Joint Garbage Collection and Hard
Real-Time Scheduling

Maxime Van Assche, J&l Goossens, Raymond Devillers

Université Libre de Bruxelles, Département d’Infornogaie,
and Mission Critical IT
corresponding author: joel.goossens@ulb.ac.be

Abstract

We analyze the integration of automatic memory managememtéal-time context.
We focus on integrating a real-time (copying) garbage ctilewith hard real-time
static-priority periodic tasks. This integration is dong donsidering the copying
collector as an aperiodic task served by a polling serveraliédyze the schedulability
of this system for any polling server parameters. This aisliyncludes a bound on
the memory size that guarantees sufficient memory for thegiertasks.

Plan

1. Introduction

2. Incremental Garbage Collector vs. Garbage Collector
for Real-time Systems

3. Predictability

4. Schedulability Analysis

5. Conclusion

Key works scheduling, garbage collection, sporadic server

1 Introduction

In this paper, we consider the problem of scheduling haritima systems
composed of a periodic task set and a garbage collector. dventages of
automatic memory reclamation are nowadays somewhat obf@wunon real-

time as well as real-time systems. These advantages incdlhdebsence of
trouble to free memory, the avoidance of dangling pointees, @ pointer ref-
erencing some memory freed manually), and no memory ledkis. |dads to
a better productivity during the implementation and theudgling. Memory

leaks, in particular, are often hard to notice and even haaiéocate. If a

garbage collector is shown correct, then we are certain vwérmencountering
dangling pointers or memory leaks that could result in aesgstrash. Let us
recall however that a garbage collector needs some helptirerprogrammer
for yielding the expected behaviour: if a pointer to a stuoetis left in a vari-

able, the structure will never be reclaimed, even if we knbat the variable
will never be used again.

A more subtle benefit of a garbage collector arises whenrgideata between
different entities of a program (e.g., objects, tasks). amual disposal of
such shared structures could create unwanted dependbetiesen those en-
tities. In fact, these memory structures must be reclainyesbine entity, but
only when all entities will not access them anymore.

Anincreasing number of real-time applications for embeldsiestems are writ-
ten using high level programming languages to reduce thelolement effort.

The evolution of processors and compilers, which becomnterfaslower costs,
induced that increase. Automatic memory management inl-dinea context

is an evolution that is made with real-time Java [2], for amste.

However, automatic memory management and hard real-tistersyg are usu-
ally thought to be incompatible because of the garbageatolls disruptive
behavior. It is important to notice that the garbage cadlbectiterature in-
cludes very good works concernifigcrementalgarbage collectors (i.e., the
execution of both the garbage collector and the tasks axdéat/ed). Very of-
ten, in that literature and the corresponding research aamtyn these garbage
collectors are considered to be real-time as well. But digiuthey are not (at
least with the common definition used in our real-time comityditerature :
we shall give more details about this question in the Se@)oifo the best of
our knowledge, very few works consider truly hard real-tiooastraints when
garbage collection comes into the frame.

In this paper, we show that automatic memory management ard real-

time systems are not incompatible, at least under our mddebraputation
and our assumptions. We aim at presenting a first formadizatf thejoint
scheduling, which consists of scheduling hard periodiksasd a garbage
collection together. Moreover, this work provides a schiility test for a
more specific case: scheduling static-priority periodgksawith a copying
collector (a particular garbage collector technique piiticed in Section 2.2).

Related work While there is some literature on truly real-time garbage co
lection, only a few works address the problem of schedulirggarbage col-
lector.

Unlike our work, the scheduling approach adopted in modttie® garbage
collection research papers is to associate an amount cggudllection work
to heap allocation instructions. For each memory unit alled, a correspond-
ing amount of garbage collection work is performed. The propn of work
is large enough to ensure that the garbage collection cydempleted before
the system runs out of memory. No matter how fast tasks useeumpany, the
collector execution time is increased correspondinglye frtinimum amount
of collection work ensuring sufficient memory is analyzeilir24] for a copy-
ing garbage collector. As we justify below, this technigsimadequateor the
real-time systems we consider.

Siebert [21] improves this scheme by making the amount okwerformed at
each allocation dependent on the amount of free memoryadail Thus, the
work to be done by the garbage collector is very small as lanifpere is suf-
ficient free memory. However, this improvement does not nth&gechnique
suitable for hard real-time systems, which need a worst-aaalysis.

Associating the collection work to allocation instructioimevitably penalizes
tasks that allocate memory in the heap. In fact, a real-tias& tomputa-
tion time then depends on the amount of memory it allocateth® maximum

amount of live memory of the whole system and on the heap $izie.scheme
does not provide the flexibility to distribute the collectioverhead indepen-
dently of allocations. For instance, if a system has a afitiask with a high

allocation rate and a constraining deadline, we cannosfearthe collection

overhead on less critical tasks. This lack of flexibility itrestrictive for

practical (real-life) real-time systems.

This collection-at-allocation scheduling technique sathosen by Nilsen [17,
16], but he focuses on real-time garbage collection usimticdéed hardware.
By using special hardware circuits placed between the cantiehe memory,
Nilsen guarantees a worst-case delay for any individuatatjps. This ap-

proach suffers from the need for dedicated hardware thatdameiused only
for the garbage collector.

Henriksson [5, 8, 15, 6, 7], Robertz [19, 20] and Magnussdi], [koncen-
trate on integrating automatic memory management with Ipigbrity pro-
cesses and low priority processes to increase the realrbimestness. They
use a technique called semi-concurrent garbage collestibaduling. Three
priority levels are identified: the high priority (hard raahe processes), the
garbage collector priority and the low priority (soft raahe processes). The
garbage collector never interrupts the high priority peses, but whenever
a low priority process allocates memory, enough collectoperformed to
ensure sufficient memory for the high priority ones. Thisrapph handles
adequately the collection scheduling. However, the galeadector is sched-
uled as a background task with respect to the high prioripcgsses, which
may cause a long response time for the garbage collectale eynd conse-
quently, the system may require a large heap to ensure suffitee memory.
In this work we generalize the framework, since the garbafjeator is served
by a polling server whose priority it necessarily the lowest one.

More recently, Robertz and Henriksson [20] have analyzisdstmi-concurrent
scheduling technique when applied to the earliest deaflistemodel (EDF).
Their approach does not suffer from the problem describediqusly, since
the priorities are dynamic: the garbage collector is noedaled as a back-
ground task anymore. But implementing dynamic prioritsegenerally harder
than static ones, and analysing the worst-case responsgisra lot more com-
plex too.

Kim et al. [10, 11, 12] concentrate on scheduling the garlwadjector as an

aperiodic task using a sporadic server, and provide an mmaiation of a

garbage collector adapted to real time systems. Howear,ahalysis is lim-

ited to a sporadic server with the highest priority of theteys which is rather

restrictive. The flexibility of the priority level at whicté garbage collector is
executed is necessary to optimize the heap size while piegdhe schedula-
bility of hard real-time tasks.

This research We analyze the integration of a garbage collector in a discre
time real-time system constituted of static-priority pelit tasks with con-
strained deadlines (for instance, scheduled using theoratieadline mono-
tonic scheduling [14, 13]). The garbage collector is schetias an aperiodic
task using a polling server [22]. We provide the differemtpst necessary to
verify the schedulability of the system, includitige minimum memory re-

quirement analysis for any polling server parameterhis analysis pinpoints
an amount of heap memory sufficient to guarantee that theraysfll never

run out of memory. That amount of memory can be reached intvearse

scenarios.

Our contributions can be summarized as follows:

e we present a formalization of theint scheduling problem which con-
sists in scheduling hard real-time periodic tasks and aaggrisollection
together;

e Wwe propose a schedulability test for a more specific caseedstimg
static-priority periodic tasks with a copying collector;

e we characterize the worst case response time of an apetasticerved
by a polling server.

Outline Section 2 asks the question of what a real-time garbagectwiles.
Requirements on the garbage collector are described itiorel our view
of a real-time system. Section 3 explains our techniquetefjiration and the
requirements on the garbage collector scheduling. Sedtinadels the system
and provides a schedulability analysis for this model.

2 Incremental Garbage Collector vs. Garbage Collec-
tor for Real-time Systems

Many garbage collectors are proclaimed real-time only beedhey are incre-
mental and fast on the average. Baker [1] qualifies as ne&-8 system in
which the programmer would still be assured that each instructiauld fin-
ish in a reasonable amount of tim®bviously, this definition is not sufficient
for the real-time community.

More specific requirements are defined by Wilson in [24] feratime garbage
collection: it must be incremental; every pause made taecbtjarbage must
be strictly bounded; it must make significant progress; thesps must not oc-
cur too often:for any given increment of computation, a minimum amount of
the CPU is always available for the running application

These requirements are somewhat more specific and detaifethey are not
perfectly adapted to the real-time systems we consider. &fyarate two as-
pects of the requirements: the requirements on the garlmigetor itself and

the requirements on the way the garbage collector is sce@dvithin the sys-
tem. The second aspect is detailed in Section 3.

2.1 Real-time requirements

The systems considered in this work are composed of a setrdfrbal-time
periodic tasks and a garbage collector. The main charatitedf real-time
systems is the behavioraredictability. Timing constraints have to be met
whatever happens in the system, provided its requiremeafsidilled; hence,

it is not enough (and sometimes it is superfluous) that thiestasd/or the
garbage collector are fast on the average: the worst caseresimportant (in
fact it is the only one which is relevant).

Of course, the garbage collector mustiberemental in the sense that it can
be preempted by the other tasks, and it must nsédgeificant progresswhich
implies that preemptions should not prevent it from coitegt For example,
it would be unacceptable that some work has to be redoneesftdr preemp-
tion, such that the collector never progresses. Also, thigagg collector must
guarantee theonsistencyf the heap at all times.

Finally, to analyze a real-time system with a garbage caleave must be
able to compute or bound the collectonsrst-case computation timdenoted
Cgc- This value represents the maximum amount of CPU time nacefsr
the collector to accomplish one collection cycle. This eatiepends on the
hardware, the run-time environment, but also on the amollitememory
(i.e., accessible memory) of the system when the colledgdaniggered, on
the number of root pointers (i.e. the pointers outside trepheeferencing
heap memory) and on other values, which are specific to thmagarcollector
algorithm.

2.2 Copying collector

Garbage collectors yield a very wide research area, botreiory and in prac-
tice. In particular, there are many families of garbageemir techniques
(e.g., reference counting, mark and sweep, copying colleetc.). Itis beyond
the scope of this manuscript to review the subject. Forties-systems, we
believe that the copying collector technique is partidylarteresting, because
it avoids heap fragmentation (see [9, 1]). For that reagothe following we
will only consider copying collectors. We now introducedfly this technique
(notice that this paper does not contribute to the field of/sapcollectors but

to thejoint schedulingof periodic tasks and of a copying collector). For copy-
ing collectors, the heap is split into two equal areBsSpaceandFromSpace
The reclamation of unused memory is done implicitly by coagy{and com-
pacting) only the live memory from one space to the otfileSpacecontains
the current objectd-romSpaceontains the garbage from the previous collec-
tion. The beginning of a collection cycle starts with a flighish exchanges
the roles ofFromSpaceand ToSpace A cycle ends when all the live memory
has been copied ifoSpace

Brooks’ copying garbage collector [3] may easily be adaptefiilfill our re-
quirements. This collector is incremental and uses a poimti¢e barrier to
synchronize the mutators (i.e., the user programs) anddhector. Alloca-
tion is black, which means that new memory is allocateda$pace The
details of Brooks’ collector is beyond the scope of this pape

The garbage collectors described in [5, 6, 7, 8, 15] and in11012] are per-
fect examples of such copying collectors that can be intedria the real-time
system we consider. Different mechanisms are used to fiélfequirements.
The lazy copying technique makes the pointer write insionchounded by a
constant. To have allocation bounded by a constant, theagarbollector is
responsible of initializing-romSpaceafter the copying phase.

The analysis we provide also applies for any other copyinmbage collector
that fulfills our requirements. Notice however that the gsial allowing to de-
termine the worst case execution time for such a collectoiotsnecessarily
easy. In particular, the copying collector moves data sires and updates
pointers to them, which may result in a modification in theksadehaviour
with regard to the caches. Moreover, when the garbage tallecpreempted,
it is usually necessary to redo part of the last structuregyiogp and this ex-
tra work depends on the worst case number of preemptionsrattlby one
garbage collection cycle. To simplify the presentation, skell in the fol-
lowing assume that the impact of the caches and of the préamspon the
execution time of the copying collector may be neglected.

3 Predictability

The joint scheduling of the tasks and the garbage collectmt tvepredictable
We must be able to predict off-line if the system will be saliatle.

The requirements given by Wilson [24] suggest to choose amanr CPU
utilization rate for the garbage collector to execute. Haiseduling technique

is quite simple, but it does not report when to execute thd&warements such
that the system remains schedulable. As we want the systbmpredictable,
scheduling the garbage collector through an aperiodicesasvan effective
solution.

We integrate the garbage collector in a real-time periocalik set by consid-
ering it as a real-time aperiodic task. It is aperiodic, lseaits arrival times
depend on the memory utilization of the periodic tasks. Itel-time, be-
cause the collection must be over before the tasks run outedfiary, hence
before the next cycle of the collection is needed. The garlcadiector will be
serviced by a polling server [22], to interleave its exemutivith the periodic
tasks.

In the following, we define the schedulability of a real-tiregstem with a
garbage collector. It contrasts from a classical schedifjadefinition such
as the one in [4, 14], by taking into consideration the menudrthe system,
since the programmer has no control over the heap in a sysitma\warbage
collector.

Definition 3.1 A task set with a garbage collector is considered to be schedu
lable if

e each periodic task always completes before its deadline;
e periodic tasks never run out of memory;

e any allocation request is granted within a constant time.

The first condition corresponds to the classical time cair#s schedulability
test of a task set. As programmers do not control the heagsyistem itself
must guarantee sufficient memory. The last condition stidu@sthe system
cannot collect garbage at every allocation in order to hasficent space;
however, in order to allow the garbage collector to functiamrectly when
serviced by the polling server, a (small) bounded extra vimdenerally nec-
essary when allocating or accessing heap memory, whictbwithcorporated
in the worst case execution time of the various real-timgsasf we would
allow to collect garbage at each allocation such that enapgice is created
in the heap to satisfy the allocation, the worst-case resptimes of the tasks
would generally be too large to allow a feasible schedulangd(we would no
longer need an extra server for the garbage collection).

4 Schedulability Analysis

4.1 Model of computation and assumptions

First, we provide a system model designed for real-time itgpgollectors
fulfilling our requirements.

For each periodic task, we assume that its allocation rae,the maximum
amount of memory allocated during one request of that tasknown (ex-
pressed in terms of some memory unit), but we make no hypetlaé®ut
when this memory is claimed by the task during its requestso,Ahe max-
imum amount of live memory of the whole system is known (espeel with
the same memory unit).

Definition 4.1 A periodic taskr; is specified by a 5-tupl&’;, T;, D;, O;, A;).

e (; is the worst-caseomputation time of each request of (including
the extra work needed to manage the heap in a way compatitieive
copying garbage collector).

e T; is theperiod of the task.

e D, is the relativedeadline of the task (we assunte< C; < D; < T;:
the task has a constrained deadline).

e O, is theoffset of the task, i.e., the release instant of the tagkwill be
0 for eachi if the system is synchronous).

e A; is the worst-case memoayiocation during one request of the task.

Definition 4.2 A uniprocessor syster is specified byT',II, £, R), where

I' = {r,...,7,} is a set ofn periodic tasksIl = {P,..., P,}, withi #

j = P, # P;, is the set of priorities assigned to the tasks (0 is the sghe
priority), £ is the maximum amount of live memory of the whole system at any
moment andk = U,—q._,R; is the the root set, i.e., the variable and stack
pointers of each task & 1..n) or global to the whole system £ 0) allowing

to reach the live part of the heap.

The tasks share a single heap (of maximal dizg the various tasks dynami-
cally allocate memory in it, and the garbage collector vétilaim the unsused
parts regularly or when needed. Memory in the heap can (et dot need to)
be shared between tasks through pointers in global vasiabig such objects

may also be referenced via local variables or stack vasablée root set is
therefore composed of stacks,n local variable sets and global variables. A
stack is not necessarily emptied after each request; ftarine, it may be used
as a return-input between two requests of the same task. @kienum depth
of each stack is fixed and known.

In order to simplify the presentation, we shall assume thaha numerical
values characterizing the system are natural integers,wa only consider
discrete systems.

4.2 Elements of the analysis

This section details the different elements necessary tifywhe schedula-
bility of a real-time system with a real-time copying coli@cserviced by a
polling server.

Foremost, a time constraints schedulability analysis rhagperformed. For
each task in the task set (plus the polling server, see defirit4), its worst-
case response time is computed and compared to its deddlioeeach task,
the worst-case response time is smaller or equal to the telllide, the task
set is schedulable with this priority assignment. See [4,f@3a complete
description of such an analysis.

The second element of the schedulability analysis consistemputing the
minimum memory requirement so that the tasks never run oumerhory,

even in the worst-case scenario. The minimum memory redjgiepends on
L, on the allocation rates, and on the worst-case time bettveeheginning
of a collection cycle and the earliest time the next coltetitycle can start
its execution (we shall formalize this notion furthert8&*). We justify this

statement in the following paragraph.

When the garbage collector starts executing to collectagmpit performs

a flip. Therefore the neWoSpaces empty at that time. In the worst-case
scenario, the garbage collector copigsinits of memory fromFromSpaceo
ToSpace As the periodic tasks and the collector share the CPU, thedie
tasks keep on allocating memory during the collection. Hawly allocated
memory is placed ifoSpace Figure 1 shows a system with the garbage col-
lector copyingZ units of memory and the aperiodic tasks allocating memory
in ToSpace

When the collection cycle is over, the tasks continue atinganemory in the
same semi-space until a new role flip is performed, makinghéveToSpace
empty. Therefore, the size dbSpacg(in fact of each semi-space) must be

Figure 1: Minimum memory required for a real-time systemhvétreal-time
copying collector.

I:l I:l GC copy
[]

=[]

0
—1

L1

>

uoneoo|e

FromSpace

large enough to hold plus the maximum amount of memory allocated during
the longest time between the beginning of a collection cgclé the earliest
time the next collection cycle can start its execution.

4.3 Aperiodic task response time analysis

In order to analyze the required memory for a system to bedstaiele, we
need a bound on the longest time between the beginning ofectoh cycle
and the earliest time the next collection cycle can stagxecution. Since we
consider the garbage collector as an aperiodic task, we matkere general
analysis on the execution of an aperiodic task with knownsivoase compu-
tation time using a polling server. To the best of our knowkedhis analysis
is new and this section provides an additional contributitve worst case re-
sponse time of an aperiodic task served by a polling server.

Definition 4.3 An aperiodic task,, is characterized by’,,, its worst-case
computation time.

Our polling server behaves like a periodic task, and usesxi#gution time
to service aperiodic tasks. If the polling server is exewutind no aperiodic
task is ready to execute, it waits (but the capacity decsddee an aperiodic
task to execute until it is preempted by a higher prioritktesady to execute

(which improves a little bit the responsiveness of the gemvecomparison
with the basic polling server in [22]). During that waitinigne, the time slots
normally allocated to the polling server may be used to serkeady periodic
tasks (with lower priorities) or background non-real-tiagivities; they may
be lost if nothing may be executed meanwhile; but in any cémeservicing
capacity of the server is decremented as if the time slots wszd by the latter.
It is assumed that',, > 0.

Definition 4.4 A polling server is defined bys = (Ps,Cg, Ts), respectively
the servepriority (Ps # P;,i = 1...n), its maximuntapacity (i.e., the CPU
time budget the polling server has per period) angésod. Itis assumed that
Cs > 0, that the server is launched at the initialization of theteys, hence at
time 0, and that adding a periodic tasiCs, T's, Ts, 0, 0) with priority Ps to
the current task set still respects the deadlines.

We express the capacity of the server at tirbg (), i.e., the amount of time
the server has left at timeto execute until the end of its period. Notice that
k(kTs) = CgVk > 0,and ifx(t) > 0 and the time sloft, ¢ + 1) is attributed

to the serverk(t + 1) = k(t) — 1 whatever happens (i.e., even if the server
does not use the slot for itself).

We also need to formalize any execution of an aperiodic task.

Definition 4.5 The execution of an aperiodic task, by an aperiodic server
75 in a systemb is characterized byt1v, gstart gend ymexty \where:

e t¥TV js thearrival time of the aperiodic task, meaning that it is ready
to execute. It is then waiting for tasks with higher pricgithan the
polling server to complete, and/or for some server capacity

o 5%t s the time when the aperiodic tastarts its execution.
o t*"d s thecompletion time.

o "' js the next available time, i.e., the earliest time at oraftéd when
the aperiodicserver capacity isnot zero, and when th€PU isavailable
for the aperiodic server (basically, the earliest time whkesucceeding
aperiodic task would be able to start its execution).

Notice thattarriv < gstart < gend < gnext gpggend _gstart > ¢ The response
time is the delay®"d — t>"1v petween the arrival time and the completion time.

Cap

It is easy to see that'ext — (amiv < (1 + {CS

better bounds in the following.

bTS’ but we shall try to get

Definition 4.6 For a given systend® = (T',II, £, R) and an aperiodic server
Tg, the worst-case response time of an aperiodic tagks the maximum re-
sponse time over all its possible executions

’ch((I)7 3, Tap) — max{tend o tarriv}

tarriv

The worst-case response time is the maximum response tigreathexecu-
tions. Buttend depends ong, on®, onr,, and ont?™™V_ Thus, the worst-case
response time is the maximum response time over all ariivalst To simplify
the notations, in the rest of this work, we URg? to denoteR"(®, 75, 74p)-
Notice that we have indeed a maximum, and not only a suprersinte we
only work with integer numbers, and the intervals are bodnde

We can also define the longest timexamiv {t"** — 331} between the be-
ginning of a service and the next time where a succeedingaaierequest
may start its execution. The following theorem shows thit ¢alue is never
larger thariRg;.

Theorem 4.7 For a given systen®, a polling serverrs and an aperiodic task

Tap!
max{tnext _ tstart} < max{tend _ tarriv}

tarriv tarriv

Proof: We may observe that, at'®* a time slot is used by the server, at
thext g time slot is available for the server, and betwg&ti® andt"*** exactly
Cqp time slots were available (and used) for the server. Hericerequest
occurs a2V = ¢start 4 1 jts completion time will b4 = "Xt 1 1. As

a Consequence?ext _ tstart — (tnext + 1) _ (tstart + 1) — tind _ tirriv S
max;arsiv { 17—V andmax sy {0 — #5190 < maxary {16021V

O

Therefore, if we find a bound for the response time of an ageritask, we
can also use it to bound any time perigtda't, ¢next),

In order to demonstrate a bound for the worst-case responseot an aperi-
odic task using the polling server, we need to define the qurafevorst and
best-case response time of a periodic task with the samaathéstics than
the polling server task but with its computation time fixed:tet C's.

Definition 4.8 For = € N with z < Cg, p(z) is the worst-case response time
of the taskrs = (z,7s,75s,0,0).

Theorem 4.9 For z € N with x < Cg and for a synchronous (i.eQ; = 0 Vi)
uniprocessor systed, ps(x) is the smallest positive solution of the equation

ps(x) =z + Z V“;E_OC)WCJ‘ .
{4IP;j<Ps} /

This is an immediate consequence of classical results od fikerity peri-
odic real-time systems (see for instance [4, 23]). Thisevahay be effectively
computed with a (generally fast) iterative procedure. Nbg, for an asyn-
chronous task set, the value computed with this theoremnsm fiecessarily
reached, but often rather good) upper bound of the worsbressptime.

Definition 4.10 For x € Nwith0 < z < Cg, p§(x) is the steady state best-
case response time of the task= (z,Ts, 75,0, 0).

“Steady state” means here that, in case of an asynchronstsnsywe first
wait until the system becomes cyclic; for instance, we mansitter the system
from the timemax;{O;} + >, T;. p&(z) can be lower bounded by, because
it takes at least: time units to execute computation units, but when we know
the characteristics of the higher priority tasks, we canrgue this bound by
using the best-case response time analysis from [18]. THaf/sis uses a
recurrence equation similar to the one from Theorem 4.9 tbtfie best-case
response time of a periodic task in the periodic part of theduale. This means
that the value found with this analysis results in the baseaesponse time for
any offsets, but only after the largest offset is elapsed.aFgynchronous task
set, this value is in fact a tight lower bound. If the pollirenger has the highest
priority, we may observe that;(z) = ps(z) = .

The following theorem presents a tight upper bound for thestoase re-
sponse time of a given aperiodic task using a polling setyet (Ps,Cg, Ts),
together with a synchronous periodic task set.

Most research papers on aperiodic tasks only consider saftlises, so that
we did not find any similar result for such an upper bound. Whik derived
it in the context of a garbage collector, this result coulduseful in other
aperiodic task analyses.

Theorem 4.11Let® = (I',II, £, R) be a schedulable uniprocessor system
with a polling serverrg, then, for an aperiodic task,,, if W (z) is an upper
bound forps(x) and B(z) is a lower bound fop () for any0 < z < Cg,

we have

. Ca p—r+1 p—r+1
we - P y—_r—41 A I A) _ _
Rap < [Cs wTSJFOgg%S{W(TJ{ s WCS) [s WTS B(Cs—¢)}
@)

withr < ¢, — U%ﬂ - 1)05.

Proof: We need to prove that the bound holds for any instant wigt
could occur. First, it should be clear that the worst casest imuive when all
the tasks (with priorities higher than the aperiodic s@rkiave been started and
are scheduled periodically; hence we may only consider ¢negic (steady
state) part of the schedule. We shall distinguish two sitnat depending on
the remaining capacity of the server when the aperiodicaaskes:

1. If the server capacity ifull (x(t*) = Cg), the worst-case scenario is
whent>™v corresponds with the beginning of the aperiodic serveopiie.,
taiv = kTg for somek € N) because delaying™" such that:(t*") = Cg
can only reduce its response time.

Therefore, at mos([Ccﬂ — 1) full periodsare necessary to execute the first

([%_?W — 1)05 units of computation of,,. After that, the time necessary to

execute the remaining % Cap — ([Ccasﬂ — 1)Cs units of computation is at

mostps(r), with 0 < r < C,,; it may be observed that = C,,;, mod Cy if
Cop mod Cyg # 0, Cg otherwise.

Therefore, the worst-case response time in this situasilounded by

(J22] - 1)zs + pstr @

2. if the server capacity isot full (x(t*™V) < Cs), we denote this amount of
capacity bye; thusk(t*"1V) = ¢ and0 < ¢ < Cs.

We first suppose that,, > €. This situation has two subcases:

e 0 < e < r: Theearliestt*™V can occur within one server period such
that x(t>™V) = ¢ is p(Cs — €) time units after the beginning of the
server period. This is justified by the fact thégt C's —<) is the minimum
amount of time it takes for the server to reduce its capaoity t
Therefore, thdongesttime between®"v and the end of the server pe-
riod such thats(t*"1V) = ¢ is Ts — p%(Cs — ¢). During that periodg
computation units of,, are executed (possibly for other tasks) or lost.

Then, there ar€’,,, — e computation units left to execute. The rest of the
execution takes the same time as an aperiodic task in situatiwhere
ta1iv corresponds to the beginning of a server period. We can @se th
bound from the first situation by replacing,, by C,, — € andr by
Cop—e— ([2=2] ~1)Cs = r —¢; indeed, sinc® < & < r, “2== >

Cup—r _ 1C, Cop—e | _ 1Cq _ 7Ca
o = [E] - 1sothat S| = [Z] - 140 = [
Hence, the execution of thegg,, — ¢ computation units takes at most
([CC——] D) Ts+pslr—e) = ([Ccﬂ —1)Ts + ps(r —) time units,
and the response time of the aperiodic server in this cageriest

Ts — pi(Cs —) + <[g—;] - 1)Ts+ps(r —e)

Notice that this bound may be too pessimistic, because thteclasep*
does not necessarily occPF‘g—s’ﬂ periods before the worst cage

]TS +ps(r—e) — pi(Cs —€).

Thus, whens(t2*1V) < r, the worst-case response time is bounded by

[%ﬂ Ts+ o?&i%{ps(r =) —ps(Cs —)} 3)

r < e < Cg: Theearliestt*™ can occur within a server period such
that x(t*™V) = ¢ is p5(Cs —) time units after the beginning of the
server period. Therefore, tHengesttime between®™v and the end
of the server period such thatt®™V) = ¢ is Ts — p5(Cs — ¢) time
units. During that periods computation units of,, are executed (for
the aperiodic task).

Then, there ar€’,, — ¢ computation units left to execute. Once again,
the rest of the execution takes the same time as an aperaxkontith
t4v corresponding to the end of the server period with its woaste
computation time equal t6¢’,, — €. Therefore, we can use the bound
from the first situation for this extra waiting time:

[t et e
_UH)“(C_UCC_ _zjcs]

(because, as > r, [C“c’”;] =[%1-1

Cs
Cq
= ({_ﬂ —ijS +ps(r+Cg—e¢).
Cs

Thus, when < x(t¥*1V) < Cg, the worst-case response time is bounded
by

Coap *
[CS—‘TS—l—TSH;i)éS{pS(T-FCS—<,0) —TS—Ps(CS—SD)} (4)

We now look at the specific case wheéh, < ¢ < Cg. Clearly, the comple-
tion time t**< occurs before or at the end of the server period becauseithere
enough capacity af**v to execute the entire aperiodic task. More precisely,
the response time of the aperiodic task in this case is balibg¢he longest
time between®™ and the time to servic€g — ¢ + Cqp time units of work:

ps(Cs — e+ Cop) — p5(Cs —€) . (5)

We now show that the bound in (1) is an upper bound for the ftas(2), (3),
(4) and (5). First, we may notice that this bound is triviadly upper bound
for (3), since in that case 1 < £+ < 0 and P"‘C—T;ﬂ = 0; similarly, this
bound is trivially an upper bound for (4), since in that case ﬂ% <1land
P’C—rsﬂw — 1; moreover,(2) = G%@;DTS + ps(r) — T < ({%‘;{’DTS +
ps(r) — p5(Cs) = ({%Z’DTS + ps(r — 0) — p5(Cs — 0) < (3), since
ps(Cs) < Ts and0 is the firstp in 0 < ¢ < r; finally, we may observe
that, when0 < C,, < ¢ < Cg, we haver = (g, and {C‘”’WTS = Tg, SO

Cs
that (5) = {CC—G;WTS + (pg(r +C5—¢)—Ts — p(Cs — s)) < (4) since
r < e < Cg ande is in the right range fop. O

For example, Figure 2 shows the response time of an apetiagicexecution
with C,, = 8 using a polling servers. Since in this case = Cy = 4, in the
formulas abover < r, {%W = 0 and only the bound (3) arises. Table 1
summarizes the needed characteristics for the possiblesalfy; this table
has been obtained by a mere observation of the schedulihg ef/stem during

an hyperperiodo, 45).

As it occursmaxo<,<cs {W (r + {%W Cs—¢)— {%W Ts— B(Cs—
©)} reaches its maximum whemn= 1 or 2.

In Figure 2, the case(t*™) = 2 is shown. The earliesf™" can occur is
ps(2) = 3 time units after the beginning of the server period. Thus,tiime
betweent®™" and the end of the server period is at mbst- p5(2) = 6 time
units. Then, one full period (9 time units) is necessary t&cete the next four
computation units. Finally, the two remaining computationits are executed

Figure 2: Example of the execution of an aperiodic task With = 8.

rjcjrjojojm
71113300
| 1[5]5|0]1
T | 419 2

-cS T I | g \l:! | H [T H | H | | T I Y | \l:!
0 25
uiatcs\ Tuint dintstuiutet A e d---—-—-
£(2) | T-£2) T A2)
tarrivtstarl tend tnext

in ps(2) = 5 time units. Hence, the response time of this execution i$n26 t
units, which exactly corresponds to the evaluation of esgion (1).

Table 1: Analysing the hyperperidd, 45).

" Pe—ﬂ ps(r+ Pz{;l] Cs=¢) | p5(Cs—¢) | ps(r—¢)=p5(Cs—¢)
0 0 9 7 2
1 0 8 4 4
2 0 5 3 4
3 0 3 1 2

4.4 Minimum memory requirement

To verify the second condition of the schedulability deforit we provide an
amount of memory guaranteeing that the heap is not submérgbd worst-
case scenario. This amount depends on the maximum amoofritve mem-
ory in the system and on the maximum amount of memory alldchiethe
tasks during the longest time between two flips. It also dépem the collec-
tion time C,, = Cgc, which depends o, on the size of the root s&®, and

possibly on other parameters: we shall assume that we knewadinst-case
execution time of the garbage collector in our context.

Theorem 4.12 For a systemb = (I',II, £, R) with a real-time copying col-
lector 7 serviced by a polling servers, the minimum sizé/ of the heap
such that the system is guaranteed schedulable is uppedieduny

2<£+ > [%WANL > U%WJ&)AZ)

{i|P;<Ps} {i|P;>Ps}

Proof: Each semi-space must be large enough to hold the memorydcopie
by the collector during one collection cycle plus the memaligcated by the
tasks during¢strt, ¢ext) because a flip is performed #t*'* and the earliest
following flip is at#"ext,

The collector only copies the live objects. The amount of limemory is at
mostL.

From Theorem 4.7, the bour¢. also holds for the worst-case period be-
tween st and ¢"ex*. Therefore, we must count the maximum amount of
memory allocated by each task durift®'®, *<*), which is at mostR{¢..

We should first notice that even if, during the per{¢d*t, t2xt), there is only

a part of a request executed for a tagkA; must be fully counted for it be-
cause we do not have any information on when the memory isaéfid within
arequest.

For a periodic task; with priority lower thanPs, we may see that there are at

most [% + 1 requests and/or fractions of requestsofxecuted during
REG time units. Indeed, the worst case occurs when there is &esifa used
to terminate a period for; betweentstat 4 1 and sttt + 2; at sttt - 2 a

new cycle starts and there are at mg$t;, — 2 time units left till t"**, during
which % cycles ofr; are completed or started (for the last one); hence
the formula for that case.

Now, we count the maximum amount of memory allocated by tadtkshigher
priorities thanPs. t5%2* cannot occur when a request of task P; < Ps) is

not completed. In the same way*™** cannot occur when a request of task

7; IS not completed. Therefore, the worst case occurs when acpele for
7; starts a5t + 1, and the maximum number of requestsrptompleted

during [tstart 4 1, ¢next) js [%W hence the formula for that case. [

Figure 3 illustrates this theorem with an example that digtuaaches the
bound. Assume that the garbage collector flips the two spades at time

Figure 3: Example of the memory requirement withc = 6.

rjc/T|DJ|OoJAju

|1} 313030
|1 55011
7312(120[20(0|4 | 3
79 | 3 9 2
RIER BEEEEEEE e e

arriv 4 start end . next
tt tt

tstart — 392 and copiesC memory units during that collection cycle. During
that cycle[tstrt, gnext) = Ru¢, = 20, the periodic tasks allocatey’]3 +
(%1 1+ (%} + 1)4 = 33 memory units in the heap (the amount allocated for
each execution unit is provided in the figure).

5 Conclusion

We have shown a predictable method to schedule a real-timgrapgarbage
collector in a real-time system constituted of static-ptyoperiodic tasks. This
method considers the garbage collector as an aperiodicata$lexecutes it
through a polling server.

In addition to a time constraints schedulability test, tbleeslulability analysis
of the real-time system model requires the analysis of thrmim heap size
required to guarantee sufficient memory for the periodikdas

We have derived a bound for the worst-case response timeagenodic task
for the polling server with any parameters. This bound adloaw to determine
a bound on the longest garbage collection cycle, necessdmgund the heap
size required.

The schedulability analysis of this system is possible utftiassumption that
we can compute or bound the memory utilization informatiuoeiuided in the
system modelZ, R,{A1,...,A,} and{C,...,C,}.

Our contribution can be summarize as follows:

e we present a formalization of theint scheduling problem which con-
sists to schedule hard periodic tasks and a garbage coligcijether;

e We propose a schedulability test for a more specific caseedstimg
static-priority periodic tasks with a copying collector;

e we characterize the worst case response time of an apetasticerved
by a polling server.

Extensions of the present analysis could encompass thevbase many polling
servers, including a background one, are used to serviagettiage collector,
and/or where many processors share a common heap memoryanalysis

cou

Ac

Id also be extended to continuous time systems.

knowledgments

Plenty of thanks go to Dr Philip Holman from the Universitydrth Carolina
for carefully reading a draft of this paper and for his helgfuggestions.

References

[1]

[2]

3]

[4]

[5]

BAKER, H. G. List processing in real time on a serial computéam-
munications of the ACM 274 (April 1978), 280-294.

BOLLELLA, G.,AND GOSLING, J. The real-time specification for Java.
Computer 336 (2000), 47-54.

BrRoOOKS, R. A. Trading data space for reduced time and code space in
real-time garbage collection on stock hardwareComference Record of
the 1984 ACM Symposium on Lisp and Functional Programitiuogtin,

TX, August 1984), ACM Press, pp. 256-262.

GOOSSENS J. Scheduling of Hard Real-Time Periodic Systems with
Various Kinds of Deadline and Offset Constrair®hD thesis, Université
Libre de Bruxelles, 1999.

HENRIKSSON, R. Scheduling real time garbage collection.Piroceed-
ings of N\WPER’941994).

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

HENRIKSSON, R. Adaptive scheduling of incremental copying garbage
collection for interactive applications. Tech. Rep. 964;17und Univer-
sity, Sweden, 1996.

HENRIKSSON, R. Predictable automatic memory management for em-
bedded systems. I@OPSLA '97 Workshop on Garbage Collection and
Memory ManagemeriOctober 1997), P. Dickman and P. R. Wilson, Eds.

HENRIKSSON, R. Scheduling Garbage Collection in Embedded Systems
PhD thesis, Lund Institute of Technology, 1998.

JONES, R., AND LINS, R. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Managemedbhn Wiley and Sons, 1996.

KiMm, T., CHANG, N., KiMm, N., AND SHIN, H. Scheduling garbage
collector for embedded real-time systems. Aroceedings of the ACM
SIGPLAN 1999 Workshop in Languages, Compilers and Tool& fior
bedded Systen{May 1999), pp. 55-64.

Kim, T., CHANG, N., AND SHIN, H. Bounding worst case garbage col-
lection time for embedded real-time systemsPhoceedings of The 6th
IEEE Real-Time Technology and Applications Sympogilume 2000),
pp. 46-55.

KiMm, T., CHANG, N., AND SHIN, H. Joint scheduling of garbage col-
lector and hard real-time tasks for embedded applicatiaiwirnal of
Systems and Software ,5B(September 2001), 247-260.

LEUNG, J. Y.-T., AND WHITEHEAD, J. On the complexity of fixed-
priority scheduling of periodic, real-time taskBerformance Evaluation
2(1982), 237-250.

Liu, C. L.,AND LAYLAND, J. W. Scheduling algorithms for multipro-
gramming in a hard-real-time environmenlournal of the ACM 201
(1973), 46-61.

MAGNUSSON B., AND HENRIKSSON, R. Garbage collection for con-
trol systems. IProceedings of International Workshop on Memory Man-
agement(Lund University, Sweden, September 1995), H. Baker, Ed.,
vol. 986 ofLecture Notes in Computer Scien&pringer-Verlag.

NILSEN, K. High-level dynamic memory management for object ori-
ented real-time systems. Morkshop on Object-Oriented Real-Time
SystemgSan Antonio, Tx., October 1995).

[17] NiLseEN, K. D., AND ScHMIDT, W. J. Hardware-assisted general-
purpose garbage collection for hard real-time systemsh.TRep. ISU
TR92-15, lowa State University, Department of Computeefcg, Oc-
tober 1992.

[18] REDELL, O., AND SANFRIDSON, M. Exact best-case response time
analysis of fixed priority scheduled tasks. Pmoceedings of 14th Eu-
romicro Conference on Real-Time Systdthse 2002), pp. 165-172.

[19] ROBERTZ, S. G. Applying priorities to memory allocation. Rro-
ceedings of the 2002 International Symposium on Memory §eEmant
(Berlin, Germany, June 2002).

[20] ROBERTZ S. G.,AND HENRIKSSON R. Time-triggered garbage col-
lection: robust and adaptive real-time gc scheduling fobetded sys-
tems. InProceedings of the 2003 ACM SIGPLAN conference on Lan-
guage, compiler, and tool for embedded syst&hase 2003), ACM Press,
pp. 93-102.

[21] SIEBERT, F. Guaranteeing non-disruptiveness and real-time desglin
an incremental garbage collector.Rroceedings of the first international
symposium on Memory managemgri98), ACM Press, pp. 130-137.

[22] SPRUNT, B. Aperiodic Task Scheduling for Real-Time SysterR&D
thesis, Carnegie Mellon University, August 1990.

[23] TINDELL, K. Using offset information to analyse static priority pre
emptively scheduled task sets. Tech. Rep. YCS 182, Uniyas&iYork,
Department of Computer Science, August 1992.

[24] WILSON, P. R. Uniprocessor garbage collection techniqueBrde. Int.
Workshop on Memory Manageméd®aint-Malo, France, 1992), no. 637
in Lecture Notes in Computer Science, Springer-Verlag.

