaced by ∃�<α+1ϕ,
formula ∃�≥αϕ by (∃�>α−1ϕ) ∨ (∃�ϕ ∧ α = 0), formula ∃�>αϕ by ∃♦≤α∃©
∃�ϕ, and formula ϕ∀U∼αψ by ¬(¬ψ∃U∼α(¬ϕ ∧ ¬ψ)) ∨ ¬(∃�∼α¬ψ). It is not
difficult to check that the semantics of the new operator ∃�<αϕ is given by

(q, x) |=v ∃�<αϕ iff there exists a run ρ = (qi, xi)i≥0 of Av with (q, x) =
(q0, x0), there exists j ≥ 0 such that Dρ(qj , xj) ≥ v(α) and (qi, xi) |=v ϕ for
any i < j.

Proof of Theorem 11 (by induction on ϕ). If ϕ = σ, then (q, x0) |=v ϕ iff there
exists an infinite run starting with (q, x0) and σ ∈ L(q). Therefore

∆q,ϕ(x,Θ) = ⊥ if σ /∈ L(q)
= Runq(x,Θ) otherwise.

Similarly, if ϕ = α ∼ β with ∼ ∈ {=, <,≤, >,≥}, then

∆q,ϕ(x,Θ) = (α ∼ β) ∧ Runq(x,Θ).

If ϕ = ψ ∨ φ, then ∆q,ϕ = ∆q,ψ ∨∆q,φ. If ϕ = ¬ψ, then ∆q,ϕ = ¬∆q,ψ.
Let us treat ϕ = ∃© ψ. Recall that (q, x0) |=v ∃© ψ iff there exists a

transition (q, x0)
τ→ (q′, x′0) such that (q′, x′0) |=v ψ and (q′, x′0) is the first

configuration of an infinite run ρ′. Let (q, τ, g, r, q′) be the edge of E that has
lead to the transition (q, x0)

τ→ (q′, x′0). Then (see Definition 3), x′0 = 0 if
r = {x}, and x′0 = x0 + τ if r = ∅. By induction hypothesis, ∆q′,ψ has been
constructed such that ∆q′,ψ(x′0, v(Θ)) is true iff (q′, x′0) |=v ψ. The automaton
A is modified into an automaton A as follows. A copy7 q′ of q′ is added to Q
such that L(q′) = L(q′), I(q′) = I(q′) ∧∆q′,ψ(x,Θ). A copy (q′, τ ′, g′, r′, p) is
also added for any edge (q′, τ ′, r′, g′, p) leaving q′. By Proposition 12 applied
to A and q′, we get a Bx,θ formula Runq′ such that Runq′(x′0, v(Θ)) is true iff
there exists an infinite run in Av starting with (q′, x′0). By construction of q′,
equivalently there exists an infinite run in Av starting with (q′, x′0) and such
that (q′, x′0) |=v ψ. Hence, the expected formula ∆q,ϕ(x,Θ) is equal to

∆q,ϕ(x,Θ) =
∨

(q,τ,g,r,q′)∈ER
(I(q) ∧ Runq′(0,Θ))

∨
∨

(q,τ,g,r,q′)∈E\ER
(I(q) ∧ Runq′(x+ τ,Θ))

where ER is the set of edges that reset the clock.
The construction of formula ∆q,ϕ for ϕ = ∃�ψ is in the same vein as the

previous one. Recall that (q, x0) |=v ϕ iff there is an infinite run in Av with first
configuration (q, x0) such that all its configurations satisfy ψ. The automaton
A is here modified into A as follows. For any state p ∈ Q, I(p) is replaced

7The copy q′ of q′ is needed to focus on the first configuration (q′, x′
0) of ρ′.

10

by I(p) ∧∆p,ψ(x,Θ). By Proposition 12 applied to A, we get a formula Runq
such that Runq(x0, v(Θ)) is true iff there exists an infinite run in Av starting
with (q, x0) and such that all its configurations satisfy ψ. Therefore formula
∆q,ϕ(x,Θ) is equal to

Runq(x,Θ).

Let us turn to formula ϕ = ψ∃U∼αφ. We have (q, x0) |=v ϕ iff either (1)
0 ∼ v(α), (q, x0) |=v φ and (q, x0) is the first configuration of an infinite run,
or (2) there exists a finite run ρ = (q, x0) (q′, x′0) such that Dρ ∼ v(α), ψ is
satisfied at any configuration of ρ distinct from (q′, x′0), φ is satisfied at (q′, x′0)
and (q′, x′0) is the first configuration of an infinite run. For any state p ∈ Q,
formulae ∆p,ψ and ∆p,φ have been constructed by induction hypothesis. So, in
case (1), with the same construction of A as done before for operator ∃© (with
q, φ instead of q′, ψ), we have the next formula

(0 ∼ α) ∧ Runq(x,Θ).

Case (2) is more involved. The automatonA is first modified intoA as for opera-
tor ∃© (with q′, φ instead of q′, ψ) to get formula Runq′ such that Runq′(x′0, v(Θ))
is true iff there exists an infinite run in Av starting with (q′, x′0) and such that
(q′, x′0) |=v φ. The automaton A is then modified in another automaton A in the
following way. A copy q′ of q′ is added to Q as well as a copy of any edge of E en-
tering q′ as entering q′; we define L(q′) = L(q′) and I(q′) = I(q′)∧Runq′(x,Θ)8.
For any state p of Q, I(p) is replaced by I(p)∧∆p,ψ(x,Θ). Thanks to Proposi-
tion 13 applied to A, we obtain a formula Duration∼αq,q′(x,Θ) expressing the
following: Duration∼αq,q′(x0, v(Θ)) is true iff there exists in Av a finite run
ρ = (q, x0) (q′, x′0) with Dρ ∼ v(α). Equivalently there exists in Av a fi-
nite run ρ = (q, x0) (q′, x′0) with Dρ ∼ v(α) such that ψ is satisfied at any
configuration of ρ distinct from (q′, x′0), φ is satisfied at (q′, x′0) and (q′, x′0) is
the first configuration of an infinite run. For case (2), the expected formula is
thus the disjunction ∨

q′∈Q
Duration∼αq,q′(x,Θ).

Therefore, formula ∆q,ϕ is the disjunction

((0 ∼ α) ∧ Runq(x,Θ)) ∨
∨
q′∈Q

Duration∼αq,q′(x,Θ).

Finally, let ϕ be ∃�<αψ. Then (q, x0) |=v ϕ iff there exists a finite run
ρ = (q, x0) (q′, x′) such that Dρ ≥ v(α), (p, x) |=v ψ for each configuration
(p, x) of ρ distinct from (q′, x′) and (q′, x′) is the first configuration of an infinite
run. As done just before, A is modified into A except that we use Runq′ instead

8The copy q′ of q′ is needed to focus on the last configuration (q′, x′
0) of ρ; the augmented

invariant is needed to express that φ is satisfied at (q′, x′
0) and (q′, x′

0) is the first configuration
of an infinite run.

11

of Runq′ in the definition of I(q′). By Proposition 13, formula ∆q,ϕ is equal to∨
q′∈Q

Duration≥αq,q′(x,Θ).

The proof is completed since all the proposed formulae belong to Bx,Θ and
their construction is effective. �

Solutions to the model-checking problem and the parameter synthesis prob-
lem are obtained as a corollary of Theorem 11.

Corollary 14 The model-checking problem for PTCTL{<,≤,>,≥} is decidable.

Proof Let QΘ ϕ be a PTCTL formula f with no free parameters. By Theorem
11, (q, x0) |= f iff QΘ ∆q,ϕ(x0,Θ) is true. As Presburger arithmetic has a de-
cidable theory and QΘ ∆q,ϕ(x0,Θ) is Presburger sentence, the model-checking
problem is decidable. �

The next corollary is straightforward. It states that the parameter synthesis
problem is solvable.

Corollary 15 Let A be an automaton and (q, x0) be a configuration of A. Let
{θ1, . . . , θk} ⊆ Θ with k ≥ 0 and let f = Q1θ1 · · · Qkθk ϕ be a PTCTL{<,≤,>,≥}
formula. Then the Presburger formula Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ) with free
parameters in Θf is an effective characterization of the set of valuations v on
Θf such that (q, x0) |=v f .

Let us denote by V (A, f, q, x0) the set of valuations v on Θf such that
(q, x0) |=v f . Let Θf be equal to {θ′1, . . . , θ′l}. Presburger arithmetics has an
effective quantifier elimination, by adding to the operations + and ≤ all the
congruences ≡ moda, a ∈ N+. It follows the characterization of V (A, f, q, x0)
given above by Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ) can be effectively rewritten without
any quantifier. On the other hand, since Presburger arithmetic has a decidable
theory, any question formulated in this logic about V (A, f, q, x0) is decidable.
For instance, the question “Is the set V (A, f, q, x0) non empty” is decidable as it
is formulated in Presburger arithmetic by ∃θ′1 · · · ∃θ′l Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ).
The question “Does the set V (A, f, q, x0) contain all the valuations on Θf” is
also decidable as it can be formulated as ∀θ′1 · · · ∀θ′l Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ).
The question “Is the set V (A, f, q, x0) finite” is translated into

∃z∀θ′1 · · · ∀θ′l Q1θ1 · · · Qkθk · (∆q,ϕ(x,Θ) ⇒ ∧iθ′i ≤ z).

And so on.

4 Durations

The aim of this section is a proof of Propositions 12 and 13. This will be
achieved thanks to a precise description of the possible durations of finite runs
in an automaton. Several steps are necessary for this purpose.

12

In the first subsection, we show that we can work with automata put in some
normal form. This normalization allows a simplified presentation of the proofs
of the next subsections.

In Subsections 4.2 and 4.3, we restrict to reset-free normalized automata
A, that is automata in which there is no reset of the clock. For this family of
automata, we study the runs of the form (i, x0) (f, ·) such that i ∈ I, f ∈ F
with I, F being two fixed subsets of states, and x0 is a fixed clock value. In
Subsection 4.2, a sequence of transformations is performed on the automaton
such that the x-atoms used in the automaton are limited to equalities x = α.
These simplifications lead in Subsection 4.3 to the description by a Presburger
formula of the durations Dρ of runs ρ = (i, x0) (f, ·), i ∈ I, f ∈ F .

In the last subsection, we remove the reset-free restriction imposed to A and
we study in details the durations Dρ of runs ρ = (q, x0) (q′, ·) between two
fixed states q and q′. Any such run ρ can be decomposed into a sequence of runs
ρj , 1 ≤ j ≤ k, according to the reset of the clock, that is the clock is reset at the
beginning and the end of ρj but not inside of ρj . The duration Dρ of ρ is thus
the sum of the durations Dρj

, 1 ≤ j ≤ k. Any Dρj
falls into durations being

studied in Section 4.3. Thanks to this description of any duration Dρ in terms
of durations in reset-free automata, we are finally able to prove Propositions 12
and 13.

In Subsections 4.1, 4.2 and 4.3, we are going to perform a sequence of trans-
formations on A that will preserve the set of runs in Av for any valuation v,
in the following sense. During a transformation, state q will possibly be split-
ted into several copies qj . Runs before and after the splitting can be supposed
identical9 up to a renaming of any qj into q.

4.1 Normalized Automata

In this subsection, the automata are put in some normal form. The aim of this
normalization is a simplified presentation of the proofs in the rest of the paper.

Definition 16 An automaton A is normalized if for any state q ∈ Q,

• the invariant I(q) is equal to a conjunction of x-atoms and θ-atoms with
∼ limited to {=,≤,≥,≡a,≤,≡a,≥},

• the edges (p, τ, g, r, q) entering q are all labelled by the same g and the
same r (however τ can vary).

Proposition 17 Any automaton A can be effectively normalized such that the
set of runs in Av is preserved for any valuation v.

Before giving the proof of this proposition, we need the following result.
9Such an identification of runs is already present in the proof of Theorem 11

13

Lemma 18 Any Bx,Θ formula is a Presburger formula. It can be rewritten as
a disjunction of conjunctions of x-atoms and θ-atoms with ∼ limited to {=,≤
,≥,≡a,≤,≡a,≥}.

Proof Operators ≡a,≤ and ≡a,≥ are easily rewritten in Presburger arithmetic.
Even if linear terms α, β, . . . contain constants in Z, any x ∼ α and α ∼ β can
also be rewritten in Presburger arithmetic. This shows that any Bx,Θ formula
is a Presburger formula. To rewrite it as described in the lemma, it is first put
into disjunctive normal form. Second negation is suppressed in any ¬(z ∼ z′)
as follows. This is done easily for ∼ ∈ {<,≤, >,≥}. Negation ¬(z = z′) is
replaced by z < z′ ∨ z > z′. Negation ¬(z ≡a,≤ z′) is equivalent to (z >
z′) ∨ (

∨
0<b<a z + b ≡a,≤ z′). Similarly for ¬(z ≡a,≥ z′). Third all inequalities

z < z′ and z > z′ are replaced respectively by z ≤ z′− 1 and z ≥ z′+1. Finally
this formula is put into disjunctive normal form. �

Proof of Proposition 17. Let q ∈ Q. By Lemma 18, the invariant I(q) can
be rewritten as a disjunction of k formulae δj , 1 ≤ j ≤ k, where each δj is a
conjunction of x-atoms and θ-atoms with∼ ∈ {=,≤,≥,≡a,≤,≡a,≥}. We modify
A by splitting state q into k states qj , 1 ≤ j ≤ k, such that L(qj) = L(q) and
I(qj) = δj . Accordingly, we split any edge of E that enters or leaves state q.
The first condition of Proposition 17 is therefore satisfied.

For the second condition, the construction is similar. Suppose that are
several edges (p, τ, g, r, q) entering state q with distinct couples (g, r). Then q
is splitted into several copies (one copy for one couple (g, r)) and all the edges
entering q are redirected to each copy, according to the couples (g, r). The
copies of q have the same L(q) and I(q) as q. �

4.2 Transformations of Reset-free Automata

In all this subsection, we assume the next hypothesis.

Hypothesis (∗) We assume thatA = (Q, I, F,E,L, I) is a reset-free normalized
automaton with a set I ⊆ Q of initial states and a set F ⊆ Q of final states.
We also assume such that I ∩ F = ∅, no edge enters i ∈ I and no edge leaves
f ∈ F .

Remark As A is normalized and reset-free, given a state q, all edges (p, τ, g, r, q)
entering q have the same guard g and satisfy r = ∅. It follows that we can
move guard g from these edges to the invariant I(q) of q. Indeed g is simply
erased from all the edges entering q and added as a conjunction to I(q). By
this construction, the set E of edges of A can be rewritten as a subset of Q ×
{0, 1} ×Q, instead of Q× {0, 1} × G × 2{x} ×Q (see Definition 2).

On the other hand, as A is normalized, the invariant I(q) of any state q is a
conjunction of x-atoms and θ-atoms. We can view I(q) as a set of x-atoms and
θ-atoms (instead of a conjunction) and we can say that an x-atom or a θ-atom
belongs to q (instead of I(q)) or appears in q.

14

Given a valuation v and a clock value x0, we denote by

R(Av, x0)

the set of runs of Av of the form (i, x0) (f, ·) with i ∈ I and f ∈ F . We
are going to perform a sequence of transformations on A that will preserve
R(Av, x0). The aim of these transformations is to simplify the form of invariants
used in the automaton. The invariant I(q) of any state q ∈ Q\ (I ∪F) will be a
conjunction of at most one x-atom (of the form x = α) and one θ-conjunction.
This simplification will be possible mainly because the automaton is reset-free
(see Proposition 20).

Definition 19 An reset-free normalized automaton A is simplified if

• for all q ∈ Q, the invariant I(q) is equal to Ix(q)∧Iθ(q) such that Ix(q) is
an x-conjunction and Iθ(q) is a θ-conjunction. Among the x-atoms x ∼ α
of Ix(q), at most one is an equality x = α. Moreover, if q 6∈ I ∪ F , then
Ix(q) contains no other x-atom x ∼ β with ∼ ∈ {≤,≥,≡a,≤,≡a,≥}, and
if q ∈ I (resp. q ∈ F), then the other x-atoms of Ix(q) are of the form
x ≥ β (resp. x ≤ β).

• for any run ρ ∈ R(Av, x0), for any x-atom x = α, there exists at most one
configuration (q′, x′) of ρ such that Ix(q′) contains x = α.

Proposition 20 Any reset-free normalized automaton A can be effectively sim-
plified such that the set R(Av, x0) is preserved for any valuation v and any clock
value x0.

Proof The proof of Proposition 20 needs several steps. The transformations
described in the proof are based on standard constructions of automata theory.
Each of them will preserve R(Av, x0) for any valuation v and any clock value
x0. In the first step, we are going to eliminate in Ix(q) all x-atoms of the form
x ≡a,≤ α.

First step x-atoms x ≡a,≤ α.
Let us show that any x-atom x ≡a,≤ α belonging to some state q can be

eliminated at the cost of a new x-atom x ≤ α. The idea is the following. If
α ≡ b mod a for some b ∈ {0, 1, . . . , a− 1}, then

x ≡a,≤ α iff x ≡ b mod a and x ≤ α.

The automaton is transformed in a way to compute modulo a. New states are
of the form (q, c) with q ∈ Q and c ∈ {0, . . . , a−1} expressing that x ≡ c mod a.
Formally we construct Ab = (Q′, I ′, F ′, E′,L′, I ′) where Q′ = Q × {0, . . . , a −
1}, I ′ = I × {0, . . . , a − 1}, F ′ = F × {0, . . . , a − 1}, L′(q, c) = L(q) and
((q, c), τ, (q′, c′)) ∈ E′ iff (q, τ, q′) ∈ E and c′ ≡ c + τ mod a. Function I ′ is
defined as follows. For any (q, c) ∈ Q′, let I ′(q, c) = I(q). If (q, c) contains

15

x ≡a,≤ α, eliminate this state if c 6= b, replace x ≡a,≤ α by x ≤ α if c = b.
If (q, c) ∈ I ′, add the x-atom x ≡a,≥ c and the θ-atom α ≡a,≥ b to recall
that α ≡ b mod a and x ≡ c mod a initially. As α depends on the parameter
valuation, value b such that α ≡ b mod a is not known in advance. Therefore the
final automaton is the disjoint union of the automata Ab, with b ∈ {0, . . . , a−1}.

The elimination of x-atoms x ≡a,≥ α in any Ix(q) is performed similarly. In
the next step, we are going to eliminate x-atoms x ≥ α. This will be possible
except inside states q ∈ I.

Second step x-atoms x ≥ α.
Let us consider a fixed x-atom x ≥ α. Recall that the automaton is reset-free.

Along a run ρ ∈ R(Av, x0), as soon as x ≥ α is satisfied at some configuration
of ρ, the next occurrences of x ≥ α are automatically satisfied and can be
thus eliminated. The automaton is transformed in a way to count occurrences
of x ≥ α thanks to a counter equal to 0 (1 or 2 resp.) in case of 0 (1 or 2
and more resp.) occurrence(s) of x ≥ α is (are) encountered. Thus when the
counter c has value 2, any incrementation c+ 1 lets it at value 2. Formally we
construct A′ = (Q′, I ′, F ′, E′,L′, I ′) where Q′ = Q×{0, 1, 2}, F ′ = F×{0, 1, 2},
L′(q, c) = L(q) and I ′(q, c) = I(q). Sets I ′ and E′ are defined as follows. For
any q ∈ I, state (q, c) belongs to I ′ with c = 1 if x ≥ α belongs to q, and
c = 0 otherwise. For any (q, τ, q′) ∈ E, edge ((q, c), τ, (q′, c′)) belongs to E′ with
c′ = c+ 1 if q′ contains x ≥ α, and c′ = c otherwise. Finally, we suppress x ≥ α
in any state (q, 2) containing it.

Now, consider a run ρ′ ∈ R(A′v, x0) equal to (qi, ci, xi)0≤i≤n such that some
state (qk, ck) contains x ≥ α. Necessarily, ck = 1 and ci = 0 for 0 ≤ i < k by
construction of A′. So x-atom x ≥ α is satisfied at configuration (qk, ck, xk) iff
either x ≥ α is satisfied at configuration (q0, c0, x0) or x = α is satisfied at some
configuration (qi, ci, xi) of ρ′ such that 0 < i ≤ k. Therefore, x-atom x ≥ α can
be eliminated at the cost of a new x-atom x = α, except inside the initial state
(q0, c0). This can be achieved by modifying A′ thanks to a construction which is
not difficult but tedious. This construction is not detailled. Roughly speaking,
to express that x = α could be satisfied at some configuration (qi, ci, xi) of ρ′,
the non determinism is used at state qi to go either to state qi+1 or to a new
state containing the x-atom x = α.

The elimination of x-atoms x ≤ α can be performed in a similar way. Note
that here, as soon as the last (instead of the first) occurrence of x ≤ α is
satisfied along a run ρ ∈ R(Av, x0), then the previous occurrences of x ≤ α are
automatically satisfied. It follows that x-atoms x ≤ α can be eliminated except
inside states q ∈ F .

At this point of the proof, for any state q, (1) if q 6∈ I ∪F , then the x-atoms
contained in q are of the form x = α, (2) if q ∈ I, then they are of the form
x = α or x ≥ α, and (3) if q ∈ F , then they are the form x = α or x ≤ α.

It remains to prove two facts about x-atoms which are equalities. First for
any state q ∈ Q, among the x-atoms contained in q, at most one is an equality

16

x = α. Second, for any run ρ ∈ R(Av, x0), for any x-atom x = α, there exists
at most one configuration (q′, x′) of ρ such that Ix(q′) contains x = α.

Third step x-atoms x = α.
The first fact can be easily proved. Suppose that Ix(q) =

∧
α∈A(x = α) for

some set A of linear terms. Let α′ ∈ A. Then Ix(q) is equivalent to

(x = α′) ∧
∧
α∈A

(α′ = α).

Thus Ix(q) can be replaced by x = α′ and Iθ(q) by Iθ(q) ∧
∧
α∈A(α′ = α).

Let us prove the second fact. Let ρ be a run inR(Av, x0). Assume that there
are several configurations (qj , xj), 1 ≤ j ≤ k, in ρ such that qj contains a given
x-atom x = α. Time does not progress from (q1, x1) to (qk, xk), that is, xj = x1

for all j. Only the first occurrence of x = α at state q1 is useful, the next ones
can be forgotten. Therefore, A is transformed in a way to count occurrences of
x = α and to remember any progress of time. As before, a counter has value
0 (1 or 2 resp.) in case of 0 (1 or 2 and more resp.) occurrences of x = α.
Moreover, values 1 and 2 are indexed by + if time has progressed since the
first occurrence of x = α. Formally we construct A′ = (Q′, I ′, F ′, E′,L′, I ′)
where Q′ = Q× {0, 1, 1+, 2, 2+}, F ′ = F × {0, 1, 1+, 2, 2+}, L′(q, c) = L(q) and
I ′(q, c) = I(q). For any q ∈ I, state (q, c) belongs to I ′ with c = 1 if x = α
belongs to q, and c = 0 otherwise. For any (q, τ, q′) ∈ E, edge ((q, c), τ, (q′, c′))
belongs to E′ where c′ is computed according Table 1. Finally, for any state

τ\c 0 1 1+ 2 2+

0 1 2 2+ 2 2+

1 1 2+ 2+ 2+ 2+

if q′ contains x = α

τ\c 0 1 1+ 2 2+

0 0 1 1+ 2 2+

1 0 1+ 1+ 2+ 2+

otherwise

Table 1: Computation of c′

(q, c) containing x = α, we suppress this state if c = 2+, we suppress x = α
from this state if c = 2. Indeed recall that counter 2 indicates that it is at least
the second occurrence of x = α, and the presence of index + means a progress
of time since the first occurrence of x = α. �

4.3 Durations in Reset-free Automata

In this subsection, we again make Hypothesis (∗). By Proposition 20, we know
that the reset-free normalized automaton A can be supposed simplified. Thanks
to this property of A, we are going to construct a Presburger formula describing
all the possible durations of runs in R(Av, x0). We need the next notation.

Notation Let t be a variable used to denote a duration and x be a variable for
a clock value. We call t-atom any t ∼ α or t ∼ α − x. A t-atom is of first type

17

Figure 3: A simplified automaton

if it is of the form
t = α,
t ≡a,≥ α,
t = α− x,
t ≡a,≥ α− x,

it is of second type if it is of the form

t ≤ α− x.

A t-conjunction is a conjunction of t-atoms of second type.

Proposition 21 Let A be an automaton. There exists a Presburger formula
λ(t, x,Θ) such that for any valuation v and any clock value x0,

λ(t0, x0, v(Θ)) is true

iff there exists a run in R(Av, x0) with duration t0. This formula is a disjunction
of formulae of the form

λt ∧ λ≤ ∧ λx ∧ λθ,
where λt is a first type t-atom , λ≤ is a t-conjunction, λx is an x-conjunction
and λθ is a θ-conjunction. Its construction is effective.

Let us explain this proposition on the next example.

Example Consider the simplified automaton A of Figure 3 with one initial state
i and one final state f . We denote by t0 the duration of any run (i, x0) (f, ·)
in R(Av, x0), where v is a fixed parameter valuation. Every run has to pass
through state q which contains the x-atom x = θ1. Let us study the possible
durations t1 of runs ρ1 = (i, x0) (q, ·). Each duration t1 must be equal to
v(θ1) − x0. For runs ρ1 using the cycle, constraint v(θ1) > v(θ2) holds and
t1 has the form m + 3, m ≥ 0. The unique run ρ1 not using the cycle is
not constrained and its duration equals t1 = 2. Now any duration t0 can be
decomposed as t0 = t1 +2n+1 = v(θ1)−x0 +2n+1, n ≥ 0. Due to the x-atom
x ≤ θ2 of state f , we get another constraint x0 + t0 ≤ v(θ2). In summary, we
have

[(v(θ1)− x0 ≡1,≥ 3 ∧ v(θ1) > v(θ2)) ∨ v(θ1)− x0 = 2]
∧ [t0 ≡2,≥ v(θ1)− x0 + 1]
∧ [x0 + t0 ≤ v(θ2)]

We get the next Presburger formula λ(t, x,Θ)

[(x ≡1,≤ θ1 − 3 ∧ θ1 > θ2) ∨ x = θ1 − 2]
∧ [t ≡2,≥ θ1 + 1− x]
∧ [t ≤ θ2 − x]

18

such that there exists a run in R(Av, x0) with duration t0 iff λ(t0, x0, v(Θ))
is true. This formula is in the form of Proposition 21 if it is rewritten as a
disjunction of conjunctions of t-atoms, x-atoms and θ-atoms.

Thanks to the previous example, we can give some ideas of the proof of
Proposition 21. Except for the initial and final states, the states of a simplified
automaton contain at most one x-atom which is of the form x = α. The proof
will be by induction on these x-atoms. Given an x-atom x = α contained
in some state q, any run ρ in R(Av, x0) passing through this state q can be
decomposed as (i, x0) (q, x1) and (q, x1) (f, x2). Its duration t0 can also
be decomposed as t1 + t2 with the constraint that the clock value x0 + t1 must
satisfy x = α. It follows that t0 = v(α) − x0 + t2. The durations t1 and t2
and the related constraints will be computed by induction. When there is no
x-atom in the automaton (base case), only θ-atoms can appear in states. Runs
will therefore be partitioned according to the set of θ-atoms that constrain them.
Their durations will be described as fixed values or arithmetic progressions.

Proof of Proposition 21. It is supposed that A = (Q, I, F,E,L, I) is simplified.
(1) We can suppose that I is reduced to one initial state i and F to one final

state f . At the end of the proof, it will remain to take a disjunction over i ∈ I
and f ∈ F of the constructed formulae. From now on, we suppose that I = {i}
and F = {f}.

(2) Assumption. We make the assumption that i contains no x-atom and f
contains no x-atom x ≤ α. As A is simplified, this means that for any state
q ∈ Q, either Ix(q) = > or Ix(q) equals some x = α. The proof is done by
induction on the x-atoms x = α that appear as Ix(q) with q ∈ Q. The formula
λ(t, x,Θ) that we will construct will have no t-conjunction, that is λ(t, x,Θ)
will be a disjunction of formulae of the form λt ∧ λx ∧ λθ.

Base case. Suppose that Ix(q) = > for all q ∈ Q, that is I(q) = Iθ(q). Durations
of runs in R(Av, x0) are thus independent on the clock values. They are simply
equal to the number of edges labeled by τ = 1 along runs from i to f . And to
any of these runs is associated a constraint which is a conjunction of the θ-atoms
contained in the states of the run.

The proof is based on the classical Kleene theorem [?] using the particular
alphabet

B = {(τ, ς) | τ ∈ {0, 1}, ς ∈ {Iθ(q), q ∈ Q}}.

To any edge (q, τ, q′) of A corresponds the letter (τ, Iθ(q′)) of B. The concate-
nation · of two letters (τ1, ς1) and (τ2, ς2) is defined as (τ1 + τ2, ς1 ∧ ς2). Thus
a word over B is equal to (t, ς) where t is a positive integer (a duration) and ς
is a θ-conjunction (a constraint on the parameters). In particular, the empty
word is equal to (0,>). The star operation ∗ is defined as usual and the plus
operation + is defined by L+ = L∗ \ {(0,>)}. We denote by RatB(·,+) the
smallest family of languages containing B and closed under · and +. The el-
ements of a set L ∈ RatB(·,+) have a simple form. The second components
of these elements are all identical because operation ∧ is idempotent. The first

19

components constitute a set which is the union of a finite set and a finite number
of arithmetic progressions [?]. In other words L is described by a disjunction of
formulae of the form λt ∧ λθ such that λθ equals a fixed θ-conjunction ς and λt
equals either t = α or t ≡a,≥ α with α ∈ N.

Now by Kleene’s theorem applied to A, we get a rational language over
B whose first components describe the durations of all runs of R(Av, x0) and
the second components describe the related constraints. It is not difficult to
prove that this rational language can be rewritten as a finite union of languages
in RatB(·,+). We thus get the required formula λ(t, x,Θ) as a disjunction of
formulae λt ∧ λθ where λt is a first-type t-atom and λθ is a θ-conjunction.

General case. Now consider a particular x-atom x = α. Let us denote by P the
set of states q such that Ix(q) is equal to x = α. As A is simplified, any run ρ
of R(Av, x0) contains 0 or 1 state of P (see the second part of Definition 19).
We are going to prove that the expected formula λ(t, x,Θ) is equal to

λQ\P (t, x,Θ) ∨
∨
p∈P

λp(t, x,Θ)

where λQ\P describes durations of runs containing no state of P , and λp de-
scribes durations of runs containing one occurrence of the state p of P .

All runs containing no state of P constitute the set R(A′v, x0) of an automa-
ton A′ obtained from A by erasing all states in P . As A′ has one x-atom less,
λQ\P (t, x,Θ) can be constructed by induction hypothesis.

Let us now fix p ∈ P and a run ρ ∈ R(Av, x0) that contains it. This run
is decomposed into a run ρ1 = (i, x0) (p, x1) with duration t1, and a run
ρ2 = (p, x1) (f, x2) with duration t2. Duration t0 of ρ is equal to t1 + t2 such
that x1 = x0 + t1, x2 = x1 + t2 and x1 satisfies x = α. Durations t1 and t2 can
be computed by induction in the following way.

Let us begin with t1. The automaton A is modified into Ap,1 by erasing
states of P \{p} and edges leaving p. Invariant Ix(p) is replaced by >. The new
unique final state is p. The new automaton has one x-atom less, so λp,1(t, x,Θ)
can be constructed by induction hypothesis such that λp,1(t1, x0, v(Θ)) is true.
Formula λp,1 is a disjunction of formulae λ1

t ∧ λ1
x ∧ λ1

θ where λ1
t is a first type

t-atom, λ1
x is an x-conjunction and λ1

θ is a θ-conjunction. Suppose that λ1
t is

one among

t = α1, t ≡a,≥ α1, t = α1 − x, t ≡a,≥ α1 − x. (1)

As x1 satisfies x = α and x1 = x0 + t1, then

x1 = v(α), t1 = v(α)− x0. (2)

So in (1), t can be replaced by α− x and (1) becomes

α− x = α1, α− x ≡a,≥ α1, α = α1, α ≡a,≥ α1.

Thus λ1
t becomes an x-atom or a θ-atom. The modified formula λ1

t ∧ λ1
x ∧ λ1

θ is
denoted by

λ′1x ∧ λ′1θ . (3)

20

Let us now describe t2. We modify A into Ap,2 by erasing states of P \ {p}
and edges entering p. Formula Ix(p) is replaced by >. The new unique initial
state is p. By induction hypothesis, λp,2(t, x,Θ) is constructed as a disjunction
of formulae λ2

t ∧ λ2
x ∧ λ2

θ where λ2
t is one among

t = α2, t ≡a,≥ α2, t = α2 − x, t ≡a,≥ α2 − x. (4)

Recall that λp,2(t, x,Θ) describes the duration t2 of runs ρ2 = (p, x1) (f, x2)
for which x1 satisfies x = α. Thus in (4), x can be replaced by α and (4)
becomes

t = α2, t ≡a,≥ α2, t = α2 − α, t ≡a,≥ α2 − α.

This shows that λ2
t is now of the form

t = β or t ≡a,≥ β. (5)

Moreover λ2
x becomes a θ-conjunction when x is replaced by α. The modified

formula λ2
x ∧ λ2

θ is denoted by

λ′2θ . (6)

Finally, we can describe t0 = t1 + t2. By (2) and (5), it has the form

t0 = v(α)− x0 + v(β) or t0 ≡a,≥ v(α)− x0 + v(β). (7)

Hence formula λp(t, x,Θ) for t0 is a disjunction of formulae λt ∧ λx ∧ λθ such
that λt has the form (see (7)) t = α − x + β or t ≡a,≥ α − x + β and λx ∧ λθ
has the form (see (3 and (6)) λ′1x ∧ λ′1θ ∧ λ′2θ .

(3) Under the assumption that i contains no x-atoms and f contains no
x-atom x ≤ α, we have constructed a formula λ(t, x,Θ) with no t-conjunction.
So we have to take into account the x-conjunction Ix(i) and the x-atoms x ≤ α
appearing in f . Thus x0 must satisfy Ix(i) and x0 + t0 must satisfy all x ≤ α
in f . It follows that the final formula is equal to

λ(t, x,Θ) ∧ Ix(i)(x,Θ) ∧
∧

x≤α∈f

t ≤ α− x. (8)

�

Remark 22 Suppose that A is an automaton such that I(i) equals x = 0 for
each initial state i ∈ I. Then formula λ(t, x,Θ) of Proposition 21 contains
the x-atom x = 0 (see (8)). Hence, if λ(t0, x0, v(Θ)) is true, then necessarily
x0 = 0, which can been interpreted as a reset of the clock. This remark will be
used in the next subsection.

21

4.4 Durations in General

This subsection is devoted to the proofs of Propositions 12 and 13. Here there is
no longer a restriction on the automaton: it is any automaton as in Definition 2.
This automaton is supposed to be normalized by Proposition 17. Thus, given
a state q, the edges (p, τ, g, r, q) entering q all have the same r. We call q a
reset-state in case r = {x}. The set of reset-states of A is denoted by QR.

Let A = (Q,E,L, I) be an automaton. Let us fix two states q, q′, a param-
eter valuation v, a clock value x0. We denote by

Rq,q′(Av, x0)

the set of runs ρ = (q, x0) (q′, ·) in Av. Let us study this set.
A run ρ in Rq,q′(Av, x0) possibly contains some reset-states. It thus decom-

poses as a sequence of k ≥ 1 runs ρj , 1 ≤ j ≤ k, such that for any j, ρj contains
no reset-state, except possibly for the first and the last configurations of ρj . The
duration Dρj

of each ρj can be computed thanks to Proposition 21. For any j,
1 ≤ j ≤ k, let us denote by λj(t, x,Θ) the Presburger formula corresponding to
Dρj which is a disjunction of formulae λt ∧ λ≤ ∧ λx ∧ λθ. So the total duration
Dρ is equal to the sum Σ1≤j≤kDρj

. We will see that the durations Dρ of runs
ρ ∈ Rq,q′(Av, x0) can be symbolically represented thanks to rational expressions
on an alphabet whose letters are the formulae λt ∧ λ≤ ∧ λx ∧ λθ that appear in
the λj(t, x,Θ)’s. Thanks to this symbolic description and because our logic is
restricted to PTCTL{<,≤,>,≥}, we will be able to prove Propositions 12 and 13.
Let us explain in details all these ideas.

In a first step, we construct from A several reset-free normalized automata
as in Hypothesis (∗). The construction is a standard one in automata theory.
Runs ρj mentioned before will be runs in these automata and their durations
will be described thanks to Proposition 21.

First construction For each couple (p, p′) of states of A such that p ∈ {q} ∪
QR and p′ ∈ {q′}∪QR, we construct from A the following reset-free automaton
Ap,p′ = (Q′, I ′, F ′, E′,L′, I ′). The set Q′ of states is (Q \ QR) ∪ {p, p′} where
p, p′ are copies of p, p′. The unique initial state is p and the unique final state
is p′. Let L′(p) = L(p) and L′(p′) = L(p′). Let I ′(p) be equal to I(p) if p = q
and to (I(p) ∧ x = 0)10 if p 6= q. Let I ′(p′) be equal to I(p′) if p′ 6∈ QR and to
(I(p′)∧ x = 0)11 if p′ ∈ QR. The set E′ of edges is the union of E restricted to
Q \QR with the next set of new edges11

(p, τ, g, r, p1) if (p, τ, g, r, p1) ∈ E
(p1, τ, g,∅, p′) if (p1, τ, g, r, p

′) ∈ E
(p, τ, g,∅, p′) if (p, τ, g, r, p′) ∈ E.

In this way, automaton Ap,p′ satisfies Hypothesis (∗).
10The x-atom x = 0 imposes a reset of the clock at state p (see Remark 22)
11As Ap,p′ must satisfy Hypothesis (∗), no reset can appears on the edges

22

Let p ∈ {q} ∪ QR and p′ ∈ {q′} ∪ QR. We define x1 to be equal to x0 if
p = q, and to 0 if p 6= q. The runs of R(Avp,p′ , x1) are exactly the non-empty
runs (p, x1) (p′, ·) of Av that pass through no reset-state (except possibly
the first and the last states of the run). The durations of runs in R(Avp,p′ , x1)
are described by formula λp,p

′
(t, x,Θ) of Proposition 21. This formula is a

disjunction
∨
j λ

p,p′,j of formulae

λp,p
′,j = λp,p

′,j
t ∧ λp,p

′,j
≤ ∧ λp,p

′,j
x ∧ λp,p

′,j
θ . (9)

For each couple (p, p′) and each j, we associate a distinct letter bp,p′,j to each
formula λp,p

′,j . The set of all these letters is denoted by B. We say that letter
bp,p′,j is a reset-letter if p is a reset-state. The set of reset-letters is denoted BR.

In a second step, we construct another automaton from A in a way to show
how a run of Rq,q′(Av, x0) is decomposed into a sequence of runs ρj according
to reset-states of A. This automaton will be a classical automaton [?].

Second construction We construct an automaton B over the alphabet B
as follows. The set of states equals QR ∪ {q, q′} and the set of edges equals
{(p, b, p′) | b = bp,p′,j for some j}. The unique initial (resp. final) state is q
(resp. q′).

So, any run ρ of Rq,q′(Av, x0) is map into a path in B from q to q′ which
indicates how ρ is decomposed according to reset-states of A. The duration of
ρ is symbolically represented by the word that labels the corresponding path in
B. Hence the set of durations of runs of Rq,q′(Av, x0) is symbolically represented
by the rational subset accepted by B. We denote by

Lq,q′

this subset of B∗. Any word of Lq,q′ has at most one letter that is non reset
(the first letter of the word).

We now study in details rational expressions over the alphabet B and in
particular the rational expression defining Lq,q′ .

Rational expressions Let L+ be denoting L∗\{ε} with ε denoting the empty
word and RatB(·,+) be the smallest family closed under · and +, and containing
B. One can prove that any rational language over B can be effectively rewritten
as a finite union of languages in {ε} ∪ RatB(·,+). Therefore

Lq,q′ =
⋃
i

Li (10)

with
Li = {ε} or Li = {bi} or Li = bi ·Ki

such that bi ∈ B,Ki ∈ RatBR
(·,+). The set Rq,q′(Av, x0) is decomposed into

Rq,q′(Av, x0) =
⋃
i

Ri (11)

23

according to (10).
An non empty word of Lq,q′ is a sequence b1b2 · · · bn ∈ B+. The first letter

b1 describes runs from state q to some reset-state p1, the clock value at q is x0.
Each letter bi, i ≥ 2, is a reset-letter. If 2 ≤ i < n, bi describes runs from reset-
state pi−1 to reset-state pi, the clock value at pi−1 is 0. If i = n, bi describes
runs from reset-state pn−1 to state q′, the clock value at pn−1 is 0. Let

λit ∧ λi≤ ∧ λix ∧ λiθ (12)

be the formula associated to each letter bi, i ≥ 1 (see (9)). Whenever i ≥ 2, λix
contains the x-atom x = 0 by Remark 22 and Definition of automaton Ap,p′ . In
this case, we prefer12 to work with the equivalent formula

κit ∧ κi≤ ∧ κiθ (13)

such that x has been replaced by 0 in (12) (in particular, λx becomes a θ-
conjunction). In this formula κit is a t-atom of the form t = α or t ≡a,≥ α, κi≤
is a conjunction of t-atoms of the form t ≤ α and κiθ is a θ-conjunction.

The concatenation b1 · b2 · · · · bn is interpreted as follows. It is the sum t1 +
t2+· · ·+tn of the durations t1, t2, . . . , tn respectively described by λ1

t , κ
2
t , . . . , κ

n
t .

It is the conjunction of the related constraints

(λ1
≤ ∧ κ2

≤ ∧ · · ·κn≤) ∧ λ1
x ∧ (λ1

θ ∧ κ2
θ ∧ · · ·κnθ).

Formulae λ1
≤, κ

2
≤, . . . κ

n
≤ impose upper bounds on t1, t2, . . . , tn. The x-conjunction

imposes constraints on the clock value x0. The θ-conjunction (λ1
θ ∧ κ2

θ ∧ · · ·κnθ)
impose contraints on the parameters.

In the next lemmas, we show that certain properties of runs in Ri can be
expressed in Presburger arithmetics thanks to the symbolic representation Li of
Ri (see (10) and (11)). After these lemmas, we will be fully equiped to prove
Propositions 12 and 13.

Lemma 23 One can construct a Bx,Θ formula NonEmptyLi
(x, θ) such that for

any valuation v and any clock value x0, NonEmptyLi
(x0, v(θ)) is true iff Ri

is non empty.

Proof Runs of Ri have durations that are symbolically represented by the
words of Li. Let us construct formula NonEmptyLi

by induction on the rational
expression defining Li (see (10)). This formula will be equal to ηx ∧ ηθ with
ηx an x-conjunction imposing constraints on the clock and ηθ a θ-conjunction
imposing constraints on the parameters.

Suppose Li = {ε}, then NonEmptyLi
(x,Θ) equals x = 0 is q is a reset-state

and I(q)(x,Θ) otherwise. Indeed, under these contraints, Ri is non empty since
it contains the empty run with the null duration. Suppose that Li = {bi} with

12The sequence b1b2 · · · bn symbolically represents certain runs of Rq,q′ (Av , x0). We are

only interested in the initial clock value x0 treated by formula λi
x of b1.

24

bi ∈ B and associated formula λit ∧ λi≤ ∧ λix ∧ λiθ. Recall that λit is one among
the t-atoms t = α, t = α − x, t ≡a,≥ α or t ≡a,≥ α − x and that λi≤ is of the
form

∧
β t ≤ β − x. It follows that the non emptiness of Ri can be expressed

thanks to the minimum duration t = α (t = α− x resp.) of runs in Ri. Then

NonEmptyLi
(x,Θ) = (

∧
β

α ≤ β − x) ∧ λx ∧ λθ (14)

(= (
∧
β

α ≤ β) ∧ λx ∧ λθ resp.)

Suppose now that Li = bi ·Ki with bi ∈ B and Ki ∈ RatBR
(·,+). Let us first

prove by induction on the rational expression defining Ki that NonEmptyKi
(Θ)

equals some θ-conjunction ηθ
13. Let Ki = {bi} with bi ∈ BR. We obtain a

formula similar to (14) where x is replaced by 0 (see(13)), so

NonEmptyKi
(Θ) = (

∧
β

α ≤ β) ∧ κθ.

Suppose that Ki = K · K ′ and formulae NonEmptyK , NonEmptyK′ have
been constructed by induction. Then NonEmptyKi

(Θ) = NonEmptyK(Θ) ∧
NonEmptyK′(Θ) because the non emptiness of Ri requires the non emptiness
of both K and K ′. If Ki = K+, then NonEmptyKi

(Θ) = NonEmptyK(Θ)
because conjunction in an idempotent operation. Finally for Li = bi · Ki, we
get NonEmptyLi

(x,Θ) = NonEmpty{bi}(x,Θ) ∧ ηθ where NonEmpty{bi}(x,Θ)
is formula (14) and ηθ is the formula just constructed for Ki. �

Lemma 24 One can construct a Bx,Θ formula NonNullLi
(x, θ) such that for

any valuation v and any clock value x0, NonNullLi
(x0, v(θ)) is true iff Ri

contains a run with a non null duration.

Proof The proof is in the same vein as for Lemma 23 with a similar form ηx∧ηθ
for NonNullLi

(x, θ).
If Li = {ε}, then clearly NonNullLi

(x, θ) = ⊥. If Li = {bi} with bi ∈ B
and associated formula λit ∧ λi≤ ∧ λix ∧ λiθ. Let us study as before formulae λit
and λi≤, where λi≤ =

∧
β(t ≤ β − x). If λit equals t = α, then t is non null iff

α > 0. Then NonNullLi
(x,Θ) is the formula (α > 0)∧ (

∧
β α ≤ β−x)∧λix∧λiθ.

When λit is t = α − x, we have a similar formula with t non null if α − x > 0.
If λit equals t ≡a,≥ α, then a possible non null value for t is either α if α > 0
or a if α = 0. We get formula NonNullLi(x,Θ) equal to ((α > 0 ∧

∧
β(α ≤

β − x)) ∨ (α = 0 ∧
∧
β(a ≤ β − x))) ∧ λix ∧ λiθ. A similar argument holds if λit

equals t ≡a,≥ α− x.
Let Li = bi · Ki, with bi ∈ B and Ki ∈ RatBR

(·,+). Let us first con-
struct formula NonNullKi

(Θ) by induction on Ki. This formula will be a θ-
conjunction. If Ki = {bi} with bi ∈ BR, we get a formula NonNullKi

as for the

13There is no term ηx since Ki ⊆ B+
R , that is, x = 0 (see (13)).

25

case Li = {bi} such that x is replaced by 0. If Ki = K ·K ′, then there exists a
non null duration in Ki iff there exists some duration in K and some other in
K ′ and one of them is non null. Thus NonNullKi

(Θ) equals (NonNullK(Θ) ∧
NonEmptyK′(Θ)) ∨ (NonEmptyK(Θ) ∧ NonNullK′(Θ)). If Ki = K+, then
NonNullKi

(Θ) = NonNullK(Θ). Finally, for Li = bi · Ki, we get the formula
(NonNull{bi}(x,Θ)∧NonEmptyKi

(Θ))∨(NonEmpty{bi}(x,Θ)∧NonNullKi(Θ)).
�

Lemma 25 One can construct a Bx,Θ formula NonZenoLi
(x, θ) such that for

any valuation v and any clock value x0, NonZenoLi
(x0, v(θ)) is true iff Ri

contains runs with arbitrarily large durations.

Proof The proof is again similar.
Suppose Li = {ε}, then clearly NonZenoLi

(x,Θ) = ⊥. Let Li = {bi} with
bi ∈ B and associated formula λit∧λi≤∧λix∧λiθ. If λit equals t = α or t = α−x,
then NonZenoLi

(x,Θ) = ⊥. If λit equals t ≡a,≥ α or t ≡a,≥ α − x, then t is
arbitrarily large iff λi≤ = >. In this case, NonZenoLi

(x,Θ) = λix ∧λiθ, otherwise
NonZenoLi

(x,Θ) = ⊥.
Suppose now that Li = bi · Ki. We begin to construct a θ-conjunction

NonZenoKi(Θ) by induction on Ki. If Ki = {bi} with bi ∈ BR, then the
formula is as in the case Li = {bi} with x replaced by 0. If Ki = K ·K ′, then
NonZenoKi

(Θ) equals (NonZenoK(Θ)∧NonEmptyK′(Θ))∨ (NonEmptyK(Θ)∧
NonZenoK′(Θ)). If Ki = K+, then Ki has arbitrarily large durations iff K
contains a non null duration, that is NonZenoKi

(Θ) = NonNullK(Θ). Thus
we get for Li = bi · Ki the formula (NonZeno{bi}(x,Θ) ∧ NonEmptyKi

(Θ)) ∨
(NonEmpty{bi}(x,Θ) ∧NonZenoKi(Θ)). �

Lemma 26 One can construct a Presburger formula MinLi
(t, x, θ) such that

for any valuation v and any clock value x0, MinLi
(t0, x0, v(θ)) is true iff t0 is

the minimum duration of runs of Ri. This formula is equal to µt∧µx∧µθ such
that µt is of the form t = α or t = α − x, µx is an x-conjunction and µθ is a
θ-conjunction.

Proof In this proof, we have to describe the minimum duration by the variable
t and the contraints on it by µx and µθ.

Let Li = {ε}, then MinLi(t, x,Θ) is equal to (t = 0) ∧ (x = 0) if q is a
reset-state, and to (t = 0) ∧ I(q)(x,Θ) otherwise. Let Li = {bi} with bi ∈ B.
Then looking at the form of λit, the minimum duration equals α (α − x resp.)
(see (14)). Therefore formula MinLi

(t, x,Θ) is equal to

(t = α) ∧ (
∧
β

α ≤ β − x) ∧ λix ∧ λiθ (15)

((t = α− x) ∧ (
∧
β

α ≤ β) ∧ λix ∧ λiθ resp.)

Suppose Li = bi ·Ki. Let us begin to construct formula MinKi(t,Θ) the form
of which will be µt∧µθ. If Ki = {bi} with bi ∈ BR, then MinKi(t,Θ) equals (15)

26

with x replaced by 0. IfKi = K·K ′, then the minimum duration inKi equals the
sum of the minimum durations inK andK ′. Hence, if MinK(t,Θ) = (t = α)∧µθ
and MinK′ = (t = α′) ∧ µ′θ, then MinKi

(t,Θ) is equal to (t = α+ α′) ∧ µθ ∧ µ′θ.
If Ki = K+, then the minimum duration in Ki is the minimum duration in
K, i.e. MinKi

(t,Θ) = MinK(t,Θ). Let us come back to Li = bi · Ki. Let
Min{bi}(t, x,Θ) be equal to (15) and MinKi(t,Θ) be equal (t = α′) ∧ µθ. Then
MinLi(t,Θ) is equal to (t = α + α′) ∧ (

∧
β α ≤ β − x) ∧ λix ∧ λiθ ∧ µθ (resp.

(t = α+ α′ − x) ∧ (
∧
β α ≤ β) ∧ λix ∧ λiθ ∧ µθ) . �

In the next lemma, we are going to construct a formula MaxLi(t, x,Θ) that
describes the maximum duration t in Li. Note that durations t in Li can be
arbitrarily large (see Lemma 25). We will thus denote symbolically by t = ∞
the (non existing) maximum duration.

Lemma 27 One can construct a formula MaxLi(t, x, θ) such that for any val-
uation v and any clock value x0, MaxLi

(t0, x0, v(θ)) is true iff t0 is the maxi-
mum duration of runs of Ri. This formula is equal to a disjunction of formulae
Mt ∧Mx ∧Mθ such that Mt is of the form t = α, t = α − x or t = ∞, Mx is
an x-conjunction and Mθ is a θ-conjunction.

Proof If Li = {ε}, then MaxLi
is (t = 0) ∧ (x = 0) if q is a reset-state, and

to (t = 0) ∧ I(q)(x,Θ) otherwise. Let Li = {bi} with bi ∈ B. Let us study
λit and λi≤ equal to

∧
β(t ≤ β − x). If λit is t = α, then MaxL(t, x,Θ) equals

λit∧
∧
β(α ≤ β−x)∧λix∧λiθ. A similar formula holds when λit equals t = α−x. If

λit is t ≡a,≥ α with λi≤ = >, then MaxL(t, x,Θ) equals (t = ∞)∧λix∧λiθ. Suppose
that λit is t ≡a,≥ α with λi≤ being a non empty conjunction

∧
β(t ≤ β−x). Then

the maximum duration is the greatest value α + ay, for some y ∈ N, which is
less than the smallest among the β − x’s, denoted by β′ − x. Assume that
β′ − x ≡ b mod a and α ≡ c mod a for some b, c ∈ {0, · · · , a− 1}. If b ≥ c, then
the maximum duration is given by formula Mt equal to t = β′−x−(b−c) under
the conditionmθ equal to t ≥ α, i.e. β′−x−(b−c) ≥ α . If b < c, thenMt equals
t = β′−x− (a+ b− c) under the condition mθ equal to β′−x− (a+ b− c) ≥ α.
Thus MaxL(t, x,Θ) is a disjunction over the different possible values of β′, b and
c of formulae

Mt ∧mθ ∧ λθ ∧Mβ′,x,b,c

such that Mβ′,b,c is the conjunction

(
∧
β

β′ ≤ β) ∧ (β′ − x ≡a,≥ b) ∧ (α ≡a,≥ c).

A similar argument can be done when λit is t ≡a,≥ α− x.
Let Li = bi ·Ki. Let us first construct MaxKi . This formula will contain no

Mx. If Ki = {bi} with bi ∈ BR, then all the proof done before for Li = {bi}
can be repeated with x replaced by 0. Suppose that Ki = K · K ′ and that
MaxK(t,Θ) and MaxK′(t,Θ) are a disjunction of formulae Mt∧Mθ and M ′

t∧M ′
θ

respectively. If Mt = (t = α) and M ′
t = (t = α′), then MaxKi(t,Θ) contains

27

the conjunction (t = α + α′) ∧Mθ ∧M ′
θ. If Mt = (t = ∞) or M ′

t = (t = ∞),
then MaxKi(t,Θ) contains the conjunction (t = ∞) ∧Mθ ∧M ′

θ. Suppose that
Ki = K+, then the maximum duration equals ∞ if L contains a non null
duration (see Lemma 24), and 0 otherwise. Thus MaxKi

(t,Θ) is the formula
((t = ∞)∧NonNullK(Θ))∨ ((t = 0)∧¬NonNullK(Θ)). Formula MaxLi

(t, x,Θ)
for Li = bi ·Ki can be easily constructed (as done before for K ·K ′). �

Proof of Proposition 12. Let us prove that one can construct a Bx,Θ formula
Runq(x,Θ) such that for any valuation v and any clock value x0, Runq(x0, v(Θ))
is true iff there exists an infinite run in Av starting with (q, x0). Such a run
exists iff for some q′ ∈ Q, there exist runs in Rq,q′(Av, x0) with arbitrarily large
durations. As Rq,q′(Av, x0) =

⋃
iRi, this is equivalent to say that some Ri

contains runs with arbitrarily large durations. By Lemma 25, it follows that
formula Runq(x,Θ) is equal to

∨
q′∈Q

∨
i NonZenoLi

(x,Θ). �

Proof of Proposition 13. Let γ be a linear term and ∼ ∈ {<,≤, >,≥}. We
have to show that there exists a Bx,Θ formula Duration∼γq,q′(x,Θ) such that for
any valuation v and any clock value x0, Duration∼γq,q′(x0, v(Θ)) is true iff there
exists a run in Rq,q′(Av, x0) with duration t ∼ v(γ).

(1) We begin with ∼ ∈ {<,≤}. To test if there exists a run in Rq,q′(Av, x0)
with duration t ∼ v(γ) is equivalent to test that tmin ∼ v(γ) with tmin being
the minimum duration of runs in Rq,q′(Av, x0). By Lemma 26, the minimum
duration for each Ri is expressed by formula MinLi(t, x,Θ). This formula is
of the form µt ∧ µx ∧ µθ with µt equal to t = α or t = α − x. Therefore
Duration∼γq,q′(x,Θ) is equal to

∨
i Durationi, where each Durationi is obtained

by modifying MinLi
as follows: any formula µt equal to t = α (t = α− x resp.)

is replaced by formula α ∼ γ (α− x ∼ γ resp.).
(2) We now turn to ∼ ∈ {>,≥}. The approach is similar but with the maxi-

mum (instead of minimum) duration. By Lemma 27, the maximum duration for
each Ri is expressed by formula MaxLi

(t, x,Θ). This formula is a disjunction
of formulae Mt ∧Mx ∧Mθ with Mt equal to t = α, t = α − x or t = ∞. It
follows that Duration∼γq,q′(x,Θ) is equal to

∨
i Durationi, where each Durationi is

obtained by modifying MaxLi
in the following way. If Mt equals t = α, t = α−x

or t = ∞, then it is replaced by formula α ∼ γ, α− x ∼ γ or > respectively. �

5 Conclusion

In this paper, we have completely studied the model-checking problem and the
parameter synthesis problem of the logic PTCTL, an extension of TCTL with
parameters, over one parametric clock timed automata. On the negative side,
we showed that the model-checking problem is undecidable. The undecidability
result needs equality in the logic. On the positive side, we showed that when
equality is not allowed in the logic, the model-checking problem becomes decid-
able and the parameter synthesis problem is solvable. Our algorithm is based
on automata theoretic principles and an extension of our method (see [?]) to

28

express durations of runs of a timed automaton using Presburger arithmetic.
With this approach, the model-checking problem and the parameter synthe-
sis problem are syntactically translated into Presburger arithmetic which has
a decidable theory and an effective quantifier elimination. The model checking
problem is translated into a Presburger sentence inside which the Presburger
decidability process looks for semantic inconsistencies between the parameters
and the parametric clock. The parameter synthesis problem asks for which val-
ues of the parameters is a PTCTL formula true at a given configuration of the
timed automaton. Thanks to Presburger quantifier elimination, this problem is
solved by expressing the values of the parameters in terms of the operations +,
≤ and ≡ moda, a ∈ N+.

To the best of our knowledge, this is the first work that studies the model-
checking and parameter synthesis problems with parameters both in the model
(timed automaton) and in the property (PTCTL formula). The problems solved
in this paper are important as it is very natural to refer in the properties of the
system to parameters appearing in the model of the system. We illustrated in
the introduction the kind of properties that can be expressed and automatically
verified in our framework. With the Presburger approach, we obtained com-
plete solutions and clearly indicated the borderline between decidability and
undecidability.

Future works could be the following ones. No complexities issues are given
in this paper and only the discrete time is considered. Presburger theory is
decidable with the high 3ExpTime complexity. More efficient algorithms should
be designed for particular fragments of PTCTL{<,≤,>,≥}. The extension to
dense timed models of the method proposed in this paper should be investigated.

29

