
Joint Garbage Collection and Hard
Real-Time Scheduling

Maxime Van Assche, Jöel Goossens, Raymond Devillers
Université Libre de Bruxelles, Département d’Informatique,

and Mission Critical IT
corresponding author: joel.goossens@ulb.ac.be

Abstract

We analyze the integration of automatic memory management in a real-time context.
We focus on integrating a real-time (copying) garbage collector with hard real-time
static-priority periodic tasks. This integration is done by considering the copying
collector as an aperiodic task served by a polling server. Weanalyze the schedulability
of this system for any polling server parameters. This analysis includes a bound on
the memory size that guarantees sufficient memory for the periodic tasks.

Plan

1. Introduction
2. Incremental Garbage Collector vs. Garbage Collector

for Real-time Systems
3. Predictability
4. Schedulability Analysis
5. Conclusion

Key works scheduling, garbage collection, sporadic server



1 Introduction

In this paper, we consider the problem of scheduling hard real-time systems
composed of a periodic task set and a garbage collector. The advantages of
automatic memory reclamation are nowadays somewhat obvious for non real-
time as well as real-time systems. These advantages include: the absence of
trouble to free memory, the avoidance of dangling pointers (i.e., a pointer ref-
erencing some memory freed manually), and no memory leaks. This leads to
a better productivity during the implementation and the debugging. Memory
leaks, in particular, are often hard to notice and even harder to locate. If a
garbage collector is shown correct, then we are certain of never encountering
dangling pointers or memory leaks that could result in a system crash. Let us
recall however that a garbage collector needs some help fromthe programmer
for yielding the expected behaviour: if a pointer to a structure is left in a vari-
able, the structure will never be reclaimed, even if we know that the variable
will never be used again.

A more subtle benefit of a garbage collector arises when sharing data between
different entities of a program (e.g., objects, tasks). Themanual disposal of
such shared structures could create unwanted dependenciesbetween those en-
tities. In fact, these memory structures must be reclaimed by some entity, but
only when all entities will not access them anymore.

An increasing number of real-time applications for embedded systems are writ-
ten using high level programming languages to reduce the development effort.
The evolution of processors and compilers, which become faster at lower costs,
induced that increase. Automatic memory management in a real-time context
is an evolution that is made with real-time Java [2], for instance.

However, automatic memory management and hard real-time systems are usu-
ally thought to be incompatible because of the garbage collector’s disruptive
behavior. It is important to notice that the garbage collection literature in-
cludes very good works concerningincrementalgarbage collectors (i.e., the
execution of both the garbage collector and the tasks are interleaved). Very of-
ten, in that literature and the corresponding research community, these garbage
collectors are considered to be real-time as well. But actually, they are not (at
least with the common definition used in our real-time community/literature :
we shall give more details about this question in the Section2). To the best of
our knowledge, very few works consider truly hard real-timeconstraints when
garbage collection comes into the frame.

In this paper, we show that automatic memory management and hard real-



time systems are not incompatible, at least under our model of computation
and our assumptions. We aim at presenting a first formalization of thejoint
scheduling, which consists of scheduling hard periodic tasks and a garbage
collection together. Moreover, this work provides a schedulability test for a
more specific case: scheduling static-priority periodic tasks with a copying
collector (a particular garbage collector technique, introduced in Section 2.2).

Related work While there is some literature on truly real-time garbage col-
lection, only a few works address the problem of scheduling the garbage col-
lector.

Unlike our work, the scheduling approach adopted in most real-time garbage
collection research papers is to associate an amount of garbage collection work
to heap allocation instructions. For each memory unit allocated, a correspond-
ing amount of garbage collection work is performed. The proportion of work
is large enough to ensure that the garbage collection cycle is completed before
the system runs out of memory. No matter how fast tasks use up memory, the
collector execution time is increased correspondingly. The minimum amount
of collection work ensuring sufficient memory is analyzed in[1, 24] for a copy-
ing garbage collector. As we justify below, this technique is inadequatefor the
real-time systems we consider.

Siebert [21] improves this scheme by making the amount of work performed at
each allocation dependent on the amount of free memory available. Thus, the
work to be done by the garbage collector is very small as long as there is suf-
ficient free memory. However, this improvement does not makethe technique
suitable for hard real-time systems, which need a worst-case analysis.

Associating the collection work to allocation instructions inevitably penalizes
tasks that allocate memory in the heap. In fact, a real-time task computa-
tion time then depends on the amount of memory it allocates, on the maximum
amount of live memory of the whole system and on the heap size.This scheme
does not provide the flexibility to distribute the collection overhead indepen-
dently of allocations. For instance, if a system has a critical task with a high
allocation rate and a constraining deadline, we cannot transfer the collection
overhead on less critical tasks. This lack of flexibility is too restrictive for
practical (real-life) real-time systems.

This collection-at-allocation scheduling technique is also chosen by Nilsen [17,
16], but he focuses on real-time garbage collection using dedicated hardware.
By using special hardware circuits placed between the cacheand the memory,
Nilsen guarantees a worst-case delay for any individual operation. This ap-



proach suffers from the need for dedicated hardware that would be used only
for the garbage collector.

Henriksson [5, 8, 15, 6, 7], Robertz [19, 20] and Magnusson [15], concen-
trate on integrating automatic memory management with highpriority pro-
cesses and low priority processes to increase the real-timerobustness. They
use a technique called semi-concurrent garbage collectionscheduling. Three
priority levels are identified: the high priority (hard real-time processes), the
garbage collector priority and the low priority (soft real-time processes). The
garbage collector never interrupts the high priority processes, but whenever
a low priority process allocates memory, enough collectionis performed to
ensure sufficient memory for the high priority ones. This approach handles
adequately the collection scheduling. However, the garbage collector is sched-
uled as a background task with respect to the high priority processes, which
may cause a long response time for the garbage collector’s cycle and conse-
quently, the system may require a large heap to ensure sufficient free memory.
In this work we generalize the framework, since the garbage collector is served
by a polling server whose priority isnot necessarily the lowest one.

More recently, Robertz and Henriksson [20] have analyzed this semi-concurrent
scheduling technique when applied to the earliest deadlinefirst model (EDF).
Their approach does not suffer from the problem described previously, since
the priorities are dynamic: the garbage collector is not scheduled as a back-
ground task anymore. But implementing dynamic priorities is generally harder
than static ones, and analysing the worst-case response times is a lot more com-
plex too.

Kim et al. [10, 11, 12] concentrate on scheduling the garbagecollector as an
aperiodic task using a sporadic server, and provide an implementation of a
garbage collector adapted to real time systems. However, their analysis is lim-
ited to a sporadic server with the highest priority of the system, which is rather
restrictive. The flexibility of the priority level at which the garbage collector is
executed is necessary to optimize the heap size while preserving the schedula-
bility of hard real-time tasks.

This research We analyze the integration of a garbage collector in a discrete
time real-time system constituted of static-priority periodic tasks with con-
strained deadlines (for instance, scheduled using the rateor deadline mono-
tonic scheduling [14, 13]). The garbage collector is scheduled as an aperiodic
task using a polling server [22]. We provide the different steps necessary to
verify the schedulability of the system, includingthe minimum memory re-



quirement analysis for any polling server parameters. This analysis pinpoints
an amount of heap memory sufficient to guarantee that the system will never
run out of memory. That amount of memory can be reached in worst-case
scenarios.

Our contributions can be summarized as follows:

• we present a formalization of thejoint scheduling problem which con-
sists in scheduling hard real-time periodic tasks and a garbage collection
together;

• we propose a schedulability test for a more specific case: scheduling
static-priority periodic tasks with a copying collector;

• we characterize the worst case response time of an aperiodictask served
by a polling server.

Outline Section 2 asks the question of what a real-time garbage collector is.
Requirements on the garbage collector are described in relation to our view
of a real-time system. Section 3 explains our technique of integration and the
requirements on the garbage collector scheduling. Section4 models the system
and provides a schedulability analysis for this model.

2 Incremental Garbage Collector vs. Garbage Collec-
tor for Real-time Systems

Many garbage collectors are proclaimed real-time only because they are incre-
mental and fast on the average. Baker [1] qualifies as real-time a system in
which the programmer would still be assured that each instructionwould fin-
ish in a reasonable amount of time. Obviously, this definition is not sufficient
for the real-time community.

More specific requirements are defined by Wilson in [24] for a real-time garbage
collection: it must be incremental; every pause made to collect garbage must
be strictly bounded; it must make significant progress; the pauses must not oc-
cur too often:for any given increment of computation, a minimum amount of
the CPU is always available for the running application.

These requirements are somewhat more specific and detailed,but they are not
perfectly adapted to the real-time systems we consider. We separate two as-
pects of the requirements: the requirements on the garbage collector itself and



the requirements on the way the garbage collector is scheduled within the sys-
tem. The second aspect is detailed in Section 3.

2.1 Real-time requirements

The systems considered in this work are composed of a set of hard real-time
periodic tasks and a garbage collector. The main characteristic of real-time
systems is the behavioralpredictability. Timing constraints have to be met
whatever happens in the system, provided its requirements are fulfilled; hence,
it is not enough (and sometimes it is superfluous) that the tasks and/or the
garbage collector are fast on the average: the worst case is more important (in
fact it is the only one which is relevant).

Of course, the garbage collector must beincremental, in the sense that it can
be preempted by the other tasks, and it must makesignificant progress, which
implies that preemptions should not prevent it from collecting. For example,
it would be unacceptable that some work has to be redone aftereach preemp-
tion, such that the collector never progresses. Also, the garbage collector must
guarantee theconsistencyof the heap at all times.

Finally, to analyze a real-time system with a garbage collector, we must be
able to compute or bound the collector’sworst-case computation time, denoted
CGC . This value represents the maximum amount of CPU time necessary for
the collector to accomplish one collection cycle. This value depends on the
hardware, the run-time environment, but also on the amount of live memory
(i.e., accessible memory) of the system when the collectionis triggered, on
the number of root pointers (i.e. the pointers outside the heap, referencing
heap memory) and on other values, which are specific to the garbage collector
algorithm.

2.2 Copying collector

Garbage collectors yield a very wide research area, both in theory and in prac-
tice. In particular, there are many families of garbage collector techniques
(e.g., reference counting, mark and sweep, copying collector, etc.). It is beyond
the scope of this manuscript to review the subject. For real-time systems, we
believe that the copying collector technique is particularly interesting, because
it avoids heap fragmentation (see [9, 1]). For that reason, in the following we
will only consider copying collectors. We now introduce briefly this technique
(notice that this paper does not contribute to the field of copying collectors but



to thejoint schedulingof periodic tasks and of a copying collector). For copy-
ing collectors, the heap is split into two equal areas:ToSpaceandFromSpace.
The reclamation of unused memory is done implicitly by copying (and com-
pacting) only the live memory from one space to the other.ToSpacecontains
the current objects.FromSpacecontains the garbage from the previous collec-
tion. The beginning of a collection cycle starts with a flip, which exchanges
the roles ofFromSpaceandToSpace. A cycle ends when all the live memory
has been copied inToSpace.

Brooks’ copying garbage collector [3] may easily be adaptedto fulfill our re-
quirements. This collector is incremental and uses a pointer write barrier to
synchronize the mutators (i.e., the user programs) and the collector. Alloca-
tion is black, which means that new memory is allocated inToSpace. The
details of Brooks’ collector is beyond the scope of this paper.

The garbage collectors described in [5, 6, 7, 8, 15] and in [10, 11, 12] are per-
fect examples of such copying collectors that can be integrated in the real-time
system we consider. Different mechanisms are used to fulfillthe requirements.
The lazy copying technique makes the pointer write instruction bounded by a
constant. To have allocation bounded by a constant, the garbage collector is
responsible of initializingFromSpaceafter the copying phase.

The analysis we provide also applies for any other copying garbage collector
that fulfills our requirements. Notice however that the analysis allowing to de-
termine the worst case execution time for such a collector isnot necessarily
easy. In particular, the copying collector moves data structures and updates
pointers to them, which may result in a modification in the tasks’ behaviour
with regard to the caches. Moreover, when the garbage collector is preempted,
it is usually necessary to redo part of the last structure copying, and this ex-
tra work depends on the worst case number of preemptions incurred by one
garbage collection cycle. To simplify the presentation, weshall in the fol-
lowing assume that the impact of the caches and of the preemptions on the
execution time of the copying collector may be neglected.

3 Predictability

The joint scheduling of the tasks and the garbage collector must bepredictable.
We must be able to predict off-line if the system will be schedulable.

The requirements given by Wilson [24] suggest to choose a maximum CPU
utilization rate for the garbage collector to execute. Thisscheduling technique



is quite simple, but it does not report when to execute the work increments such
that the system remains schedulable. As we want the system tobe predictable,
scheduling the garbage collector through an aperiodic server is an effective
solution.

We integrate the garbage collector in a real-time periodic task set by consid-
ering it as a real-time aperiodic task. It is aperiodic, because its arrival times
depend on the memory utilization of the periodic tasks. It isreal-time, be-
cause the collection must be over before the tasks run out of memory, hence
before the next cycle of the collection is needed. The garbage collector will be
serviced by a polling server [22], to interleave its execution with the periodic
tasks.

In the following, we define the schedulability of a real-timesystem with a
garbage collector. It contrasts from a classical schedulability definition such
as the one in [4, 14], by taking into consideration the memoryof the system,
since the programmer has no control over the heap in a system with a garbage
collector.

Definition 3.1 A task set with a garbage collector is considered to be schedu-
lable if

• each periodic task always completes before its deadline;

• periodic tasks never run out of memory;

• any allocation request is granted within a constant time.

The first condition corresponds to the classical time constraints schedulability
test of a task set. As programmers do not control the heap, thesystem itself
must guarantee sufficient memory. The last condition statesthat the system
cannot collect garbage at every allocation in order to have sufficient space;
however, in order to allow the garbage collector to functioncorrectly when
serviced by the polling server, a (small) bounded extra workis generally nec-
essary when allocating or accessing heap memory, which willbe incorporated
in the worst case execution time of the various real-time tasks. If we would
allow to collect garbage at each allocation such that enoughspace is created
in the heap to satisfy the allocation, the worst-case response times of the tasks
would generally be too large to allow a feasible scheduling (and we would no
longer need an extra server for the garbage collection).



4 Schedulability Analysis

4.1 Model of computation and assumptions

First, we provide a system model designed for real-time copying collectors
fulfilling our requirements.

For each periodic task, we assume that its allocation rate, i.e., the maximum
amount of memory allocated during one request of that task, is known (ex-
pressed in terms of some memory unit), but we make no hypothesis about
when this memory is claimed by the task during its requests. Also, the max-
imum amount of live memory of the whole system is known (expressed with
the same memory unit).

Definition 4.1 A periodic taskτi is specified by a 5-tuple(Ci, Ti,Di, Oi, Ai).

• Ci is the worst-casecomputation time of each request ofτi (including
the extra work needed to manage the heap in a way compatible with the
copying garbage collector).

• Ti is theperiod of the task.

• Di is the relativedeadline of the task (we assume0 < Ci ≤ Di ≤ Ti:
the task has a constrained deadline).

• Oi is theoffset of the task, i.e., the release instant of the task (Oi will be
0 for eachi if the system is synchronous).

• Ai is the worst-case memoryallocation during one request of the task.

Definition 4.2 A uniprocessor systemΦ is specified by(Γ,Π,L,R), where
Γ = {τ1, . . . , τn} is a set ofn periodic tasks,Π = {P1, . . . , Pn}, with i 6=
j =⇒ Pi 6= Pj , is the set of priorities assigned to the tasks (0 is the highest
priority), L is the maximum amount of live memory of the whole system at any
moment andR = ∪i=0...nRi is the the root set, i.e., the variable and stack
pointers of each task (i = 1..n) or global to the whole system (i = 0) allowing
to reach the live part of the heap.

The tasks share a single heap (of maximal sizeM ); the various tasks dynami-
cally allocate memory in it, and the garbage collector will reclaim the unsused
parts regularly or when needed. Memory in the heap can (but does not need to)
be shared between tasks through pointers in global variables, but such objects



may also be referenced via local variables or stack variables. The root set is
therefore composed ofn stacks,n local variable sets and global variables. A
stack is not necessarily emptied after each request; for instance, it may be used
as a return-input between two requests of the same task. The maximum depth
of each stack is fixed and known.

In order to simplify the presentation, we shall assume that all the numerical
values characterizing the system are natural integers, i.e., we only consider
discrete systems.

4.2 Elements of the analysis

This section details the different elements necessary to verify the schedula-
bility of a real-time system with a real-time copying collector serviced by a
polling server.

Foremost, a time constraints schedulability analysis mustbe performed. For
each task in the task set (plus the polling server, see definition 4.4), its worst-
case response time is computed and compared to its deadline.If for each task,
the worst-case response time is smaller or equal to the task deadline, the task
set is schedulable with this priority assignment. See [4, 23] for a complete
description of such an analysis.

The second element of the schedulability analysis consistsin computing the
minimum memory requirement so that the tasks never run out ofmemory,
even in the worst-case scenario. The minimum memory required depends on
L, on the allocation rates, and on the worst-case time betweenthe beginning
of a collection cycle and the earliest time the next collection cycle can start
its execution (we shall formalize this notion further astnext). We justify this
statement in the following paragraph.

When the garbage collector starts executing to collect garbage, it performs
a flip. Therefore the newToSpaceis empty at that time. In the worst-case
scenario, the garbage collector copiesL units of memory fromFromSpaceto
ToSpace. As the periodic tasks and the collector share the CPU, the periodic
tasks keep on allocating memory during the collection. Thisnewly allocated
memory is placed inToSpace. Figure 1 shows a system with the garbage col-
lector copyingL units of memory and the aperiodic tasks allocating memory
in ToSpace.

When the collection cycle is over, the tasks continue allocating memory in the
same semi-space until a new role flip is performed, making thenewToSpace
empty. Therefore, the size ofToSpace(in fact of each semi-space) must be



Figure 1: Minimum memory required for a real-time system with a real-time
copying collector.

FromSpace ToSpace

1

2

3

4

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

GC copy

a
llo

c
a

tio
n

allocate

large enough to holdL plus the maximum amount of memory allocated during
the longest time between the beginning of a collection cycleand the earliest
time the next collection cycle can start its execution.

4.3 Aperiodic task response time analysis

In order to analyze the required memory for a system to be schedulable, we
need a bound on the longest time between the beginning of a collection cycle
and the earliest time the next collection cycle can start itsexecution. Since we
consider the garbage collector as an aperiodic task, we makea more general
analysis on the execution of an aperiodic task with known worst-case compu-
tation time using a polling server. To the best of our knowledge, this analysis
is new and this section provides an additional contribution: the worst case re-
sponse time of an aperiodic task served by a polling server.

Definition 4.3 An aperiodic taskτap is characterized byCap, its worst-case
computation time.

Our polling server behaves like a periodic task, and uses itsexecution time
to service aperiodic tasks. If the polling server is executing and no aperiodic
task is ready to execute, it waits (but the capacity decreases) for an aperiodic
task to execute until it is preempted by a higher priority task ready to execute



(which improves a little bit the responsiveness of the server in comparison
with the basic polling server in [22]). During that waiting time, the time slots
normally allocated to the polling server may be used to service ready periodic
tasks (with lower priorities) or background non-real-timeactivities; they may
be lost if nothing may be executed meanwhile; but in any case,the servicing
capacity of the server is decremented as if the time slots were used by the latter.
It is assumed thatCap > 0.

Definition 4.4 A polling server is defined byτS = (PS , CS , TS), respectively
the serverpriority (PS 6= Pi, i = 1 . . . n), its maximumcapacity (i.e., the CPU
time budget the polling server has per period) and itsperiod. It is assumed that
CS > 0, that the server is launched at the initialization of the system, hence at
time0, and that adding a periodic task(CS , TS , TS , 0, 0) with priority PS to
the current task set still respects the deadlines.

We express the capacity of the server at timet by κ(t), i.e., the amount of time
the server has left at timet to execute until the end of its period. Notice that
κ(kTS) = CS ∀ k ≥ 0, and ifκ(t) > 0 and the time slot[t, t + 1) is attributed
to the server,κ(t + 1) = κ(t) − 1 whatever happens (i.e., even if the server
does not use the slot for itself).

We also need to formalize any execution of an aperiodic task.

Definition 4.5 The execution of an aperiodic taskτap by an aperiodic server
τS in a systemΦ is characterized by(tarriv, tstart, tend, tnext), where:

• tarriv is thearrival time of the aperiodic task, meaning that it is ready
to execute. It is then waiting for tasks with higher priorities than the
polling server to complete, and/or for some server capacity.

• tstart is the time when the aperiodic taskstarts its execution.

• tend is thecompletion time.

• tnext is the next available time, i.e., the earliest time at or after tend when
the aperiodicserver capacity is not zero, and when theCPU is available
for the aperiodic server (basically, the earliest time whena succeeding
aperiodic task would be able to start its execution).

Notice thattarriv ≤ tstart < tend ≤ tnext andtend−tstart ≥ Cap. The response
time is the delaytend− tarriv between the arrival time and the completion time.



It is easy to see thattnext − tarriv ≤ (1 +
⌈

Cap

CS

⌉

)TS , but we shall try to get

better bounds in the following.

Definition 4.6 For a given systemΦ = (Γ,Π,L,R) and an aperiodic server
τS, the worst-case response time of an aperiodic taskτap is the maximum re-
sponse time over all its possible executions

Rwc(Φ, τS, τap) = max
tarriv

{tend − tarriv}

The worst-case response time is the maximum response time over all execu-
tions. Buttend depends onτS , onΦ, onτap and ontarriv. Thus, the worst-case
response time is the maximum response time over all arrival times. To simplify
the notations, in the rest of this work, we useRwc

ap to denoteRwc(Φ, τS , τap).
Notice that we have indeed a maximum, and not only a supremum,since we
only work with integer numbers, and the intervals are bounded.

We can also define the longest timemaxtarriv{t
next − tstart} between the be-

ginning of a service and the next time where a succeeding aperiodic request
may start its execution. The following theorem shows that this value is never
larger thanRwc

ap .

Theorem 4.7 For a given systemΦ, a polling serverτS and an aperiodic task
τap,

max
tarriv

{tnext − tstart} ≤ max
tarriv

{tend − tarriv}

Proof: We may observe that, attstart a time slot is used by the server, at
tnext a time slot is available for the server, and betweentstart andtnext exactly
Cap time slots were available (and used) for the server. Hence, if a request
occurs attarriv∗ = tstart + 1, its completion time will betend

∗ = tnext + 1. As
a consequence,tnext − tstart = (tnext + 1) − (tstart + 1) = tend

∗ − tarriv∗ ≤
maxtarriv{t

end−tarriv}, andmaxtarriv{t
next−tstart} ≤ maxtarriv{t

end−tarriv}.
�

Therefore, if we find a bound for the response time of an aperiodic task, we
can also use it to bound any time period[tstart, tnext).

In order to demonstrate a bound for the worst-case response time of an aperi-
odic task using the polling server, we need to define the concept of worst and
best-case response time of a periodic task with the same characteristics than
the polling server task but with its computation time fixed tox ≤ CS .



Definition 4.8 For x ∈ N with x ≤ CS , ρ(x) is the worst-case response time
of the taskτS = (x, TS , TS , 0, 0).

Theorem 4.9 For x ∈ N with x ≤ CS and for a synchronous (i.e.,Oi = 0 ∀i)
uniprocessor systemΦ, ρS(x) is the smallest positive solution of the equation

ρS(x) = x +
∑

{j|Pj<PS}

⌈ρS(x)

Tj

⌉

Cj .

This is an immediate consequence of classical results on fixed priority peri-
odic real-time systems (see for instance [4, 23]). This value may be effectively
computed with a (generally fast) iterative procedure. Notethat, for an asyn-
chronous task set, the value computed with this theorem is a (non necessarily
reached, but often rather good) upper bound of the worst response time.

Definition 4.10 For x ∈ N with 0 ≤ x ≤ CS , ρ∗S(x) is the steady state best-
case response time of the taskτS = (x, TS , TS , 0, 0).

“Steady state” means here that, in case of an asynchronous system, we first
wait until the system becomes cyclic; for instance, we may consider the system
from the timemaxi{Oi}+

∑

i Ti. ρ∗S(x) can be lower bounded byx, because
it takes at leastx time units to executex computation units, but when we know
the characteristics of the higher priority tasks, we can improve this bound by
using the best-case response time analysis from [18]. This analysis uses a
recurrence equation similar to the one from Theorem 4.9 to find the best-case
response time of a periodic task in the periodic part of the schedule. This means
that the value found with this analysis results in the best-case response time for
any offsets, but only after the largest offset is elapsed. For a synchronous task
set, this value is in fact a tight lower bound. If the polling server has the highest
priority, we may observe thatρ∗S(x) = ρS(x) = x.

The following theorem presents a tight upper bound for the worst-case re-
sponse time of a given aperiodic task using a polling serverτS = (PS , CS , TS),
together with a synchronous periodic task set.

Most research papers on aperiodic tasks only consider soft deadlines, so that
we did not find any similar result for such an upper bound. While we derived
it in the context of a garbage collector, this result could beuseful in other
aperiodic task analyses.



Theorem 4.11 Let Φ = (Γ,Π,L,R) be a schedulable uniprocessor system
with a polling serverτS , then, for an aperiodic taskτap, if W (x) is an upper
bound forρS(x) andB(x) is a lower bound forρ∗S(x) for any0 < x ≤ CS,
we have

Rwc
ap ≤

&

Cap

CS

’

TS+ max
0≤ϕ<CS

{W (r+

‰

ϕ − r + 1

CS

ı

CS−ϕ)−

‰

ϕ − r + 1

CS

ı

TS−B(CS−ϕ)}

(1)

with r
def
= Cap −

(⌈

Cap

CS

⌉

− 1
)

CS.

Proof: We need to prove that the bound holds for any instant whentarriv

could occur. First, it should be clear that the worst cases must arrive when all
the tasks (with priorities higher than the aperiodic server) have been started and
are scheduled periodically; hence we may only consider the periodic (steady
state) part of the schedule. We shall distinguish two situations, depending on
the remaining capacity of the server when the aperiodic taskarrives:

1. If the server capacity isfull (κ(tarriv) = CS), the worst-case scenario is
whentarriv corresponds with the beginning of the aperiodic server period (i.e.,
tarriv = kTS for somek ∈ N) because delayingtarriv such thatκ(tarriv) = CS

can only reduce its response time.

Therefore, at most
(⌈

Cap

CS

⌉

− 1
)

full periodsare necessary to execute the first
(⌈

Cap

CS

⌉

− 1
)

CS units of computation ofτap. After that, the time necessary to

execute the remainingr
def
= Cap −

(⌈Cap

CS

⌉

− 1
)

CS units of computation is at
mostρS(r), with 0 < r ≤ Cap; it may be observed thatr = Cap mod CS if
Cap mod CS 6= 0, CS otherwise.

Therefore, the worst-case response time in this situation is bounded by
(⌈Cap

CS

⌉

− 1
)

TS + ρS(r) (2)

2. if the server capacity isnot full (κ(tarriv) < CS), we denote this amount of
capacity byε; thusκ(tarriv) = ε and0 ≤ ε < CS .

We first suppose thatCap > ε. This situation has two subcases:

• 0 ≤ ε < r: The earliest tarriv can occur within one server period such
that κ(tarriv) = ε is ρ∗S(CS − ε) time units after the beginning of the
server period. This is justified by the fact thatρ∗S(CS−ε) is the minimum
amount of time it takes for the server to reduce its capacity to ε.
Therefore, thelongesttime betweentarriv and the end of the server pe-
riod such thatκ(tarriv) = ε is TS − ρ∗S(CS − ε). During that period,ε
computation units ofτap are executed (possibly for other tasks) or lost.



Then, there areCap − ε computation units left to execute. The rest of the
execution takes the same time as an aperiodic task in situation 1, where
tarriv corresponds to the beginning of a server period. We can use the
bound from the first situation by replacingCap by Cap − ε and r by
Cap−ε−

(⌈Cap−ε

CS

⌉

−1
)

CS = r−ε; indeed, since0 ≤ ε < r, Cap−ε

CS
>

Cap−r

CS
=

⌈Cap

CS

⌉

− 1, so that
⌈

Cap−ε

CS

⌉

=
⌈Cap

CS

⌉

− 1 + 1 =
⌈Cap

CS

⌉

.

Hence, the execution of theseCap − ε computation units takes at most

(
⌈

Cap−ε

CS

⌉

−1)TS +ρS(r− ε) = (
⌈

Cap

CS

⌉

−1)TS +ρS(r− ε) time units,

and the response time of the aperiodic server in this case is at most

TS − ρ∗S(CS − ε) +

(

⌈Cap

CS

⌉

− 1

)

TS + ρS(r − ε)

=
⌈Cap

CS

⌉

TS + ρS(r − ε) − ρ∗S(CS − ε) .

Notice that this bound may be too pessimistic, because the best caseρ∗

does not necessarily occur
⌈

Cap−ε

CS

⌉

periods before the worst caseρ.

Thus, whenκ(tarriv) < r, the worst-case response time is bounded by
⌈Cap

CS

⌉

TS + max
0≤ϕ<r

{ρS(r − ϕ) − ρ∗S(CS − ϕ)} . (3)

• r ≤ ε < CS : The earliest tarriv can occur within a server period such
that κ(tarriv) = ε is ρ∗S(CS − ε) time units after the beginning of the
server period. Therefore, thelongesttime betweentarriv and the end
of the server period such thatκ(tarriv) = ε is TS − ρ∗S(CS − ε) time
units. During that period,ε computation units ofτap are executed (for
the aperiodic task).
Then, there areCap − ε computation units left to execute. Once again,
the rest of the execution takes the same time as an aperiodic task with
tarriv corresponding to the end of the server period with its worst-case
computation time equal toCap − ε. Therefore, we can use the bound
from the first situation for this extra waiting time:

0

B

B

B

@

2

6

6

6

6

Cap − ε

CS

3

7

7

7

7

− 1

1

C

C

C

A

TS + ρS

0

B

B

B

@

Cap − ε −

0

B

B

B

@

2

6

6

6

6

Cap − ε

CS

3

7

7

7

7

− 1

1

C

C

C

A

CS

1

C

C

C

A

=

0

B

B

B

@

2

6

6

6

6

Cap

CS

3

7

7

7

7

− 2

1

C

C

C

A

TS + ρS

0

B

B

B

@

Cap − ε −

0

B

B

B

@

2

6

6

6

6

Cap

CS

3

7

7

7

7

− 2

1

C

C

C

A

CS

1

C

C

C

A

(because, asε ≥ r,
⌈Cap−ε

CS

⌉

=
⌈Cap

CS

⌉

− 1)

=

0

B

B

B

@

2

6

6

6

6

Cap

CS

3

7

7

7

7

− 2

1

C

C

C

A

TS + ρS(r + CS − ε) .



Thus, whenr ≤ κ(tarriv) < CS , the worst-case response time is bounded
by

⌈Cap

CS

⌉

TS + max
r≤ϕ<CS

{ρS(r + CS − ϕ) − TS − ρ∗S(CS − ϕ)} (4)

We now look at the specific case whenCap ≤ ε < CS . Clearly, the comple-
tion time tend occurs before or at the end of the server period because thereis
enough capacity attarriv to execute the entire aperiodic task. More precisely,
the response time of the aperiodic task in this case is bounded by the longest
time betweentarriv and the time to serviceCS − ε + Cap time units of work:

ρS(CS − ε + Cap) − ρ∗S(CS − ε) . (5)

We now show that the bound in (1) is an upper bound for the formulas (2), (3),
(4) and (5). First, we may notice that this bound is triviallyan upper bound

for (3), since in that case−1 < ϕ−r+1
CS

≤ 0 and
⌈

ϕ−r+1
CS

⌉

= 0; similarly, this

bound is trivially an upper bound for (4), since in that case0 < ϕ−r+1
CS

≤ 1 and
⌈

ϕ−r+1
CS

⌉

= 1; moreover,(2) =
(⌈

Cap

CS

⌉)

TS + ρS(r) − TS ≤
(⌈

Cap

CS

⌉)

TS +

ρS(r) − ρ∗S(CS) =
(⌈

Cap

CS

⌉)

TS + ρS(r − 0) − ρ∗S(CS − 0) ≤ (3), since

ρ∗S(CS) ≤ TS and0 is the firstϕ in 0 ≤ ϕ < r; finally, we may observe

that, when0 < Cap ≤ ε < CS, we haver = Cap and
⌈

Cap

CS

⌉

TS = TS , so

that (5) =
⌈

Cap

CS

⌉

TS +
(

ρS(r + CS − ε) − TS − ρ∗S(CS − ε)
)

≤ (4) since

r ≤ ε ≤ CS andε is in the right range forϕ. �

For example, Figure 2 shows the response time of an aperiodictask execution
with Cap = 8 using a polling serverτS . Since in this caser = CS = 4, in the

formulas aboveϕ < r,
⌈

ϕ−r+1
CS

⌉

= 0 and only the bound (3) arises. Table 1

summarizes the needed characteristics for the possible values ofϕ; this table
has been obtained by a mere observation of the scheduling of the system during
an hyperperiod[0, 45).

As it occurs,max0≤ϕ<CS
{W (r+

⌈

ϕ−r+1
CS

⌉

CS −ϕ)−
⌈

ϕ−r+1
CS

⌉

TS −B(CS −

ϕ)} reaches its maximum whenϕ = 1 or 2.

In Figure 2, the caseκ(tarriv) = 2 is shown. The earliesttarriv can occur is
ρ∗S(2) = 3 time units after the beginning of the server period. Thus, the time
betweentarriv and the end of the server period is at mostTS − ρ∗S(2) = 6 time
units. Then, one full period (9 time units) is necessary to execute the next four
computation units. Finally, the two remaining computationunits are executed



Figure 2: Example of the execution of an aperiodic task withCap = 8.

Γ C T D O Π

τ1 1 3 3 0 0
τ2 1 5 5 0 1
τS 4 9 2

� �

�
�
�
�
�
�
�

t
start

� � � � � � � � �� � � � � � � � � � � � �

�

� � � � � � � �

�
�
�
�
�
�
�

t
end

1

S

2

S
T -

S S
*(2) T 

S
(2) 

0

�
�
�
�
�
�
�

t
arriv

t
next 

�
�
�
�
�
�
�

� � � � �

S
*(2)

25

...

in ρS(2) = 5 time units. Hence, the response time of this execution is 20 time
units, which exactly corresponds to the evaluation of expression (1).

Table 1: Analysing the hyperperiod[0, 45).

ϕ

⌈

ϕ−r+1
CS

⌉

ρS(r+

⌈

ϕ−r+1
CS

⌉

CS−ϕ) ρ∗
S
(CS−ϕ) ρS(r−ϕ)−ρ∗

S
(CS−ϕ)

0 0 9 7 2
1 0 8 4 4
2 0 5 3 4
3 0 3 1 2

4.4 Minimum memory requirement

To verify the second condition of the schedulability definition, we provide an
amount of memory guaranteeing that the heap is not submergedin the worst-
case scenario. This amount depends on the maximum amountL of live mem-
ory in the system and on the maximum amount of memory allocated by the
tasks during the longest time between two flips. It also depends on the collec-
tion timeCap = CGC , which depends onL, on the size of the root setR, and



possibly on other parameters: we shall assume that we know the worst-case
execution time of the garbage collector in our context.

Theorem 4.12 For a systemΦ = (Γ,Π,L,R) with a real-time copying col-
lector τGC serviced by a polling serverτS, the minimum sizeM of the heap
such that the system is guaranteed schedulable is upper bounded by

2

(

L +
∑

{i|Pi<PS}

⌈Rwc
GC − 1

Ti

⌉

Ai +
∑

{i|Pi>PS}

(

⌈Rwc
GC − 2

Ti

⌉

+ 1

)

Ai

)

Proof: Each semi-space must be large enough to hold the memory copied
by the collector during one collection cycle plus the memoryallocated by the
tasks during[tstart, tnext), because a flip is performed attstart and the earliest
following flip is at tnext.

The collector only copies the live objects. The amount of live memory is at
mostL.

From Theorem 4.7, the boundRwc
GC also holds for the worst-case period be-

tweentstart and tnext. Therefore, we must count the maximum amount of
memory allocated by each task during[tstart, tnext), which is at mostRwc

GC .
We should first notice that even if, during the period[tstart, tnext), there is only
a part of a request executed for a taskτi, Ai must be fully counted for it be-
cause we do not have any information on when the memory is allocated within
a request.

For a periodic taskτi with priority lower thanPS , we may see that there are at

most
⌈

Rwc
GC−2
Ti

⌉

+ 1 requests and/or fractions of requests ofτi executed during

Rwc
GC time units. Indeed, the worst case occurs when there is a single slot used

to terminate a period forτi betweentstart + 1 andtstart + 2; at tstart + 2, a
new cycle starts and there are at mostRwc

GC − 2 time units left till tnext, during

which
⌈

Rwc
GC−2
Ti

⌉

cycles ofτi are completed or started (for the last one); hence

the formula for that case.

Now, we count the maximum amount of memory allocated by taskswith higher
priorities thanPS . tstart cannot occur when a request of taskτi (Pi < PS) is
not completed. In the same way,tnext cannot occur when a request of task
τi is not completed. Therefore, the worst case occurs when a newcycle for
τi starts attstart + 1, and the maximum number of requests ofτi completed

during [tstart + 1, tnext) is
⌈

Rwc
GC

−1
Ti

⌉

; hence the formula for that case. �

Figure 3 illustrates this theorem with an example that actually reaches the
bound. Assume that the garbage collector flips the two semi-spaces at time



Figure 3: Example of the memory requirement withCGC = 6.

Γ C T D O A Π

τ1 1 3 3 0 3 0
τ2 1 5 5 0 1 1
τ3 2 20 20 0 4 3
τS 3 9 2

�

t
start

�

t
end

0 �

t
arriv

t
next 

�

�
�

�
�

�
�

1

S

2

3

3 33333333333

1 1 1 1 1 1 1 1

0 4 4

...

20

tstart = 32 and copiesL memory units during that collection cycle. During
that cycle[tstart, tnext) = Rwc

GC = 20, the periodic tasks allocated19
3 e3 +

d19
5 e1+ (d18

20e+ 1)4 = 33 memory units in the heap (the amount allocated for
each execution unit is provided in the figure).

5 Conclusion

We have shown a predictable method to schedule a real-time copying garbage
collector in a real-time system constituted of static-priority periodic tasks. This
method considers the garbage collector as an aperiodic taskand executes it
through a polling server.

In addition to a time constraints schedulability test, the schedulability analysis
of the real-time system model requires the analysis of the minimum heap size
required to guarantee sufficient memory for the periodic tasks.

We have derived a bound for the worst-case response time of anaperiodic task
for the polling server with any parameters. This bound allows us to determine
a bound on the longest garbage collection cycle, necessary to bound the heap
size required.

The schedulability analysis of this system is possible under the assumption that
we can compute or bound the memory utilization information included in the
system model:L, R, {A1, . . . , An} and{C1, . . . , Cn}.



Our contribution can be summarize as follows:

• we present a formalization of thejoint scheduling problem which con-
sists to schedule hard periodic tasks and a garbage collection together;

• we propose a schedulability test for a more specific case: scheduling
static-priority periodic tasks with a copying collector;

• we characterize the worst case response time of an aperiodictask served
by a polling server.

Extensions of the present analysis could encompass the casewhere many polling
servers, including a background one, are used to service thegarbage collector,
and/or where many processors share a common heap memory. Theanalysis
could also be extended to continuous time systems.

Acknowledgments

Plenty of thanks go to Dr Philip Holman from the University ofNorth Carolina
for carefully reading a draft of this paper and for his helpful suggestions.

References

[1] BAKER, H. G. List processing in real time on a serial computer.Com-
munications of the ACM 27, 4 (April 1978), 280–294.

[2] BOLLELLA , G., AND GOSLING, J. The real-time specification for Java.
Computer 33, 6 (2000), 47–54.

[3] BROOKS, R. A. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. InConference Record of
the 1984 ACM Symposium on Lisp and Functional Programming(Austin,
TX, August 1984), ACM Press, pp. 256–262.

[4] GOOSSENS, J. Scheduling of Hard Real-Time Periodic Systems with
Various Kinds of Deadline and Offset Constraints. PhD thesis, Université
Libre de Bruxelles, 1999.

[5] HENRIKSSON, R. Scheduling real time garbage collection. InProceed-
ings of NWPER’94(1994).



[6] HENRIKSSON, R. Adaptive scheduling of incremental copying garbage
collection for interactive applications. Tech. Rep. 96–174, Lund Univer-
sity, Sweden, 1996.

[7] HENRIKSSON, R. Predictable automatic memory management for em-
bedded systems. InOOPSLA ’97 Workshop on Garbage Collection and
Memory Management(October 1997), P. Dickman and P. R. Wilson, Eds.

[8] HENRIKSSON, R. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, 1998.

[9] JONES, R., AND L INS, R. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. John Wiley and Sons, 1996.

[10] K IM , T., CHANG, N., KIM , N., AND SHIN , H. Scheduling garbage
collector for embedded real-time systems. InProceedings of the ACM
SIGPLAN 1999 Workshop in Languages, Compilers and Tools forEm-
bedded Systems(May 1999), pp. 55–64.

[11] K IM , T., CHANG, N., AND SHIN , H. Bounding worst case garbage col-
lection time for embedded real-time systems. InProceedings of The 6th
IEEE Real-Time Technology and Applications Symposium(June 2000),
pp. 46–55.

[12] K IM , T., CHANG, N., AND SHIN , H. Joint scheduling of garbage col-
lector and hard real-time tasks for embedded applications.Journal of
Systems and Software 58, 3 (September 2001), 247–260.

[13] LEUNG, J. Y.-T., AND WHITEHEAD, J. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance Evaluation
2 (1982), 237–250.

[14] L IU , C. L., AND LAYLAND , J. W. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.Journal of the ACM 20, 1
(1973), 46–61.

[15] MAGNUSSON, B., AND HENRIKSSON, R. Garbage collection for con-
trol systems. InProceedings of International Workshop on Memory Man-
agement(Lund University, Sweden, September 1995), H. Baker, Ed.,
vol. 986 ofLecture Notes in Computer Science, Springer-Verlag.

[16] NILSEN, K. High-level dynamic memory management for object ori-
ented real-time systems. InWorkshop on Object-Oriented Real-Time
Systems(San Antonio, Tx., October 1995).



[17] NILSEN, K. D., AND SCHMIDT, W. J. Hardware-assisted general-
purpose garbage collection for hard real-time systems. Tech. Rep. ISU
TR92-15, Iowa State University, Department of Computer Science, Oc-
tober 1992.

[18] REDELL, O., AND SANFRIDSON, M. Exact best-case response time
analysis of fixed priority scheduled tasks. InProceedings of 14th Eu-
romicro Conference on Real-Time Systems(June 2002), pp. 165–172.

[19] ROBERTZ, S. G. Applying priorities to memory allocation. InPro-
ceedings of the 2002 International Symposium on Memory Management
(Berlin, Germany, June 2002).

[20] ROBERTZ, S. G.,AND HENRIKSSON, R. Time-triggered garbage col-
lection: robust and adaptive real-time gc scheduling for embedded sys-
tems. InProceedings of the 2003 ACM SIGPLAN conference on Lan-
guage, compiler, and tool for embedded systems(June 2003), ACM Press,
pp. 93–102.

[21] SIEBERT, F. Guaranteeing non-disruptiveness and real-time deadlines in
an incremental garbage collector. InProceedings of the first international
symposium on Memory management(1998), ACM Press, pp. 130–137.

[22] SPRUNT, B. Aperiodic Task Scheduling for Real-Time Systems. PhD
thesis, Carnegie Mellon University, August 1990.

[23] TINDELL , K. Using offset information to analyse static priority pre-
emptively scheduled task sets. Tech. Rep. YCS 182, University of York,
Department of Computer Science, August 1992.

[24] WILSON, P. R. Uniprocessor garbage collection techniques. InProc. Int.
Workshop on Memory Management(Saint-Malo, France, 1992), no. 637
in Lecture Notes in Computer Science, Springer-Verlag.


