
Coverability and Expressiveness Properties of

Well-Structured Transition Systems

Gilles Geeraerts

Thèse

présentée pour l’obtention du grade de

Docteur en Sciences

de l’Université Libre de Bruxelles

(Faculté des Sciences, Département d’Informatique)

ii

iii

Quaerendo invenies. . .[. . . ℄ íti ârwt¸menoi oÉ �njrwpoi, â�n ti
 kalÀ
 ârwt�, aÎtoÈlègousin p�nta ­ êqei ka�toi eÊ m� âtÔgqanen aÎtoØ
 âpist mhânoÜsa kaÈ ærjì
 lìgo
, oÎk �n oÙo� t' ªsan toÜto poi¨sai.
Plato, Phaedo, 18.

iv

v

This thesis has been written under the supervision of Prof. Jean-François Raskin
(Université Libre de Bruxelles, Belgique). The Members of the Jury are:

• Prof. Bernard Boigelot (Université de Liège, Belgique)

• Prof. Ahmed Bouajjani (Université de Paris 7, France)

• Prof. Raymond Devillers (Université Libre de Bruxelles, Belgique)

• Prof. Thierry Massart (Université Libre de Bruxelles, Belgique)

• Prof. Joël Ouaknine (Oxford University, United Kingdom)

• Dr. Laurent Van Begin (Université Libre de Bruxelles, Belgique)

vi

Résumé

Ces cinquante dernières années, les ordinateurs ont occupé une place toujours plus
importante dans notre vie quotidienne. On les retrouve aujourd’hui présents dans de
nombreuses applications, sous forme de systèmes enfouis. Ces applications sont parfois
critiques, dans la mesure où toute défaillance du système informatique peut avoir des
conséquences catastrophiques, tant sur le plan humain que sur le plan économique.
Nous pensons par exemple aux systèmes informatiques qui contrôlent les appareils
médicaux ou certains systèmes vitaux (comme les freins) des véhicules automobiles.

Afin d’assurer la correction de ces systèmes informatiques, différentes techniques
de Vérification Assistée par Ordinateur ont été proposées, durant les trois dernières
décénies principalement. Ces techniques reposent sur un principe commun: donner
une description formelle tant du système que de la propriété qu’il doit respecter, et
appliquer une méthode automatique pour prouver que le système respecte la propriété.

Parmi les principaux modèles aptes à décrire formellement des systèmes informa-
tiques, la classe des systèmes de transition bien structurés [ACJT96, FS01] occupe
une place importante, et ce, pour deux raisons essentielles. Tout d’abord, cette
classe généralise plusieurs autres classes bien étudiées et utiles de modèles à espace
d’états infini, comme les réseaux de Petri [Pet62](et leurs extensions monotones [Cia94,
FGRVB06]) ou les systèmes communiquant par canaux FIFO avec pertes [AJ93]. En-
suite, des problèmes intéressants peuvent être résolus algorithmiquement sur cette
classe. Parmi ces problèmes, on trouve le problème de couverture, auquel certaines
propriétés intéressantes de sûreté peuvent être réduites.

Dans la première partie de cette thèse, nous nous intéressons au problème de couver-
ture. Jusqu’à présent, le seul algorithme général (c’est-à-dire applicable à n’importe
quel système bien structuré) pour résoudre ce problème était un algorithme dit en
arrière [ACJT96] car il calcule itérativement tous les états potentiellement non-sûrs
et vérifie si l’état initial du système en fait partie. Nous proposons Expand, Enlarge
and Check, le premier algorithme en avant pour résoudre le problème de couverture,
qui calcule les états potentiellement accessibles du système et vérifie si certains d’entre
eux sont non-sûrs. Cette approche est plus efficace en pratique, comme le montrent
nos expériences. Nous présentons également des techniques permettant d’accrôıtre
l’efficacité de notre méthode dans le cas où nous analysons des réseaux de Petri (ou
une de leurs extensions monotones), ou bien des systèmes communiquant par canaux

vii

viii RÉSUMÉ

FIFO avec pertes. Enfin, nous nous intéressons au calcul de l’ensemble de couverture
pour les réseaux de Petri, un objet mathématique permettant notamment de résoudre
le problème de couverture. Nous étudions l’algorithme de Karp & Miller [KM69], une
solution classique pour calculer cet ensemble. Nous montrons qu’une optimisation de
cet algorithme présenté dans [Fin91] est fausse, et nous proposons une autre solution
totalement neuve, et plus efficace que la solution de Karp & Miller.

Dans la seconde partie de la thèse, nous nous intéressons aux pouvoirs d’expression
des systèmes bien structurés, tant en terme de mots infinis que de mots finis. Le pouvoir
d’expression d’une classe de systèmes est, en quelque sorte, une mesure de la diversité
des comportements que les modèles de cette classe peuvent représenter. En ce qui con-
cerne les mots infinis, nous étudions les pouvoirs d’expression des réseaux de Petri et de
deux de leurs extensions (les réseaux de Petri avec arcs non-bloquants et les réseaux de
Petri avec arcs de transfert). Nous montrons qu’il existe une hiérarchie stricte entre ces
différents pouvoirs d’expression. Nous obtenons également des résultats partiels con-
cernant le pouvoir d’expression des réseaux de Petri avec arcs de réinitialisation. En
ce qui concerne les mots finis, nous introduisons la classe des langages bien structurés,
qui sont des langages acceptés par des systèmes de transition bien structurés étiquetés,
où l’ensemble des états accepteurs est clos par le haut. Nous prouvons trois lemmes de
pompage concernant ces langages. Ceux-ci nous permettent de réobtenir facilement des
résultats classiques de la littérature, ainsi que plusieurs nouveaux résultats. En parti-
culier, nous prouvons, comme dans le cas des mots infinis, qu’il existe une hiérarchie
stricte entre les pouvoirs d’expression des extensions des réseaux de Petri considérées.

Abstract

During the last fifty years, computers have been increasingly present in our daily life.
They can be found in many applications, as embedded systems. These applications
are sometimes critical, in the sense that any failure of the computer system can yield
catastrophic effects, both from the human and the economical point of view. Exam-
ples of such systems are the computers that control medical appliances or some vital
subsystems of cars (such as brakes).

In order to ensure correctness of such computer systems, several techniques of
Computer Aided Verification have been proposed, mainly during the last thirty years.
These techniques have a common principle: provide formal specifications of the system
and of the property it has to enforce, and use some automatic method to prove that
the property is fulfilled by the system.

Among the models that have been studied for describing computer systems, the
class of Well-Structured Transition Systems [ACJT96, FS01] is one of the most im-
portant. Two main arguments can be provided in favour of that class. First of all,
that class generalises several other well-studied an useful classes of infinite-state mod-
els, such as Petri nets [Pet62] (and their monotonic extensions [FGRVB06, Cia94]),
or the lossy channel systems [AJ93]. Second, some interesting problems can be algo-
rithmically solved on this class, such as the coverability problem, to which many safety
properties can be reduced.

In the first part of the thesis, we consider the coverability problem. Hitherto, the
only general algorithm (in the sense that it can be applied to any well-structured sys-
tem) to solve the coverability problem was a so-called backward one [ACJT96]. A
backward algorithm computes iteratively all the potentially unsafe states and check
whether the initial state belongs to that set. We propose Expand, Enlarge and Check,
the first forward algorithm for the coverability problem. That algorithm iteratively
computes the states that are reachable from the initial one, and checks whether one
of these states is unsafe. That approach is more efficient in practice, as our experi-
ments show. We also explain how that method can be further improved in practice,
when considering certain classes of systems, such as extensions of Petri nets, or lossy
channel systems. Finally, we look into the computation of the coverability set, in the
case of Petri nets. The coverability set is a mathematical tool that allows to solve the
coverability problem. We consider the Karp & Miller procedure [KM69], a well-known

ix

x ABSTRACT

solution to compute that set. We show that an optimisation of that procedure, intro-
duced in [Fin91], is incorrect, and introduce a completely novel algorithm to compute
the coverability set, that is more efficient than the Karp & Miller procedure.

In the second part of the thesis, we study expressiveness properties of the well-
structured transition systems, in terms of infinite and finite words. The expressive
power of a class of models can be regarded as a measure of the diversity of behaviours
these models can express. As far as infinite words are concerned, we study the ex-
pressive power of Petri nets and two extensions of theirs, namely, the Petri nets with
non-blocking arcs and the Petri nets with transfer arcs. We show that there exists
a strict hierarchy between these different expressive powers. We also obtain partial
results regarding Petri nets with reset arcs. As far as finite words are concerned,
we introduce the class of well-structured languages, which are languages accepted by
labelled well-structured transition systems, when upward-closed sets of accepting con-
figurations are considered. We prove three pumping lemmata about these languages.
These lemmata allow us to re-obtain easily some classical results of the literature, and
to prove new ones. In particular, we prove, as in the case of finite words, that there ex-
ists a strict hierarchy between the expressive powers of the aforementioned extensions
of Petri nets.

Acknowledgements

A
lthough I am credited as sole author of this thesis, many people have been
involved its elaboration. May these few lines be a tribute to their – voluntary
or not – participation !

My foremost gratitude goes to Prof. Jean-François Raskin, who has willingly ac-
cepted six years ago to be the promoter of my Master’s thesis, and has thus become
the promoter of the present PhD thesis, the year after. Asking whether his most
precious quality is his professionalism or his cheerful attitude is, by far, an undecid-
able problem ! His insightful understanding of computer science, and, in particular,
computer-aided verification, has allowed me to progress a lot. The numerous evenings
spent listening together to classical music on his top-of-line hi-fi equipment will remain
for me wonderful souvenirs and testimony of our friendship. Thank you, Jeff !

Most of the original content of this thesis is based on several papers, written in
collaboration with (besides Jean-François) Laurent Van Begin. This collaboration
too has been to me an excellent experience, both from the professional and the humane
point of view. I also take the opportunity to thank the anonymous reviewers who have
read and rated our papers. Several improvements of our results come from the advices
we have received from them.

Many thanks to Prof. Bernard Boigelot, Prof. Ahmed Bouajjani, Prof. Ray-
mond Devillers, Prof. Thierry Massart, Prof. Joël Ouaknine and Dr. Laurent
Van Begin for having kindly accepted to be members of the jury and review the
thesis. This important task is always time consuming and deserves all my gratitude.

A special thanks has to be addressed to Prof. Raymond Devillers, who has
proofread the preliminary versions of this thesis in great details. Prof. Devillers has
become famous in the Computer Science Dept. as the ultimate ‘subtle-error-finder’,
and his many comments and suggestions have unquestionably improved the overall
quality of this document. The grain of sands I found between the pages of the last
preliminary version I handed to him prove that Prof. Devillers took his duty to
read the document very seriously, even during his holidays, on the beach. . .

Several ideas that are developed in this thesis arose from fruitful discussions with
fellow scientists, during conferences, scientific stays, or by e-mail. In particular, I

xi

xii ACKNOWLEDGEMENTS

would like to express my gratitude to Prof. Ahmed Bouajjani and Prof. Mihaela
Sighireanu who have helped us with their implementation of the Simple regular
expressions library; to Prof. Parosh Aziz Abdulla and to Dr. Johann Deneux,
who have cheerfully welcomed me at the Uppsala University (Sweden) for a research
stay; and finally to Prof. Peter Starke and Prof. Alain Finkel, who have kindly
collaborated with us when we where looking into their algorithms to compute the
minimal coverability set of Petri nets. I would like to emphasise that Prof. Starke
has devoted time to help us although retired.

In addition to these direct contributions to the scientific work contained in this
thesis, many other people have contributed to his elaboration by making my everyday
life enjoyable enough that I could devote time and energy to the present work. In
particular, it is a well-known fact that being the girlfriend of someone who writes a
PhD thesis is not an easy task. Sandrine, however, has always put up with me, with
constancy and love. She has been the one to support and hearten me every single time
it was necessary. Without exception. Without condition. With love and care. She
has accepted my weird work schedules, my laptop during the holidays, my bad mood
when I had the feeling not to have progressed for the last who-knows-how-many weeks.
I cannot tell for sure whether that thesis would have even been finished without her,
and my gratefulness goes well beyond what words can express.

My colleague Eythan, amicus optimus, kalä
 k�gajì
, has been one of my clos-
est friends during these several years spent at the Computer Science Department. As
friends and neighbours (for some time), we have spent lots of wonderful evenings dis-
cussing together. Thank you, Eythan !

My other colleagues of the Department as well as my friends contributed to cre-
ate a daily atmosphere of fun and work too. Many thanks to all of you: Ahmed,
Ana, Benjamin, Cédric, Claude-Robert, Fabienne, Frédéric, Frédéric, Gabriel, Gian-
luca, Gwenaël, Jean, Joël, Karim, Kevin, Laurence, Laurent, Léon, Marianne, Marie,
Maryka, Max, Nicolas, Nicolàs, Olivier, Pascaline, Patrick, Pierre, Martin, Rachel,
Robert, Rod, Sébastien, Stefan, Steve, Thierry, Véronique, Vincent, Walter, Yann-
Aël, Yves,. . .

Domus helvetica tua fuit nobis, O Marci, domus felicitatis. Illic, magnissima pars
huius operis scripta fuit. Illae lineae tibi gratias referant.

Contents

1 Introduction 1

2 Preliminaries 13

2.1 Mathematical notations . 14

2.2 Handling closed sets . 14

2.2.1 Orderings . 14

2.2.2 Upward– and downward–closed sets 19

2.3 Well-structured Transition Systems . 26

2.3.1 Transition systems . 26

2.3.2 Well-structured Transition Systems 28

2.3.3 Monotonic Extensions of Petri nets 30

2.3.4 Lossy Channel Systems . 43

2.3.5 Other classes of WSTS . 48

2.4 Language Theory . 52

2.4.1 Words and languages . 52

2.4.2 Operations on words and languages 52

2.4.3 Regular and Context-free languages 54

2.4.4 Closure properties . 55

2.4.5 Property of context-free languages 55

2.5 Expressiveness of WSTS . 55

2.5.1 Labelled WSTS . 56

2.5.2 Accepted finite words language 58

2.5.3 Accepted ω-language . 60

2.6 Decidability problems on WSTS . 60

2.6.1 Behavioural properties . 60

xiii

xiv CONTENTS

2.6.2 Expressiveness properties . 62

3 State of the art 65

3.1 Adequate domains of limits . 66

3.1.1 An adequate domain of limits for
〈
Nk, 4

〉
. 66

3.1.2 An adequate domain of limits for 〈States (C) , -〉 74

3.2 The coverability Problem . 83

3.2.1 A general backward algorithm for the CPWsts 83

3.2.2 Practical improvements of the backward algorithm 85

3.2.3 Forward algorithms for CPWsts 86

3.2.4 The Karp&Miller algorithm . 88

3.2.5 An attempt to extend the Karp & Miller algorithm to broadcast
protocols . 92

3.2.6 Other forward semi-algorithms 93

3.3 Decidability results for WSTS . 95

3.3.1 Behavioural properties . 95

3.3.2 Expressiveness properties . 98

3.4 Expressive powers . 99

3.4.1 Results on PN . 99

3.4.2 Results on PN+T and PN+R 102

3.4.3 Results on WSTS . 102

3.5 Discussion . 103

I Coverability properties 105

4 Expand, Enlarge and Check 107

4.1 Preliminaries . 109

4.1.1 Effectiveness requirements . 109

4.1.2 And-Or graphs and unfoldings 111

4.2 Under and Over-approximations . 113

4.2.1 The C ′-Exact Partial Reachability Graph Under (S, C ′) 113

4.2.2 The And-Or Graph Over (S, C ′, L′) 114

4.3 The ‘Expand, Enlarge and Check’ algorithm 121

CONTENTS xv

4.3.1 Why we need And-Or graphs 123

4.4 Discussion . 125

5 Practical applications of EEC 127

5.1 Preliminaries . 128

5.1.1 Simple monotonicity . 128

5.1.2 Lossiness abstraction . 128

5.1.3 Finite WSTS . 129

5.2 Application of finite WSTS to EEC . 130

5.3 A procedure to decide CPWsts on finite WSTS 134

5.4 Application to strongly monotonic SMPN 137

5.4.1 Domain of limits . 137

5.4.2 Construction of the Ci’s and Li’s 137

5.4.3 Algorithm for the coverability problem 141

5.4.4 Handling EPN . 142

5.4.5 Experimental evaluation . 149

5.5 Application to LCS . 150

5.5.1 Domain of limits . 150

5.5.2 Construction of the Ci’s and the Li’s 152

5.5.3 Approximation of the successors 152

5.5.4 Algorithm for the coverability problem 159

5.5.5 Experimental evaluation . 159

5.5.6 Why we need And-Or graphs 160

5.6 Discussion . 161

6 Efficient computation of a CS for PN 163

6.1 The minimal coverability tree algorithm 165

6.1.1 The algorithm . 165

6.1.2 Counter-example to the algorithm 166

6.1.3 Discussion of the counter-example 171

6.1.4 Remark concerning the proof of [Fin91] 172

6.2 The INA algorithm . 172

6.2.1 The algorithm . 173

6.2.2 Counter-example to the algorithm 173

xvi CONTENTS

6.3 An efficient algorithm to compute the CS 178

6.3.1 The covering sequence . 179

6.3.2 Auxiliary lemmata . 181

6.3.3 Soundness of the covering sequence 184

6.3.4 Completeness of the covering sequence 185

6.3.5 Stabilisation of the covering sequence 188

6.3.6 Empirical results . 189

6.4 Discussion . 191

II Expressiveness properties 195

7 ω-languages defined by WSTS 197

7.1 PN+T are more expressive than PN+NBA 198

7.1.1 PN+NBA are not more expressive than PN+T. 199

7.1.2 PN+T are more expressive than PN+NBA 200

7.2 PN+NBA are more expressive than PN 204

7.3 Reset nets . 207

7.4 Decidability of LTLSatis on PN+T and PN+R 209

7.5 Discussion . 209

8 Well-structured languages 211

8.1 Well-structured languages . 212

8.1.1 Positive results on LG(WSTS) 212

8.1.2 Negative result: undecidability of universality 219

8.1.3 Well-structured languages . 220

8.2 Pumping lemmata . 221

8.2.1 A pumping lemma for WSL . 221

8.2.2 A pumping lemma for PN . 221

8.2.3 A pumping lemma for PN+NBA 235

8.3 Properties of WSL . 238

8.3.1 Consequences of Lemma 8.3 . 238

8.3.2 PN+NBA are more expressive than PN 240

8.3.3 PN+T are more expressive than PN+NBA 242

CONTENTS xvii

8.3.4 Closure Properties of EPN . 244

8.3.5 Some remarks about the pumping lemmata 251

8.3.6 PN+R and Ciardo’s conjecture 252

8.4 Discussion . 255

9 Conclusion 257

xviii CONTENTS

List of Figures

1.1 The first bug of history. 3

2.1 The SMPN Nµ. 32

2.2 The SMPN Nns. 32

2.3 The four steps to compute the effect of a transfer arc 41

2.4 The two automata that make up the LCS model of the alternating bit
protocol. 47

2.5 An observer for the LCS of Figure 2.4 48

2.6 An example of TPN. 51

3.1 En example of CST. 86

4.1 A graphical sketch of the EEC schema of algorithm. 110

4.2 En example of under-approximation. 114

4.3 The configurations of SN and the limits that cover them. 124

4.4 The And-Or graph obtained with C ′ and L′. 125

5.1 An example of under-approximation. 130

5.2 An example of under-approximation (lossy WSTS) 131

5.3 An example of translation of a PN+T extended transition t into two
SMPN transitions t1 and t2. 144

5.4 An example of translation of a PN+NBA extended transition t into a
PN+T extended transition. 146

5.5 A LCS with one channel. 161

6.1 A PN on which the MCT algorithm might be faulty 168

6.2 A counter-example to the MCT algorithm. 169

6.3 A counter-example to the MCT algorithm (continued). 170

xix

xx LIST OF FIGURES

6.4 A PN on which the INA algorithm may not terminate. 174

6.5 A counter-example to the INA algorithm. 175

6.6 A counter-example to the INA algorithm (continued) 176

7.1 The PN+T N1. 201

7.2 The PN+NBA N2. 204

7.3 How to transform a PN+T into a PN+R. 207

7.4 Summary of the results on ω-languages. 210

8.1 An illustration of the construction ofMi. 227

8.2 An illustration of the construction ofM4

i for N = 3. 228

8.3 The firable sequence (along the ⇒’s) that accepts a word of the form
Bn3w

i1
n3

wK ′

n1
wi2

n2
En2 . 229

8.4 The PN N3 . 239

8.5 The PN N4 . 240

8.6 The PN+T N5. 253

8.7 The Petri net with reset arcs N6. 255

8.8 The PN+T N7. 255

List of Algorithms

3.1 An algorithm to test entailment between two sre. 77

3.2 The algorithm of [ACJT96] to solve CPWsts. 85

3.3 The Accelerate function, à la Karp&Miller. 90

3.4 The Karp&Miller algorithm. 90

3.5 The EN procedure. 94

4.1 The EEC schema of algorithm. 122

5.1 A simple fixed-point algorithm to decide the coverability problem on finite
WSTS. 135

5.2 A forward algorithm to decide the coverability problem on SMPN. . . . 141

5.3 A forward algorithm to decide the coverability problem on LCS. 159

6.1 The minimal coverability tree algorithm [Fin91]. 167

6.2 The function to remove subtrees. 174

xxi

xxii LIST OF ALGORITHMS

List of Tables

3.1 Decidability results on WSTS . 100

5.1 Empirical evaluation of the EEC method on PN 151

5.2 Empirical evaluation of the EEC method on LCS 160

6.1 Empirical evaluation of the covering sequence 192

8.1 Closure properties of LG(PN), LG(PN+NBA), LG(PN+R) and LG(PN+T).251

xxiii

xxiv LIST OF TABLES

Chapter 1

Introduction

“

C
omputers are stupid machines”. Everyone who had his first contact with a
computer has probably been told the same. A computer lacks intelligence,
by the human standards, because it is only a machine for manipulating data

according to a list of instructions1.

Nevertheless, we rely more and more on computers in our daily life. Computers
are present everywhere. They control the braking systems of our cars. They care
of our laundry by controlling our washing machines. They manage the balance of
our bank account. They form the main components of any modern telephony or
power supply network. They are sent to outer space (by rockets that they control), in
order to carry out scientific experiments. . . However, despite the diversity of the tasks
and applications that they are entrusted with, all the computers behave by executing
programs that have been written by human beings.

The ubiquity of computing devices sets the problem of the reliability of computers.
From the point of view of the programmer, this problem amounts to ensuring the
correctness of the program that the computer has to execute in order to accomplish its
task. Because computers are often present in critical applications, the correctness of
the program is sometimes an unavoidable requirement: failures of such critical systems
can sometimes be life-threatening, environmentally devastating, and/or tremendously
costly.

It is a well-known fact that computers suffer from bug, or programming errors. The
history of computing has retained the story of a moth getting trapped, on September
9th, 1945, between the relays of the Mark II computer at Harvard University, as the
first bug of history. Ironically, the poor moth has been taped to the log book of the
computer, and preserved since then (see Figure 1.1). It is interesting to remark that the
log book entry reads First actual case of bug found, which clearly shows that the term
bug was, by then, already in use to speak about a computer malfunction. Moreover, this

1http://en.wikipedia.org/wiki/Computer

1

2 CHAPTER 1. INTRODUCTION

malfunction is a hardware failure, and not directly related to a programming mistake
(the most current meaning for bug). Besides this anecdotal fact, the short history of
computing already provides us with a respectable amount of failures. Let us illustrate
this by three famous examples:

• The first (unmanned) test flight of the Ariane 5 space rocket, which took place
on June 4th, 1996, was a complete failure because of a software error. According
to the report by the Enquiry Board [Ari96], the conversion of data from 64 bits
floating point to 16 bits floating point during the first seconds of the flight caused
an arithmetic overflow. As a consequence, the computer controlling the rocket’s
engines let it leave its trajectory, and the resulting aerodynamic forces caused
the launcher to disintegrate.

• In 1985–1987, at least five patients died, and several other were severly injured,
due to the malfunction of a radiation therapy device, the Therac-25 [NT93].
Because of a race condition in the software that controlled the device, a rapid
operator could accidentally order the Therac-25 to deliver a massive and lethal
dose of radiation.

• On January 15th, 1990, a large part of the AT&T telephony network in New
York City went down, affecting about 60,000 people2. The failure was due to
a bug in the new software to control long-distance switches that had just been
installed. The switches would reboot every time they received a specific control
message from another switch. Unfortunately, that specific control message was
broadcast by any switch after rebooting. Thus, the reboot of a single switch
would trigger a cascade of continual reboot on the whole network. . .

These situations show clearly how catastrophic a computer failure can be, both from
the human and from the economical point of view. A recent report [NIS02] of the
American National Institute of Standards and Technology has estimated that ‘software
bugs [. . .] are so detrimental that they cost the U.S. economy an estimated $59.5 billion
annually [. . .]’.

Unfortunately, ensuring the correctness of programs is not an easy task. Some of
the main difficulties that make the development of reliable software a difficult task are
as follows:

• There is often an important gap between, on the one hand, the correctness crite-
ria, that are most of the time fuzzy and expressed in some natural language and,
on the other hand, the high degree of precision that is required when providing
instructions to the computer. It is thus important to be able to specify the cor-
rect behaviours of the computer systems in an univocal way, corresponding to
the true aims of the user.

2Source: www.wired.com/news/technology/0,69355-1.html?tw=wn story page next1

3

Figure 1.1: An excerpt from the log book of the Mark II computer, on September 9th,
1945. This page shows a moth that has been trapped in a relay of the computer, causing
it to malfunction. It has been removed and taped to the log book by the operators. This
moth is widely regarded as the first bug ever in computer science. The log entry, how-
ever, reads First actual case of bug found, which shows that the term bug was already
in use to design a malfunction of a computer. Actually, in a letter dated 1878, Thomas
Edison already uses this word to mean a little fault or difficulty, according to the com-
puter bug article on Wikipedia (http://en.wikipedia.org/wiki/Computer bug).

4 CHAPTER 1. INTRODUCTION

• The amount of lines of source code for modern software can be huge. For instance,
the single kernel of the Linux operating system has more that 1.5 million lines
of source code. Such a quantity of information is difficult to manage by a single
person. As a consequence, the development of large software is spread across
teams of large dimensions (sometimes thousands of programmers). This is par-
ticularly true for open-source software, where the development is often massively
cooperative.

• The advancement of programming languages and networking technology has pro-
moted the development of distributed applications, in which the computing work-
load is distributed on several threads of executions, that interact and communi-
cate. The exact semantics of the communication procedures, and the intricate
interleaving of the threads make it a difficult task, for the programmer, to fully
foresee all the possible behaviours of his program (at least, it is a much more
difficult task than in the case of sequential, single-thread programs). Remark
that the recent introduction of multi-core CPUs will dramatically increase the
need for concurrent or multithread applications, in order to profit as much as
possible from this new technology.

As a consequence, software engineering has greatly evolved, in order to cope with
the growing demand for reliable and powerful computer systems. Complex method-
ologies (such as uml [Alh98],. . .) have been proposed in order to achieve a better
analysis of the requirements, use cases, functionnalities, architectural issues. . . Tools
to assist the designer and the programmer have been created, such as smart compilers
that try to detect and foresee as many errors as possible at compile time; or integrated
development environment that can, for instance, extract the canvas of C++ classes
from an uml class diagram, thereby improving consistency between design and imple-
mentation. The use of strongly typed languages, such as Ada, for the development of
sensitive applications has been promoted. Extensive testing of the various components
of the system is nowadays part of every development cycle. And so forth. . .

However, although all those methods greatly improve our confidence in the final
product, they are not sufficient. Testing, for instance, chiefly consists in defining typical
sequences of inputs, i.e., test cases, and observing the behaviour of the system when
provided with these inputs. Unfortunately, test cases usually do not cover all the
possible situations that can arise during the lifetime of the system. For instance, race
conditions that arise from the interleaving of several threads of executions are not
easily detected by tests. Moreover, these test cases are often designed by humans who
are – willingly or not – partial in their selection. As an example, it has been reckoned
that the failure of the Ariane 5 software could have been detected before the launch,
by proper testing [Ari96].

A major alternative to testing is offered by the family of systematic verification
techniques. In this approach, the system under analysis and the requirement are both

5

expressed formally, and the goal is to actually prove that the system meets its require-
ment thanks to the formal specifications3. Unfortunately, this general idea of proving
the correctness of the system as is is not applicable in practice. Writing the proof of a
program is a very tedious, error-prone task for a human being, even for a few lines of
code. Moreover, it is well-known, since the seminal works of Turing [Tur36] that this
approach cannot be made fully automatic, because basic problems such as the halting
problem, for instance, are undecidable. As a matter of fact, Rice’s theorem [Ric53]
states that any non-trivial property of computable functions is undecidable.

Since a direct analysis of the system is not feasible, all the formal verification
methods rely on the notion of model of the system, for which the property to verify
is decidable. A suitable model of the system has to be fine enough in order to reflect
faithfully the behaviours of the system, but also coarse enough in order to maintain
decidability of the property to check4. Hence, it is particularly important to have at our
disposal a broad range of classes of models that are suitable to express various kinds
of computer systems. It is also absolutely crucial to measure as precisely as possible
the respective expressive powers of these models, and to know which properties are
decidable.

Nevertheless, when a suitable class of models has been fixed, the great advantage of
a systematic verification technique on testing is that systematic verification is able of
guaranteeing that the model of the system meets the specification, whereas a certain
degree of uncertainty still remains with testing, because some cases may not have been
covered. Systematic verification techniques, and formal methods in general, are being
developed for the last thirty years, and are nowadays widely reckoned as an effective
way of raising our confidence in a piece of hardware or software. Their importance is
such that formal methods are extensively used in the hardware industry: companies
such as Intel, SUN, Motorola and IBM develop model-checking tools [Ger01]. These
methods also begin to be accepted by the software industry (at Microsoft for instance
[BR02, AQR+04]), and known by the public (for instance, two recent articles [Jac06,
Sti06] of the science and technology journal Scientific American deal with verification
techniques).

One of the most successful technique for systematic verification is known as model-
checking5 [CGP99]. It has been introduced around 1980, independently by Clarke
and Emerson [CE81]; and Queille and Sifakis [QS82]. In this approach, the possible

3In general, all the techniques that are based upon the formal specification of the system and
the requirements are called formal methods. Remark that these formal models can also be used to
perform (rigorous) testing. Recently, several works have developped formal approaches to testing (see,
for instance, [HNRW06]). As a consequence, the family of formal methods nowadays embodies testing
techniques too.

4Remark that another advantage of analysing a model of the system instead of the system itself, is
that the dimension of a model is usually much smaller than that of the whole system, which makes the
process of verification more efficient in practice (see also the discussion on model-checking hereunder).

5Our presentation of the history of model-checking is inspired from the introduction of [CGP99],
and closely follows it.

6 CHAPTER 1. INTRODUCTION

behaviours of the system are encoded by a finite-state automaton, whose transitions are
labelled by actions of the system. This automaton can be regarded as defining finite
word languages (when we are interested in reachability properties, for instance) or
infinite word languages (when we are interested in response properties6, for instance).
The language defined by the automaton is thus a model of all the possible behaviours
(traces, path of executions) of the system. On the other hand, the requirement is
usually specified under the form of a formula from some linear-time or branching-time
logic (such a ltl [VW86], ctl [CE81] or ctl∗ [CES83]). The formula defines a set of
words which corresponds to (an over-approximation of) the behaviours of the systems
that are acceptable.

Hence, with this framework, the correctness can be assessed by extracting a model
(finite state automaton) from the system, formalising the requirement under the form
of a formula, and checking that the automaton satisfies the formula. This last step
boils down to checking that the language of the automaton is included in the set of
words defined by the formula. If it is the case, we have proved that the (model of)
the system meets its requirements. Otherwise, the model-checking procedure is able to
expose a word accepted by the automaton but rejected by the formula. That word can
then be interpreted as a trace of the system, and is thus a practical counter-example
that can be used to debug the system.

In practice, one of the major impediments to the development of model-checking
has been the so-called state explosion problem. Indeed, the size of the automaton that
defines the system can sometimes be huge and intractable (especially when the system
is specified under the form of several separated automata that correspond to the sub-
components of the system, and have to be synchronised into one single automaton).
Moreover, the formula itself is usually translated into an automaton, which can be
too large to manage. The state explosion problem, however, has been quite efficiently
dealt with thanks to the introduction of symbolic methods [McM93] based on obdd
representations [Bry86], or partial order reductions [God96]. It is now become possible
to verify systems with more than 10120 states [CGP99], and model-checking can thus be
regarded as a quite mature technology. Several success stories, such as the verification
of a component from NASA’s deep space one mission [HLP01], have confirmed this
maturity.

Nevertheless, model-checking is not the silver bullet that can solve all the problems
in verification. Its main limitation comes from the relatively poor expressiveness of
finite state automata that are used to model the system. Indeed:

• It is sometimes interesting to reason about real-time properties of the system.
Integrating temporal information about the behaviour of the system in a finite
state automaton is not trivial.

6A response property states, roughly speaking, that each event of a certain type will eventually be
followed by an event of a certain type.

7

• Some systems do not easily admit finite state models, and are more conveniently
modelled by infinite state models. For instance, parametrised systems, which
are made up of an unbounded number of copies of the same process running in
parallel, and whose correctness has to be ensured for any number of processes.
Instances of such systems are to be found among mutual exclusion protocols,
cache coherency protocols. . .

• Distributed systems often use complex communication primitives. For instance,
the Java programming language [Lea00] allows to write multi-thread programs,
where the threads can contain atomic blocks and synchronise thanks to the
notify and notifyAll methods. The semantics of these synchronisation primi-
tives is not easy to express under the form of a finite state automaton.

The first of these three limitations has been attacked by Alur and Dill, who have
introduced the theory of timed automata [AD94, Alu99]. A timed automaton is a finite
state automaton extended with real-valued clocks. The theory of hybrid systems, pro-
posed by Thomas Henzinger [Hen96], extends that of timed automata, by integrating
in the model continuous variables whose derivative is arbitrary. Hybrid systems are
thus a mix between discrete (finite automaton) and continuous (real variables) control.
Since continuous models are outside the scope of this thesis, we refer the interested
reader to the aforementioned works for further reading.

As far as the infinite number of states and the communication procedures are
concerned, several (mostly recent) works have to be mentioned:

• In [Pet62], Karl Adam Petri introduces the model of Petri nets, which allows to
model infinite state concurrent systems. In [KM69], Karp and Miller provide an
algorithm to compute a coverability set of a Petri net. That set allows to decide,
for instance, certain safety properties7.

• In [Fin90], Alain Finkel studies a class of infinite state systems for which certain
safety properties are decidable. This class is very close that of well-structured
transition systems (see hereunder).

• In [Fin91], Finkel presents an improvement of the aforementioned Karp&Miller
procedure.

• In [GS92], German and Sistla propose a method for verifying certain safety prop-
erties of concurrent systems containing an arbitrary number of identical processes
that communicate through rendez-vous synchronisations. Their method relies on
counting abstraction, which consists in building a model whose states retain how
many processes are in each process state, thereby forgetting about their individ-
ual identities.

7A safety property states, roughly speaking that something bad will never happen. It is thus a
special case of reachability.

8 CHAPTER 1. INTRODUCTION

• In [AJ93], Abdulla and Jonsson introduce a method to verify certain safety, reach-
ability and eventuality properties of systems consisting of finite-state processes
that communicate through unbounded lossy FIFO channels. These systems are
called lossy channel systems. Since the channels are unbounded, these systems
are infinite state.

• In [BW95, Boi99] Wolper and Boigelot describe how finite-state automata can
be used to (finitely and compactly) encode (possibly infinite) sets of vectors of
integer numbers satisfying a given Pressbürger arithmetic formula [Pre29]. This
new datastructure, called Number Decision Diagram (or NDD for short) allows,
together with the concept of meta-transition (a loop acceleration technique), to
verify certain kinds of infinite-state systems. NDD (and certain variations such
as QDD) have been implemented in the Lash toolkit [LAS], and succesfully used
to verify infinite-state systems (communication protocols for instance).

• In [JK95], Jonsson and Kempe present a method to verify ‘safety properties of a
class of infinite state distributed algorithms’. This class of systems is suitable to
model, for instance, telephony networks.

• In [ACJT96] (see also [FS01]), an important step is made by Abdulla, Cerans,
Jonsson and Tsay. In this work, they introduce the theory of Well-Structured
Transition Systems that naturally generalises several infinite state models such
as Petri nets and their monotonic extensions [Cia94]. They show that several
interesting properties, such as the verification of certain safety properties, are
decidable on this class. Since then, several new classes of models that are well-
structured have been proposed.

• In [ABJ98], Abdulla, Bouajjani and Jonsson study the lossy channel systems in
the framework of well-structured transition systems. They investigate forward
analysis of these systems, and provide a new datastructure, the simple regular
expressions, to finitely represent possibly infinite sets of reachable configurations.
These algorithms have been implemented in the tool TReX [ABS01].

• In [EN98, EFM99], Emerson, Namjoshi, Esparza, Finkel and Mayr study broad-
cast protocols, a class of well-structured transition systems that are made up
of an unbounded number of finite state processes that communicate through
rendez-vous and broadcast.

• In [Del00], Delzanno uses broadcast protocols to model and verify cache co-
herency protocols.

• In [DR00, DRVB01] Delzanno, Raskin and Van Begin introduce efficient data-
structures to store upward-closed sets of tuples of integers, which allows them to
obtain an empirically efficient version of the algorithm introduced in [ACJT96],
on Petri nets.

9

• In [AN01], Abdulla and Nylén introduce the Timed Petri Nets, another class of
well-structured transition systems. That class extends the plain Petri nets by
assigning real-valued ages to the tokens, that can be tested by the transitions.
Such systems thus enjoy two dimensions of infinity: the unbounded number of
tokens, and the unbounded values of the clocks. Timed Petri nets have been
further studied in [ADMN04].

• In [DRVB02], Delzanno, Raskin and Van Begin use monotonic extensions of Petri
nets, called Multi-Transfer Nets, in order to obtain models of multithread Java
programs that can capture the semantics of NotifyAll (broadcast communica-
tion) and Notify (non-blocking rendez-vous). They instantiate the algorithm of
[ACJT96] to that class, and rely on the efficient datastructure of [DR00, DRVB01]
to decide certain safety properties.

• In [BFLP03], Bardin, Finkel, Leroux and Petrucci introduce fast, a tool to
verify (without guarantee of termination) infinite state systems whose states
are tuples of integers representing the values of (finitely many) counters, and
whose transitions assign to counters arbitrary linear combination of the current
counters’ valuation (remark that some of these systems are well-structured, but
not all of them). Their technique, rather similar to that of Boigelot and Wolper
[Boi99] (see above) is based on the acceleration of loops.

• In [BH05], Bingham introduces new general methods to verify well-structured
transition systems.

It should now be clear that Well-Structured Transition Systems form a class of
infinite state systems which are worth of interest. Indeed, they naturally generalise
several other classes that have been proposed as successful ways to model various types
of computer systems. Moreover, the paper [ACJT96] has shown that several interesting
properties are decidable on that class, which justifies the ever growing interest of the
computer aided verification community in them.

The purpose of this thesis is to provide new results about well-structured transition
systems, and, in particular, about the verification of their coverability properties, and
their expressiveness. Our interest in these two specific points will be fully justified
along Chapter 2 and Chapter 3. Nevertheless, let us already evoke these arguments
here:

• The coverability problem consists in asking whether a certain set of (bad) con-
figurations8 is reachable from the initial state of the system. This problem is
meaningful in practice because many safety properties can be reduced to it. It
has been shown decidable in [ACJT96], by means of a backward algorithm, i.e.,

8It has to be upward-closed

10 CHAPTER 1. INTRODUCTION

an algorithm that iteratively computes the set of all the configurations that can
reach the set of bad configurations in zero or more steps, and tests whether the
initial configuration belongs to that set. A symmetrical (forward) algorithm could
work by computing the set of all the configurations that are reachable from the
initial one and test whether that set intersects with the bad ones. However, to
the best of our knowledge, no general forward algorithm exists for well-structured
transition systems. This is one of the open questions that we are about to address
in the first part of this thesis (see the contents, hereunder).

• As in the case of finite automata in the framework of model checking, one can la-
bel the transitions of well-structured transition systems by actions of the program
that has to be verified. It is then natural to study the expressiveness of these
systems and their subclasses (such as Petri nets), because the expressiveness of
a certain class of model is a good measure of its expressive power, i.e., an indi-
cation of which behaviours can be expressed by models of the class. We will see
that several questions remain open regarding expressiveness of well-structured
transition systems.

Plan of the thesis The thesis is organised as follows. It is divide into two parts,
besides the two introductory chapters.

In Chapter 2, we recall all the preliminary notions that are necessary for the rest
of the discussion. In particular, we recall various notions of orderings and explain how
to handle closed sets. Then, we define well-structured transition systems and identify
several of their subclasses, such as Petri nets, Extended Petri nets, Self-Modifying Petri
nets, Lossy Channels Systems, Broadcast Protocols and Timed Petri nets. Finally,
we define several decision problems regarding these systems and explain how these
systems can be used to define languages. In Chapter 3, we recall the state of the art
(the results presented there closely follow our short summary of the literature, in the
present introduction). We recall, in particular, the Karp&Miller procedure, as well as
decidability and expressiveness results.

In the first part of the thesis, we discuss coverability properties. We introduce,
in Chapter 4, the Expand, Enlarge and Check schema of algorithms, which is the
first forward algorithm to decide coverability on the whole class of well-structured
transition systems (under some reasonable effectiveness requirements). In Chapter 5,
we discuss several issues related to the practical implementation of this algorithm,
in the case of Self-Modifying Petri nets, and Lossy Channel Systems. We provide
experimental evidence of the efficiency of this new approach. In Chapter 6, we address
the coverability problem on the specific class of Petri nets, by considering the improved
algorithm of [Fin91], to compute the minimal coverability set of Petri nets. We show
that this algorithm is incorrect, and may compute an under-approximation of the

11

reachable states. We propose a new algorithm to compute a coverability set of Petri
nets, based on a novel approach, and show that it is reasonably efficient in practice.

In the second part of the thesis, we discuss expressiveness properties. In Chapter 7,
we study the expressiveness of extended Petri nets in terms of infinite word languages,
and strictly separate the expressive powers of their different subclasses. In Chapter 8,
we deal with expressiveness of well-structured transition systems in terms of finite
words languages. For that purpose, we introduce the notion of well-structured language,
and prove several of their properties. In particular, we provide three pumping lemmata
that allow us to strictly separate the expressive powers of subclasses of extended Petri
nets (in terms of finite words languages, this time).

We close the thesis by drawing a short conclusion in Chapter 9.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

T
his first chapter recalls the basic notions that are studied along the thesis. After
having fixed several mathematical notations, we discuss, in Section 2.2 various
ordering notions and explain how closed sets (wrt to these orderings) can be

finitely represented (in order to manipulate them algorithmically).

Then, in Section 2.3, we recall the notion of transition system and in particular,
that of well-structured transition system (WSTS for short), topic of this thesis. We
present several peculiar classes of WSTS that have been addressed in the literature:

• Monotonic extensions of Petri nets. We discuss the Self-Modifying Petri nets
introduced in [Val78] and the Extended Petri nets [FGRVB06]. These models are
useful to represent counting abstractions of parametrised systems [GS92, Van03].

• The Lossy Channel Systems [ABJ98] that have been introduced to model com-
munication protocols over unreliable channels [AAB99].

• The Broadcast Protocols [EN98] that can model parametrised systems that com-
municate through rendez-vous and broadcast communications.

• The Timed Petri nets [ADMN04].

After this, we introduce in Section 2.4 and Section 2.5 several concepts that are
relevant in the second part of this thesis, where we study expressiveness properties of
WSTS. We recall several notions of language theory and introduce the notion of labelled
WSTS.

We close the chapter by stating several decidability problems regarding behavioural
and expressiveness properties of WSTS. In particular, we introduce the coverability
problem, which is studied with more details in the first part of this thesis.

13

14 CHAPTER 2. PRELIMINARIES

2.1 Mathematical notations

This section recalls some basic mathematical notations and conventions that will be
used throughout this thesis.

• N denotes the set of natural numbers {0, 1, 2, . . .}.

• N0 denotes the set of strictly positive natural numbers, i.e., N \ {0}.

• Z denotes the set of integer numbers {0, 1, 2, . . .} ∪ {−1,−2, . . .}.

• R.E. denotes the set of Recursively Enumerable languages [HMU01].

• For any set S, |S| ∈ N ∪ {+∞} denotes the cardinality of S, i.e., the number of
elements in S.

• Given a set S, and a relation R ⊆ S × S, R+ denotes the transitive closure of
R. That is, R+ is the set of all the pairs (s1, s2) s.t. either (i) (s1, s2) ∈ R; or
(ii) there are k ∈ N0 elements r1, r2, . . . , rk s.t. (s1, r1) ∈ R, (rk, s2) ∈ R and,
for any 1 ≤ i < k: (ri, ri+1) ∈ R.

• Given a set S, and a relation R ⊆ S×S, R∗ denotes the reflexive and transitive
closure of R. That is, R∗ = R+ ∪ {(s, s) | s ∈ S}.

2.2 Handling closed sets

In this section, we introduce various notions of orderings (such as preorders, partial
orders, well-quasi orders,. . .). Then, we define, in section 2.2.2 the notion of upward–
and downward– closed sets (wrt to an ordering ≤). The special form these sets enjoy
allows us to represent them in a finite and easily manipulable fashion. We explain how
to obtain such a finite representation.

2.2.1 Orderings

Let us recall the notions of preorder (or quasiorder), partial order, total order, well-
founded order and well-quasi order.

2.2. HANDLING CLOSED SETS 15

Definition 2.1 (Orderings) Let S be a (possibly infinite) set. A relation ≤ ⊆
S × S is

a preorder (or quasiorder) iff ≤ is reflexive and transitive, i.e., for any s ∈ S,
(s, s) ∈ ≤ (reflexivity) and for any s1, s2, s3 ∈ S: (s1, s2) ∈ ≤ and (s2, s3) ∈ ≤
implies that (s1, s3) ∈ ≤ (transitivity).

a partial order iff ≤ is a preorder and ≤ is antisymmetric, i.e., for any s1, s2 ∈ S:
(s1, s2) ∈ ≤ and (s2, s1) ∈ ≤ implies that s1 = s2.

a total order iff ≤ is a partial order and for any s1, s2 ∈ S, either (s1, s2) ∈ ≤ or
(s2, s1) ∈ ≤. �

In either cases, we say that ≤ is an ordering1 (or order) on S. In this thesis, we will
adopt the convention to write s1≤s2 to mean that the pair (s1, s2) is in the relation
≤. We write s1 6≤s2 when (s1, s2) 6∈ ≤. We also write s1<s2 when s1≤s2 and s2 6≤s1.
This holds for any order ≤ we will have to deal with. Remark that in the case of a
partial order, for any s1, s2 ∈ S, we have s1≤s2 ∧ s2≤s1 implies s1 = s2. However,
the reverse implication also holds by the reflexivity property. Hence, if ≤ is a partial
order, s1≤s2 ∧ s2≤s1 iff s1 = s2. As a consequence s1<s2 implies that s1 6= s2.

Example 2.1

• Let S be a set that contains at least two elements. The relation R = S × S is
a preorder on S, but not a partial order, because for any pair s1, s2 ∈ S with
s1 6= s2, we have s1Rs2 and s2Rs1. Hence R is not antisymmetric.

• The ordering on pairs of natural numbers 4p⊆ N2 ×N2 s.t. 〈i1, i2〉 4p 〈i′1, i′2〉 iff
i1 ≤ i′1 and i2 ≤ i′2 is a partial order (because ≤ is a partial order – actually a
total order – on N). ♦

In the sequel, we will often manipulate sets equipped with a dedicated order. Hence
the following definition:

Definition 2.2 (Ordered Set) A tuple
〈
S,≤

〉
is an ordered set iff ≤ is a preorder

on the set S. �

Before we consider special kinds of orders, we prove the following property that
will often be used in the sequel:

1Remark that in many classical definitions, a preorder is not regarded as an order, because these
definitions state than an order has to be antisymmetric. We have chosen to regard any reflexive and
transitive relation as an order, as a means to obtain unified notations. Nevertheless, when necessary,
we avoid ambiguity by explicitly using the terms ‘preorder’, ‘quasiorder’ or ‘partial order’.

16 CHAPTER 2. PRELIMINARIES

Lemma 2.1 Let
〈
S,≤

〉
be an ordered set, and let s1, s2 and s3 be three elements of S

s.t.

• either s1<s2 and s2≤s3

• or s1≤s2 and s2<s3.

Then, s1<s3.

Proof. We provide the proof for the former case, i.e., s1<s2 and s2≤s3. The proof for
the latter is similar.

By definition of <, s1<s2 is equivalent to s1≤s2 and s2 6≤s1. Since s1≤s2 and s2≤s3,
we have s1≤s3 by transitivity of ≤. It remains to show that s3 6≤s1. We show this per
absurdum. Let us assume that s3≤s1. Since s2≤s3 by hypothesis, we have s2≤s1, by
transitivity. Contradiction. Hence s1≤s3 and s3 6≤s1, which means that s1<s3. �

Well-founded order Either of these orderings can enjoy the well-foundedness prop-
erty, which states that the ordering cannot produce an infinite strictly decreasing
sequence of elements:

Definition 2.3 (Well–Founded Order) Let
〈
S,≤

〉
be an ordered set. S is well-

founded iff there is no infinite sequence s1, s2, . . . , si . . . s.t. for any i ≥ 1: si ∈ S and
si+1<si. �

Example 2.2 The ordering ≤ on N is well-founded. Indeed, for any k ∈ N, the longest
strictly decreasing sequence starting in k is k, k − 1, k − 2, . . . , 0, which is necessarily
finite. However ≤ on Z is not well-founded, because 0,−1,−2, . . . forms an infinite
strictly decreasing chain of elements. ♦

Well-quasi orders This section introduces the notion of well-quasi ordering, which
is a special kind of preorder:

Definition 2.4 (Well-quasi Ordering) Let
〈
S,≤

〉
be an ordered set. Then, ≤

is a well-quasi ordering (WQO for short) iff: for any infinite sequence s1, s2, . . . , si, . . .

s.t. ∀i ≥ 1 : si ∈ S, there are two positions k ∈ N0 and ℓ ∈ N0 s.t. k < ℓ and sk≤sℓ.�

Remark that a direct consequence of this definition is that any WQO is also well-
founded (see Definition 2.3).

2.2. HANDLING CLOSED SETS 17

Example 2.3 The total ordering ≤⊆ N×N (classical ordering on the natural numbers)
is a WQO. Indeed, suppose it is not the case. Then by definition 2.4, it is possible to
build an infinite sequence i1, i2, . . . , ij , . . . of elements of N s.t. each element ik of the
sequence is 6≥ than all the elements i1, i2, . . . , ik−1. Since ≤ is a total order, i 6≥ j is
equivalent to i < j. Hence, the chain i1, i2, . . . , ij, . . . is an infinite strictly decreasing
sequence of natural numbers, which is not possible, because ≤ is well-founded (see
Example 2.2). Contradiction.

On the other hand, the ordering ≤⊆ Z × Z is not a WQO, because it is not well-
founded. ♦

Remark however that any well-founded order is not necessarily a WQO, as shown
by the following example:

Example 2.4 Let
〈
S,R

〉
be an ordered set s.t. S = {s1, s2, . . . , si, . . .} is infinite, and

let R = {(s, s) | s ∈ S}. Clearly, R is both reflexive and transitive. Moreover, it is also
well-founded since, for any s ∈ S, there is no s′ ∈ S s.t. sRs′ but ¬(s′Rs). Hence,
any strictly decreasing sequence is necessarily of length 1. Thus, R is a well-founded
preorder.

However, R is not a WQO because the infinite sequence s1, s2, . . . si, . . . is such that
there are no positions k and ℓ s.t. k < ℓ and skRsℓ. ♦

Finally, let us finish the discussion of WQO by providing the following Lemma,
stating that, for any infinite sequence s1, s2, . . . , si, . . . of elements from some set S

equipped with a WQO ≤, one can extract, from that sequence, an infinite subsequence
that is increasing wrt to ≤:

Lemma 2.2 Let
〈
S,≤

〉
be an ordered set where ≤ is a WQO. Let s1, s2, . . . , si, . . .

be an infinite sequence of elements s.t. for any i ≥ 1: si ∈ S. Then, there exists a
function ρ : N0 7→ N0 s.t. for any i ≥ 1: ρ(i) < ρ(i + 1) and sρ(i)≤sρ(i+1).

Proof. Per absurdum. Let us assume there exists an ordered set
〈
S,≤

〉
s.t. ≤ is a

WQO, and there exists an infinite sequence s1, s2, . . . , si, . . . of elements from S that
does not admit any infinite ≤-increasing subsequence. Let us consider any element si

from that sequence and let us build a maximal ≤-increasing sequence starting in si,
i.e., a sequence sδ(1), sδ(2), . . . , sδ(k) s.t. sδ(1) = si, for any 1 ≤ j < k: sδ(j)≤sδ(j+1) and

for any ℓ > δ(k): sδ(k) 6≤sℓ. Remark that, by hypothesis, that sequence is necessarily
finite. Thus, we have just shown that one can associate, to any element si, a position
π(i) ≥ i s.t. for any j > π(i), sπ(i) 6≤sj (simply take π(i) = δ(k)). That is, for any
i ≥ 1, we are ensured that all the elements of the sequence appearing (strictly) after
position π(i) are not ≥ than sπ(i).

The function π allows us to identify infinitely many positions in the sequence
s1, s2, . . . si, . . . that are 6≤ to all their successors in the sequence. Indeed, by defi-
nition sπ(1) is 6≤ to any sj with j > π(1). In particular, π(π(1)+1) > π(1) is a position

18 CHAPTER 2. PRELIMINARIES

s.t. sπ(1) 6≤sπ(π(1)+1) and sπ(π(1)+1) 6≤sj for any j > π(π(1) + 1). That reasoning can be
repeated from position π(π(1) + 1) by considering π(π(π(1) + 1) + 1) and so on. More
precisely, we build the function τ : N 7→ N, defined recursively as follows:

τ(0) = 0

∀i ≥ 1 : τ(i) = π(τ(i− 1) + 1)

First, remark that τ is a strictly increasing function: for any i ≥ 0: τ(i) < τ(i + 1).
Indeed, for any i ≥ 1: τ(i) = π(τ(i− 1) + 1) ≥ τ(i− 1) + 1 > τ(i− 1), by definition of
τ and π. Hence, we have:

∀i ≥ 1 : ∀j > π(i) : sπ(i) 6≤sj

⇒ ∀k ≥ 1 : ∀j > π(τ(k − 1) + 1) : sπ(τ(k−1)+1) 6≤sj ∀k ≥ 1 : τ(k − 1) + 1 ≥ 1

⇒ ∀k ≥ 1 : ∀j > τ(k) : sτ(k) 6≤sj Def. of τ

⇒ ∀k > 1 : ∀ℓ s.t. τ(ℓ) ≥ τ(k) : sτ(k) 6≤sτ(ℓ)

⇒ ∀k > 1 : ∀ℓ > k : sτ(k) 6≤sτ(ℓ) τ is strictly ≤-increasing

We conclude that the sequence sτ(1), sτ(2), . . . , sτ(i), . . . is an infinite sequence of
elements of S for which one cannot find two positions k and ℓ with k < ℓ and sk≤sℓ.
Hence, ≤ is not a WQO, by Definition 2.4. Contradiction. �

Canonical set Let us close this section on orderings by the definition of canonical
set. A set is canonical wrt to an ordering ≤ iff it does not contains two distinct
≤–comparable elements:

Definition 2.5 (Canonical Set) Let
〈
S,≤

〉
be an ordered set. A set S ′ ⊆ S is

canonical (wrt ≤) iff for any s1, s2 ∈ S ′: s1 6= s2 implies s1 6≤s2. �

Minimal and maximal elements Given an ordered set
〈
S,≤

〉
and S ′ ⊆ S:

1. The set of ≤–minimal elements Min≤ (S ′) is {s ∈ S ′ | ∄s′ ∈ S ′ : s′<s}.

2. The set of ≤–maximal elements Max≤ (S ′) is {s ∈ S ′ | ∄s′ ∈ S ′ : s′<s}.

Remark that these sets are unique, by definition. However, they might not be
canonical, nor finite, as shown by the following example:

Example 2.5 Let 〈S,R〉 be an ordered set, where R = S × S, and let S ′ ⊆ S be s.t.
|S ′| ≥ 2. Thus, S ′ is not a canonical set (by definition of R, all the elements are
comparable to each other). Moreover, there is, in S, no pair of elements s and s′ s.t.

s≤s′ and s′ 6≤s (which is equivalent to s<s′). Thus, Min≤ (S ′) = S ′ = Max≤ (S ′). In

the case where S ′ is infinite, Min≤ (S ′) and Max≤ (S ′) are both infinite too. ♦

2.2. HANDLING CLOSED SETS 19

However, when ≤ is a partial order, Min≤ (S ′) and Max≤ (S ′) are canonical:

Lemma 2.3 Let
〈
S,≤

〉
be an ordered set, and let S ′ ⊆ S. If ≤ is antisymmetric, then

Min≤ (S ′) and Max≤ (S ′) are canonical sets.

Proof. Per absurdum. Let us consider Min≤ (S ′), and let us suppose that it is not

canonical. Hence, there are s and s′ in Min≤ (S ′) s.t. s 6= s′ and s≤s′. Since ≤
is antisymmetric, this implies that s<s′. Hence, s′ does not belong to Min≤ (S ′).
Contradiction.

The same reasoning holds on Max≤ (S ′). �

2.2.2 Upward– and downward–closed sets

This section introduces special kinds of sets which are closed wrt to an ordering ≤.
We study in particular upward- and downward-closed sets.

A set U is upward-closed with respect to an ordering ≤ iff for any element u ∈ U , all
the elements that are larger (wrt ≤) than u are in U too. The definition of downward-
closed set is symmetrical:

Definition 2.6 (Upward-Closed Set) Let
〈
S,≤

〉
be an ordered set. The set

U ⊆ S is a ≤-upward-closed set iff for any u ∈ U : for any u′ ∈ S: u≤u′ implies that
u′ ∈ U . �

Definition 2.7 (Downward-Closed Set) Let
〈
S,≤

〉
be an ordered set. D ⊆ S is

a ≤-downward-closed set iff for any d ∈ D: for any d′ ∈ S: d′≤d implies that d′ ∈ D.
�

In the literature, a ≤-upward-closed set U ⊆ S is sometimes called an ideal in S.
When the ordering ≤ is clear from the context, we sometimes write upward-closed and
downward-closed instead of ≤-upward-closed and ≤-downward-closed.

Given a set S ′, one can consider its upward– or downward–closure, defined as
follows:

Definition 2.8 (Upward- and Downward-Closure) Let
〈
S,≤

〉
be an ordered

set, and let S ′ ⊆ S. Then:

1. the upward-closure of S ′, noted ↑(S ′), is the set {s ∈ S | ∃s′ ∈ S ′ : s′≤s}.

2. the downward-closure of S ′, noted ↓(S ′), is the set {s ∈ S | ∃s′ ∈ S ′ : s≤s′}. �

20 CHAPTER 2. PRELIMINARIES

Remark that, for any subset S ′ of S, ↑(S ′) and ↓(S ′) are both unique, by definition.
Finally, we can state the definition of generator of an upward– or downward– closed
set:

Definition 2.9 (Generator) Let
〈
S,≤

〉
be an ordered set, U be a ≤-upward-closed

set of S, D be a ≤-downward-closed set of S, and G ⊆ S. Then G is an upward
generator of U iff ↑(G) = U , and G is a downward generator of D iff ↓(G) = D. �

When the context permits it, we sometimes refer to upward and downward generators
simply as generators.

Finite representations of upward-closed sets Remark that, since S can be infi-
nite, upward- and downward-closed sets can be infinite too. Thus, in order to be able
to manipulate such sets in an algorithmic way, we must have some kind of finite and
effective representation for them at our disposal.

We first address the upward-closed sets. Our presentation of the way to obtain a
suitable representation of an upward-closed set follows that of [ACJT96]. The condi-
tions we want to enforce to have a suitable representation are as follows:

Definition 2.10 (Minimal elements of an upward-closed set) Let
〈
S,≤

〉

be an ordered set, and let U ⊆ S be a ≤-upward-closed set. Then, UGen (U) is a set of
elements of S s.t.:

(U1) UGen (U) ⊆ U ;

(U2) UGen (U) is a generator of U ;

(U3) UGen (U) is canonical. �

Thus, UGen (U) is a minimal generator of U . Let us illustrate Definition 2.10 by several
examples:

Example 2.6

1. Let us consider the ordered set 〈Z,≤〉. Clearly, Z is ≤-upward-closed. However,
there does not exist any set that satisfies the definition of UGen (U). Indeed, since
≤ is a total relation, any canonical subset of Z is either ∅ or a singleton. None
of them represents Z because ↑(∅) = ∅ and for any z ∈ Z we have Z \ ↑({z}) =
{z − 1, z − 2, . . .} 6= ∅. Hence, {z} does not represent Z.

2.2. HANDLING CLOSED SETS 21

2. Let us consider the ordered set 〈N, =〉. Remark that = is well-founded. Indeed,
there is no infinite sequence s1, s2, . . . , si, . . . of natural numbers s.t. for any
i ≥ 1: si = si+1 and si+1 6= si.

In this case, UGen (N) = N, because all the pairs of distinct elements i and j in
N are =-incomparable. However, N is not finite.

3. Let us consider the ordered set 〈S,R〉 where S is an infinite set and R = S × S.
Remark that R is a WQO, because any element s ∈ S is ≤-comparable to any
elements s′ ∈ S. However, R is not antisymmetric.

Clearly, S is R-upward-closed. However, for any element s ∈ S, {s} is a (finite)
canonical generator of S. Hence, UGen (S) is not unique.

4. Let us consider the ordered set 〈N,≤〉, and U = {c | 5 ≤ c}. Then, UGen (U) =
{5} is unique, canonical and finite. Moreover, UGen (U) = Min≤ (U). Remark
that, in the present case, ≤ is both a WQO and a total order. ♦

The previous examples have shown that UGen (U) does not always exist, is not
always unique and is sometimes not finite. The following results establish when it
is so. First, the well-foundedness property is necessary to ensure that a canonical
generator exists

Lemma 2.4 ([ACJT96]) Let
〈
S,≤

〉
be an ordered set s.t. ≤ is well-founded, and let

U ⊆ S be a ≤-upward-closed set. Then, there exists a set A ⊆ U s.t.:

1. A is canonical;

2. A is a generator of U .

However, this lemma does not guarantee that the generator is finite, nor that it is
unique (as we have seen in points 2 and 3 of Example 2.6). Moreover, the Lemma does

not characterise the set A. Let us show that such a set can be obtained from Min≤ (U).

For that purpose, we first show that when ≤ is well-founded, Min≤ (U) is a generator
of U :

Lemma 2.5 Let
〈
S,≤

〉
be an ordered set s.t. ≤ is well-founded, and let U ⊆ S be a

≤-upward-closed set. Then, Min≤ (U) is a generator of U .

Proof. In the case where U = ∅, we have Min≤ (U) = ∅, which is clearly a generator
for U . Otherwise, let u be an element of U . Let u1, u2, . . . , un (n ≥ 1) be a sequence
of elements of U s.t. u1 = u, for any 1 ≤ i < n: ui+1<ui and there is no u′ ∈ U s.t.
u′<un. Remark that the sequence is finite because ≤ is well-founded. Since there is no
u′ ∈ U s.t. u′<un, we have un ∈ Min≤ (U). Moreover, un≤u (remark that it might be
the case that un = u1 = u. In that case, un≤u because ≤ is reflexive). Since this holds

22 CHAPTER 2. PRELIMINARIES

for any element u ∈ U , we conclude that for any element u ∈ U , there is un ∈ Min≤ (U)

s.t. un≤u. Hence, U ⊆ ↑
(
Min≤ (U)

)
. Finally, since by definition Min≤ (U) ⊆ U , we

have: ↑
(
Min≤ (U)

)
⊆ ↑(U) = U . We conclude that ↑

(
Min≤ (U)

)
= U . �

Thus, Min≤ (U) is a generator of U when ≤ is well-founded. As we have seen, it

is not guaranteed to be canonical. Let us show how we can extract from Min≤ (U), a

canonical set A s.t. ↑(A) = ↑
(
Min≤ (U)

)
.

Let ∼⊆ Min≤ (U)×Min≤ (U) be the equivalence defined as follows: ∼= {(s1, s2) |
s1≤s2 ∧ s2≤s1}. Let Q = {Q1, Q2, . . . , Qi, . . .} be the (possibly infinite) set of equiva-
lence classes of ∼. Let us associate to every Qi an element ri ∈ Qi, that will serve as an
unique representative of Qi. Let R = {r1, r2, . . . , ri, . . .}. Remark that R ⊆ Min≤ (U).

Clearly, for every i, we have Qi ⊆ ↑(ri). Finally, let f : Min≤ (U) 7→ R be a function

that associates, to every elements s ∈ Min≤ (U) the representative ri of the equivalence

class Qi that contains s, i.e., ∀s ∈ Min≤ (U) : f(s) = ri iff s ∈ Qi. Thus:

∀i : ∀s ∈ Qi : Qi ⊆ ↑(f(s)) (2.1)

However, since U is upward-closed and since, for any s ∈ Min≤ (U), f(s) ∈ Min≤ (U),
we have:

∀s ∈ Min≤ (U) : ↑(f(s)) ⊆ ↑
(
Min≤ (U)

)
(2.2)

Let A = {f(s) | s ∈ Min≤ (U)}, and let us show that it is indeed a canonical
generator of U :

Lemma 2.6 For any ≤-upward-closed set U , the set A = {f(s) | s ∈ Min≤ (U)} is a
canonical generator of U .

Proof. Let us first show that A is canonical. By definition, there is no pair of elements
s1 and s2 in Min≤ (U) s.t. s1≤s2 and s1 6≤s2. Hence, for every s1, s2 in Min≤ (U)
s.t. s1 6= s2: s1≤s2 implies s2≤s1 and s1≤s2. Thus, by definition of ∼, and since
A ⊆ Min≤ (U): for every s1, s2 in A s.t. s1 6= s2: either s1 6≤s2 and s2 6≤s1 or s1 ∼ s2.
However, by definition of A, there can’t be two distinct elements s1 and s2 in A s.t.
s1 ∼ s2. We conclude that for any s1, s2 in A s.t. s1 6= s2: s1 6≤s2 and s2 6≤s1. Hence, A

is canonical.

Let us show that ↑(A) = ↑
(
Min≤ (U)

)
. By definition:

↑(A) =
⋃

s∈Min≤(U)

↑(f(s))

2.2. HANDLING CLOSED SETS 23

Thus, ↑(A) ⊆ ↑
(
Min≤ (U)

)
, by (2.2). Moreover let s be an element of Min≤ (U), and

i be s.t. s ∈ Qi. By (2.1) and definition of A, we have: {s} ⊆ Qi ⊆ ↑(f(s)) ⊆ ↑(A).

Since this holds for any s ∈ Min≤ (U), we obtain Min≤ (U) ⊆ ↑(A). We conclude that

↑
(
Min≤ (U)

)
= ↑(A), and, by Lemma 2.5, ↑

(
Min≤ (U)

)
= U . �

Remark that the outcome of this ‘canonisation’ construction may not be unique,
because it depends on the representative ri we have chosen for every class Qi. By
selecting other ri’s, we obtain a different set A that has the same properties. We will
see in the sequel under which conditions the set UGen (U) is unique.

Let us now assume that ≤ is a well-quasi order. In that case, any canonical subset
of S has to be finite, as stated by the next lemma:

Lemma 2.7 ([ACJT96]) Let
〈
S,≤

〉
be an ordered set where ≤ is a WQO. Then, for

every S ′ ⊆ S: if S ′ is canonical, then S ′ is finite.

Thus, since any WQO is well-founded and by Definition 2.10:

Corollary 2.1 Let
〈
S,≤

〉
be an ordered set s.t. ≤ is a WQO, and let U ⊆ S be a

≤-upward-closed set. Then, there exists A ⊆ U s.t.:

1. A is canonical;

2. A is a generator of U ;

3. A is finite.

Finally, let us show that when the WQO we consider is a partial order (that is, it
is an antisymmetric WQO), then each upward-closed set has an unique finite canonical
generator. Remark that the WQO introduced in the literature dealing with the verifi-
cation of infinite-state systems are usually antisymmetric (see sections 2.3.3, 2.3.4 and
2.3.5).

Lemma 2.8 Let
〈
S,≤

〉
be an ordered set s.t. ≤ is an antisymmetric WQO, and let

U ⊆ S be a ≤-upward-closed set. Then, there exists an unique finite and canonical
generator A ⊆ U of U .

Proof. By corollary 2.1, there exists A that respects points 1 through 3. Let us show
that this set is unique.

Per absurdum. Suppose there are two sets S1 6= S2 that satisfy Definition 2.10.
Thus, by U2: S1 ⊆ U and for any s1 ∈ S1, there must exist s2 ∈ S2 s.t. s2≤s1. We can
hold the same reasoning on S2 and obtain that for any s′2 ∈ S2, there is s′1 ∈ S1 such
that s′1≤s′2.

24 CHAPTER 2. PRELIMINARIES

Without loss of generality, let us assume that there exists s1 ∈ S1 \ S2. Since
s1 ∈ S1 but s1 6∈ S2, and since ≤ is antisymmetric, there is s2 ∈ S2 s.t. s2<s1. But
since s2 ∈ S2, there is s3 ∈ S1 s.t. s3≤s2<s1. Thus, s3<s1 by Lemma 2.1. Hence,
there are two different elements s1 and s3 in S1 which are comparable, and S1 is thus
not canonical. Contradiction. �

Not surprisingly, in that case, for any ≤-upward-closed set U , the set UGen (U) is

exactly Min≤ (U):

Lemma 2.9 Let
〈
S,≤

〉
be an ordered set s.t. ≤ is an antisymmetric WQO, and let

U ⊆ S be a ≤-upward-closed set. Then, UGen (U), exists, is a finite set and is equal

to Min≤ (U).

Proof. By Lemma 2.5, Min≤ (U) is a generator of U . By Lemma 2.3, and since ≤
is antisymmetric, Min≤ (U) is also canonical. Finally, since ≤ is a WQO, Min≤ (U)

is finite, by Lemma 2.7. Hence, Min≤ (U) is a finite canonical generator of U . By
Lemma 2.8, UGen (U) exists and is the only set that respects these conditions. Hence,

UGen (U) = Min≤ (U). �

Thus, in that case, any ≤-upward-closed set can be effectively represented by its
finite set of minimal elements. On the other hand, ≤-downward-closed sets are more
difficult to represent effectively, because they may contain infinite increasing sequences
of elements.

Finite representations of downward-closed sets To obtain a finite representa-
tion of ≤-downward-closed sets, we must use well-chosen limit elements ℓ 6∈ S that
will serve as representation for the ≤-downward-closures of infinite increasing chains of
elements. Thus, we introduce the notion of adequate domain of limits. Remark that in
the following definition, we restrict ourselves to the case where the considered ordering
≤ is a WQO.

Definition 2.11 (Adequate domain of limits) Let
〈
S,≤

〉
be a an ordered set

where ≤ is a WQO, and L be a set of elements disjoint from S, the tuple 〈L,⊑, γ〉 is
called an adequate domain of limits for

〈
S,≤

〉
if the following conditions are satisfied:

(L1) representation mapping: γ : L ∪ S 7→ 2S associates to each element in L ∪ S

a ≤-downward-closed set D ⊆ S. Furthermore, for any s ∈ S, we impose that
γ(s) = ↓(s). In the following, γ is extended to sets S ⊆ L∪S in the natural way:
γ(S) = ∪s∈Sγ(s);

(L2) top element: there exists a special element ⊤ ∈ L such that γ(⊤) = S;

2.2. HANDLING CLOSED SETS 25

(L3) precision order: the elements of L ∪ S are ordered by the quasi-order ⊑, defined
as follows: d1 ⊑ d2 if and only if γ(d1) ⊆ γ(d2);

(L4) completeness: for any ≤-downward-closed set D ⊆ S, there exists a finite set
D′ ⊆ L ∪ S such that γ(D′) = D. �

Remark 2.1 Remark that we could have omitted the ⊤ element in this definition, since
point (L4) guarantees that any downward-closed set of S (that is, S included), can be
finitely represented by elements of L ∪ S. However, this simplifies our presentation of
the Expand, Enlarge and Check algorithm in Chapter 4.

Remark further that the definition of ⊑ follows directly from the γ. In other words,
d1 ⊑ d2 can be regarded as a shorthand notation for γ (d1) ⊆ γ (d2).

Examples of adequate domain of limits that are applicable to represent downward-
closed sets of configurations for classical models of computation (such as Petri nets, or
Lossy channel systems) are provided in Section 3.1.

Remark that, unlike the upward-closed sets case, considering an antisymmetric
WQO is not sufficient to guarantee the unicity of the representations of downward-
closed sets. Indeed, ≤ being antisymmetric does not necessarily imply that ⊑ is an-
tisymmetric.Suppose, for instance, that there are two limit elements ℓ1 and ℓ2 s.t.
γ(ℓ1) = γ(ℓ2). This will be the case, for instance, when considering downward-closed
regular expressions (suitable to represent downward-closed sets of configurations of
Lossy channel systems) that are not in normal form (see Section 3.1.2).

Remark that when we consider a finite ≤-downward-closed set D, limit elements are
not necessary anymore since no infinite increasing sequences of elements can appear.
In that case, Max≤ (D) is a finite generator of D:

Lemma 2.10 Let
〈
S,≤

〉
be an ordered set and let D ⊆ S be a finite ≤-downward-

closed set. Then, Max≤ (D) is a finite generator of D

Proof. Since D is finite and Max≤ (D) ⊆ D, by definition, Max≤ (D) is necessarily finite.
Let d be an element of D, and let d1, d2, . . . be a maximal (non-extendable) sequence
of <-increasing elements of D starting in d, i.e.,: d1 = d and for any i ≥ 1: di<di+1.
Let us first show, per absurdum, that such a sequence has to be finite. If the sequence
is infinite, there are two positions k and ℓ s.t. dk = dℓ because D is finite. Moreover
ℓ− k > 1, because otherwise, we would have dk<dk, which contradicts the reflexivity
property of ≤. Since ≤ is transitive, we have dk≤dℓ−1. However, since dℓ−1<dℓ = dk,
we have dk 6≤dℓ−1. Contradiction. We conclude that the sequence d1, . . . , dn is finite.

Thus, we can associate, to any element d ∈ D, an element dn ∈ D s.t. d≤dn and
s.t. there is no d′ ∈ D s.t. dn<d, because the sequence is maximal. This implies that

dn ∈ Max≤ (D). Hence, ↓
(
Max≤ (D)

)
= D �

26 CHAPTER 2. PRELIMINARIES

Thus, Max≤ (D) is a finite generator for any finite downward-closed set D. Since this

set is finite, it is possible to extract from Max≤ (D) at least one canonical set that has
the same downward-closure.

Moreover, when the WQO considered is a partial order, the set Max≤ (D) is a finite,
canonical and unique representation of D:

Lemma 2.11 Let
〈
S,≤

〉
be an ordered set where ≤ is an antisymmetric WQO, and

let D ⊆ S be a finite ≤-downward-closed set. Then, Max≤ (D) is:

1. a generator of D;

2. finite;

3. canonical;

4. unique: there is no finite canonical set D′ ⊆ S s.t. D′ 6= D and D′ is a generator
of D.

Proof. By Lemma 2.10, Max≤ (D) is a finite generator of D. Since ≤ is antisymmetric,

Max≤ (D) is also canonical, by Lemma 2.3.

Let us show per absurdum that Max≤ (D) is unique. Assume there is another
set D′ that is a finite canonical generator of D. Without loss of generality, there is
d ∈ Max≤ (D)\D′. Thus, d ∈ D. Since D′ is a generator of D, there is d′ in D′ s.t. d≤d′.
Moreover d′ 6= d, because d 6∈ D′. Hence, d<d′ because ≤ is antisymmetric. Since
d′ ∈ D′ ⊆ D, there is d′′ ∈ Max≤ (D) s.t. d′≤d′′. Hence, there are two distinct elements

d and d′′ in Max≤ (D) s.t. d<d′′. Hence Max≤ (D) is not canonical. Contradiction. �

2.3 Well-structured Transition Systems

The models of computations that are considered in this thesis are called Well-Structured
Transition Systems, or WSTS for short. A WSTS is essentially a transition system
whose set of configurations is possibly infinite but ordered with respect to a well-quasi
ordering. Let us first introduce the notion of transition system, preparatory to the
definition of WSTS.

2.3.1 Transition systems

A transition system is a (possibly infinite) set of configurations equipped with a tran-
sition relation. The set of configurations usually represents the states of the system
that is modelled. One of these configurations is regarded as the initial configuration of

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 27

the system, i.e., the state in which the system is at the beginning of any computation.
The transition relation expresses the dynamics of the system by indicating, given the
current configuration of the system, what are the possible configurations of the system
at the next step of computation. The next definition states this more formally.

Definition 2.12 (Transition system) A transition system is a tuple S=〈C, c0,⇒〉
such that:

1. C is a possibly infinite set of configurations;

2. c0 ∈ C is the initial configuration;

3. ⇒⊆ C × C is the transition relation. �

We adopt the following convention: we note c1 ⇒ c2 whenever c1 and c2 are two
configurations of a transition system S = 〈C, c0,⇒〉 s.t. (c1, c2) ∈⇒. We also use the
notation c1 ⇒∗ c2 instead of (c1, c2) ∈⇒∗.

Dynamics of a transition system The following definitions will be useful in order
to precisely define the dynamics of transition systems:

Definition 2.13 (Dynamics of transition systems) Given a transition sys-
tem S = 〈C, c0,⇒〉, a quasiorder ≤ s.t.

〈
C,≤

〉
is an ordered set, and a configuration

c:

1. Post (c) denotes the set {c′ | c⇒ c′} of one-step successors of c;

2. Pre (c) denotes the set {c′ | c′ ⇒ c} of one-step predecessors of c;

3. PreUp≤ (c) denotes the set of all configurations whose one-step successors by ⇒
are larger (w.r.t. ≤) than c i.e., PreUp≤ (c) = {c′ | ∃c′′ : c′ ⇒ c′′ ∧ c≤c′′}.

4. Post∗ (c) denotes the set {c′ | c⇒∗ c′} of successors of c;

5. Pre∗ (c) denotes the set {c′ | c′ ⇒∗ c} of predecessors of c;

6. Reach (S) denotes the set Post∗ (c0). �

In addition, when c′ is a configuration in Post∗ (c), we say that c′ is reachable from
c, and when c′ is in Reach (S), we say that c′ is reachable in S, or simply that c′ is
reachable, when the transition system considered is clear from the context. We also
extend all these operators (but Reach) to sets C ′ ⊆ C in the natural way. For instance
Pre (C ′) = ∪c′∈C′Pre (c′), and so forth.

The semantics of a transition system is a set of executions, which are sequences
of configurations where each pair of consecutive configurations satisfies the transition
relation:

28 CHAPTER 2. PRELIMINARIES

Definition 2.14 (Execution) Given a transition system S = 〈C, c0,⇒〉, an exe-
cution is:

• either a finite sequence c1, c2, . . . , cℓ s.t. for any 1 ≤ i < ℓ: ci ⇒ ci+1;

• or an infinite sequence c1, c2, . . . , ci, . . . s.t. for any i ≥ 1: ci ⇒ ci+1.

When c1 = c0, the execution is initialised. �

When speaking about an execution of a transition system S, we refer to an initialised
execution, unless stated otherwise.

In the sequel, we will often assume that the transition systems we consider always
have the ability to progress, whatever the state they are in. Such transition systems
are called deadlock-free:

Definition 2.15 (Deadlock-freeness) Let S = 〈C, c0,⇒〉 be a transition sys-
tem, and let Dead (S) be its set of deadlock configurations, i.e.,

Dead (S) = {c ∈ C | Post (c) = ∅}

Then, S is deadlock-free iff Dead (S) = ∅. �

Remark that any transition system can always be turned into a deadlock free tran-
sition systems with the same reachable configurations, by adding a self-loop on all con-
figurations. That is, we consider the new transition relation ⇒′=⇒ ∪

{
(c, c) | c ∈ C

}
.

2.3.2 Well-structured Transition Systems

We are now equipped to define the central notion of this thesis: the Well-Structured
Transition Systems.

Definition 2.16 (Well-Structured Transition System) A Well-Structured
Transition System (WSTS for short) is a tuple S =

〈
C, c0,⇒,≤

〉
s.t.:

• 〈C, c0,⇒〉 is a transition system;

•
〈
C,≤

〉
is an ordered set;

• ≤ is a WQO;

• ⇒ is ≤-monotonic, that is: for any c1, c2, c3 ∈ C s.t.: c1 ⇒ c2 and c1≤c3, there
exists c4 ∈ C with c3 ⇒∗ c4 and c2≤c4. �

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 29

A WSTS is thus a transition system equipped with a WQO ranging on its set of
configurations. As a consequence, the definitions of Post, Pre, Post∗, Pre∗, and PreUp,
as well as the notions of executions and reachable configurations given for a (plain)
transition system at Definitions 2.13 and 2.14, extend naturally to the case of WSTS.

Example 2.7 Let us consider S = 〈N× N× N, 〈0, 1, 0〉 ,⇒, 4〉 s.t.:

• 〈p1, p2, p3〉 4 〈q1, q2, q3〉 iff p1 ≤ q1 and p2 ≤ q2 and p3 ≤ q3 and

• 〈p1, p2, p3〉 ⇒ 〈q1, q2, q3〉 iff one of the following holds:

– q1 = p1 + 1 and q2 = p2 and q3 = p3 or

– p1 ≥ 1 and p2 ≥ 1 and q1 = p1 − 1 and q2 = p2 − 1 and q3 = p3 + 1 or

– p3 ≥ 1 and q1 = p1 + 1 and q2 = p2 + 2 and q3 = p3 − 1.

S is a WSTS. The proof that 4 is a WQO can be found in the sequel. It is not dif-
ficult to see that such a system is 4-monotonic. Indeed, the conditions under which
〈p1, p2, p3〉 ⇒ 〈q1, q2, q3〉 are of the form ∧ipi ≥ ki, where the ki’s are natural constants.
Hence, if some configuration 〈p1, p2, p3〉 satisfies such a condition, then any configura-
tion 〈p′1, p′2, p′3〉 < 〈p1, p2, p3〉 satisfies it too. Moreover, the ‘effect’ of the transitions
consist in adding or subtracting natural constants from some coordinates, hence it is
constant. Thus, there is a configuration 〈q′1, q′2, q′3〉 s.t. 〈p′1, p′2, p′3〉 ⇒ 〈q′1, q′2, q′3〉 and
〈q1, q2, q3〉 4 〈q′1, q′2, q′3〉. ♦

Motivation of the definition of WSTS The definition of WSTS is very general and
may seem rather remote from the models of computation that have proved to be useful
in practice when modelling computer systems. Nevertheless, we show in the remaining
parts of this section that several well-known models of computation are WSTS. These
models are:

1. The monotonic extensions of Petri nets, such as the Self-modifying Petri nets
introduced in [Val78], the Petri nets with transfer arcs [Cia94], the Petri nets
with non-blocking arcs [RVB04], and so forth. . . (see section 2.3.3).

2. The Lossy Channel Systems [AJ93, ABJ98, AAB99], which are sets of finite
automata that communicate through lossy FIFO channels (see section 2.3.4).

3. The Broadcast Protocols [EN98], which are sets of finite automata that commu-
nicate through rendez-vous and broadcast synchronisations (see section 2.3.5).

4. The timed Petri nets, as defined by Abdulla et al. [ADMN04] (see section 2.3.5).

30 CHAPTER 2. PRELIMINARIES

2.3.3 Monotonic Extensions of Petri nets

In his PhD thesis [Pet62], Karl Adam Petri has introduced a model of computation
which is suitable to express the behaviour of concurrent systems. This model has been
coined Petri net as a tribute to his inventor. Since then, a considerable amount of work
has been devoted to the study of Petri nets, some of them proposing various extensions
of the seminal definition.

A particularly general extension of the Petri nets is due to Valk and is called Self-
Modifying Petri Nets [Val78] (SMPN for short). In this thesis, we will restrict our
attention to a sub-class of SMPN: the strongly monotonic SMPN. This restriction is
motivated by the fact that the Petri nets, as well as several interesting extensions of
Petri nets that have been introduced in other works (such as: the Petri nets with trans-
fer arcs, with non-blocking arcs, etc.) are (in some sense) equivalent to some strongly
monotonic SMPN. Moreover, the strong monotonicity property of these SMPN will be
important when introducing the Expand, Enlarge and Check algorithm in Chapter 4.

We open this section with the definitions of SMPN and strongly monotonic SMPN.
Then, we introduce the class of Extended Petri nets2 and discuss its relation to the
class of strongly monotonic SMPN.

Self-Modifying Petri nets An SMPN is made up of a set of places, which are
intuitively regarded as resources. The availability of each resource is represented by
putting some tokens inside the places. The amount of tokens inside a place indicates
the quantity of resource available. A function expressing how many tokens are assigned
to each place is called a marking. The dynamic part of the system is expressed by the
transitions, which consume (remove) some tokens in certain places and produce tokens
in other places. The exact effect of each transition depends on the current marking:

Definition 2.17 ([Val78]) (Self-Modifying Petri Nets) A Self-Modifying
Petri net, SMPN for short, is a tuple N = 〈P, T, D−, D+,m0〉 s.t.:

• P = {p1, . . . , p|P |} is a finite set of places. A marking is a function m : P 7→ N
that assigns a natural value to each place. In the following, markings are also
seen as tuples in N|P | where the ith component is the value assigned to place pi.
Given a set of places {p1, p2, . . . , pk}, we denote by m

(
{p1, p2, . . . , pk}

)
the value∑

1≤i≤k m(pi);

• T = {t1, . . . , t|T |} is a finite set of transitions with T ∩ P = ∅;

• For any 1 ≤ i ≤ |T | and any 1 ≤ j ≤ |P |, D−
ij : N|P | 7→ N and D+

ij : N|P | 7→
N describe respectively the input and output effect of transition ti on place pj.

2which encompass the Petri nets, the Petri nets with transfer arcs and the Petri nets with non-
blocking arcs

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 31

Namely, D−
ij and D+

ij are functions of the marking m of the form3 α +
∑|P |

k=1 βk ·
m(pk) where α ∈ N and βk ∈ N for all 1 ≤ k ≤ |P |;

• m0 is the initial marking of N . �

A very widespread graphical representation of SMPN is adopted in this thesis. Each
place p ∈ P is represented by a circle (sometimes labelled by the name of the place).
Each transition t ∈ T is represented by a filled rectangle (that can be labelled by
the name of the transition). Arrows are drawn from places to transitions and from
transitions to places, in order to represent the effect of the transitions. More precisely,
if D−

ij 6= 0, then an arrow labelled by D−
ij is drawn from pj to ti. Similarly, when

D+
ij 6= 0, an arrow labelled by D+

ij is drawn from ti to pj. When the label of the arrow
should be 1, we sometimes omit it on the figure. Finally, a marking m can also be
represented in a graphical fashion, by drawing m(p) black tokens inside each place p.
The two following examples should make this clear.

Example 2.8 Let us consider the SMPN Nµ = 〈P, T, D−, D+,m0〉 s.t.:

• P = {p1, p2, p3};

• T = {t1, t2, t3};

• D− =




0 0 0
1 1 0
0 0 1



;

• D+ =




1 0 0
0 0 1
1 1 0



;

• m0 = 〈0, 1, 0〉.

In this definition, we have represented the functions D+
ij and D−

ij as matrices: the
element in line i, column j of the matrix D− (resp. D+) is the value of function D−

ij

(D+
ij). Thus, in the present case, all the βk factors are equal to 0. Nµ is graphically

represented at Figure 2.1. ♦

Example 2.9 Let us consider the SMPN Nns = 〈P, T, D−, D+,m0〉 s.t.:

• P = {p1, p2};

• T = {t1, t2};
3Naturally, terms whose coefficient are null might be omitted.

32 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

p2

t1

t2
2 ·m(p1)

Figure 2.2: The SMPN Nns.

• D−
11(m) = 1, D−

21(m) = 2 ·m(p1) and D−
12(m) = D−

22(m) = 0;

• D+
22(m) = D+

12(m) = 1 and D+
11(m) = D+

21(m) = 0;

• m0 = 〈0, 0〉.

It is graphically represented at Figure 2.2. ♦

Dynamics of SMPN We have already sketched the way an SMPN can evolve, by
letting its transitions move tokens from one place to another. Let us define this more
precisely.

Definition 2.18 (Enabled transition, effect of a transition) Given an
SMPN N = 〈P, T, D−, D+,m0〉, and a marking m of the places of N , a transition ti
is firable (or enabled) from a marking m if m(pj) ≥ D−

ij(m) for all pj ∈ P . This is

denoted by m
ti−→. Firing an enabled ti from m leads to a marking m′ ∈ N|P |. This is

noted m
ti−→ m′, and m′ is computed as follows. First, we compute m′′, s.t. for any

pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we let m′ be s.t. for any pj ∈ P : m′(pj) =

m′′(pj) + D+
ij(m). �

Remark that the two steps in the computation of m′ can be swapped when we manipu-
late (plain) markings of SMPN. However, the order of these steps will become relevant
when we will manipulate extended markings (see Section 3.1.1)

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 33

From Definition 2.18, it is easy to see that an SMPN N = 〈P, T, D−, D+,m0〉
naturally defines a transition system SN =

〈
N|P |,m0,⇒

〉
, where ⇒ is such that we

have m1 ⇒ m2, if and only if there exists ti ∈ T such that ti is firable from m1 and

m1
ti−→m2.

We adopt the following notational conventions throughout this thesis. Let σ =
t1t2 . . . tn be a (possibly empty) sequence of n transitions (hence, if σ is empty, we
have n = 0). We write m

σ−→ m′ to mean that there are m1, . . . ,mn+1 such that

m1 = m, mn+1 = m′ and m1
t1−→ m2

t2−→ · · · tn−→ mn+1. We sometimes write m
∗−→ m′

to mean that there exists a sequence of transitions σ such that m
σ−→ m′. We also

write m → m′ to mean that there exists a transition t s.t. m
t−→ m′. Moreover, we

sometimes confuse an SMPN N with its associated transition system SN , and write,
for instance Reach (N) instead of Reach (SN).

Example 2.10 In the SMPN Nµ of Example 2.8, transition t1 is always enabled and if

m
t1−→m′, then m′(p1) = m(p1) + 1, m′(p2) = m(p2) and m′(p3) = m(p3). Transition

t2 is enabled only if there is at least one token in p1 and at least one token in p2. t3 is
enabled only if there is at least one token in p3. The set Reach (Nµ) is {〈i, 1, 0〉 | i ≥
1} ∪ {〈i, 0, 1〉 | i ≥ 1}. Finally, let us illustrate the notation m

σ−→ m′, by remarking

that, for instance, 〈1, 1, 0〉 t2t3t2t3t2−−−−−→ 〈0, 0, 1〉.
In the SMPN Nns of Example 2.9, transition t2 is enabled in m iff m(p1) = 0.

Indeed, if m(p1) > 1, the condition m(p1) ≥ 2 ·m(p1) is false. ♦

We have just shown that any SMPN N defines a transition system SN . However,
this does not mean that SN is a WSTS. In order to identify which SMPN define a
WSTS, we need a WQO to compare markings.

A WQO for the markings The WQO that we use to compare two markings is 4,
defined as follows:

Definition 2.19 (The WQO 4) Let P be a set of places of an SMPN. Then, the
ordering 4⊆ N|P | ×N|P | is s.t. for any pair of markings m1 and m2:

m1 4 m2 iff for any 1 ≤ i ≤ |P | : m1(pi) ≤m2(pi)

�

Remark that 4 is, by definition, a partial order. We write m1 ≺ m2 iff m1 4 m2 but
m2 64 m1. As usual,m2 < m1 iff m1 4 m2 and m2 ≻ m1 iff m1 ≺ m2. Since 4 is a
partial order, either m1 ≺m2 or m1 ≻m2 both imply that m1 6= m2.

Let us show that this ordering is indeed a WQO. For that purpose, we first prove
Lemma 2.2. It allows us to deduce that 4 is a WQO.

34 CHAPTER 2. PRELIMINARIES

Lemma 2.12 Let P be a set of places of an SMPN. Let m1,m2, . . . ,mi, . . . be an
infinite sequence of markings ranging over P . Then there exists a strictly increasing
function ρ : N 7→ N s.t. for any i ≥ 1: mρ(i) 4 mρ(i+1).

Proof. Let us consider the sequence m1(p1),m2(p1), . . . ,mi(p1), . . . Since this is an
infinite sequence of natural number and since ≤ is a WQO on N, there exists, by
Lemma 2.2, a function ρ1 s.t. the sequence mρ1(1)(p1),mρ1(2)(p1), . . . ,mρ1(i)(p1), . . .
is an infinite ≤-increasing sequence, i.e., for any i ≥ 1: mρ1(i)(p1) ≤ mρ1(i+1)(p1).
Hence, we obtain an infinite sequence of markings S1 = mρ1(1),mρ1(2), . . . ,mρ1(i), . . .

that is increasing on the first coordinate. Starting from that sequence, one can
repeat the same reasoning on place p2 an obtain a function ρ2 s.t. the sequence
S2 = mρ2(1),mρ2(2), . . . ,mρ2(i), . . . is increasing on the second and the first coordi-
nate (since S2 is a subsequence of S1). By repeating this construction for any place of
P , we eventually obtain a function ρ|P |. That function allows us to define the sequence
S|P | = mρ|P |(1),mρ|P |(2), . . . ,mρ|P |(i), . . . s.t. for any i ≥ 1 : mρ|P |(i) 4 mρ|P |(i+1). We let
ρ = ρ|P | to obtain the lemma. �

From the previous lemma, we obtain a proof that 4 is a WQO:

Proposition 2.1 4 is a WQO.

Proof. Let m1,m2, . . . ,mi, . . . be an infinite sequence of markings ranging over the
same set of places P , and let us show that there are two positions k and ℓ s.t. k < ℓ

and mk 4 mℓ. By Lemma 2.12, there exists a strictly increasing function ρ : N 7→ N
s.t. for any i ≥ 1: mρ(i) 4 mρ(i+1). We obtain the lemma by letting, for instance,
k = ρ(1) and ℓ = ρ(2). �

Monotonic and strongly monotonic SMPN Remark that not every SMPN defines
a transition system whose transition relation is 4-monotonic. For instance, consider
the SMPN of Example 2.9, without transition t1. The transition relation ⇒ of the
transition system that corresponds to this SMPN is not 4-monotonic. Indeed, we
have seen in Example 2.10, that t2 is enabled in m when m(p1) = 0, but not when
m(p1) ≥ 1. Since we have suppressed the transition t1, there is no transition enabled
when m(p1) ≥ 1. Hence ⇒= {(〈0, 0〉 , 〈0, 1〉)}, which is clearly not monotonic. Thus,
we need the following definition:

Definition 2.20 (Monotonic SMPN) An SMPN N = 〈P, T, D−, D+,m0〉 is mono-
tonic iff, for any m1, m2 and m3 s.t. m1 → m2 and m1 4 m3, there exists m4 s.t.
m3

∗−→m4 and m2 4 m4. �

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 35

Obviously, the transition system that corresponds to a monotonic SMPN has a 4-
monotonic transition relation.

Remark that, in this definition, we impose no restriction on the sequence of tran-

sitions σ s.t. m3
σ−→ m4. In particular, it could be the case that m1

t−→ m2 for some

transition t, but that m3
t−→ does not hold. For instance, consider the SMPN Nns of

Example 2.9. It is clearly monotonic. But if we let m1 = 〈0, 0〉, m2 = 〈0, 1〉 and

m3 = 〈1, 0〉, then m1
t2−→ m2 and m1 4 m3, but t2 is not enabled in m3. However, t1

is and m3
t1−→ 〈0, 1〉 < m2. This motivates the following more restrictive definition:

Definition 2.21 (Strongly Monotonic SMPN) N = 〈P, T, D−, D+,m0〉 is a
strongly monotonic SMPN iff N is an SMPN and for any m1, m2 and m3 s.t. there

exists t ∈ T with m1
t−→ m2 and m1 4 m3: there exists m4 s.t. m3

t−→ m4 and
m2 4 m4. �

Clearly, any strongly monotonic SMPN is monotonic. The SMPN of Example 2.9 is
monotonic but not strongly monotonic, whereas the SMPN of Example 2.8 is strongly
monotonic. We will see in the sequel that several classes of extended Petri nets studied
in the literature (Petri nets, Petri nets with transfer arcs and Petri nets with non-
blocking arcs) are strongly monotonic SMPN or are (in some sense) equivalent to
strongly monotonic SMPN.

It is possible to syntactically identify the class of strongly monotonic SMPN, as
stated by the following lemma. We say that a transition t is unfirable, whenever there
exists no marking m such that t is enabled in m. In this thesis, we assume that all
the SMPN we consider do not contain unfirable transitions4.

Lemma 2.13 Given an SMPN N = 〈P, T, D−, D+,m0〉 without unfirable transitions,
N is strongly monotonic if and only if for all ti ∈ T, pj ∈ P : either D−

ij = α with
α ∈ N or D−

ij = m(pj).

Proof. We prove the two directions of the iff independently.

1. If N is strongly monotonic then ti ∈ T, pj ∈ P : D−
ij = α with α ∈ N or

D−
ij = m(pj). We proceed per absurdum. Suppose that it is not the case, that is
N is 4-strongly monotonic and there exist ti ∈ T, pj ∈ P such that D−

ij is not of
the form α with α ∈ N or m(pj). Let D−

ij =
∑

pk∈P βk ·m(pk) + α. We consider
three cases:

(a) βj > 1. In that case, any marking m from which ti is firable must satisfy
m(pj) = 0. Let m′ be a marking s.t. m 4 m′ and m′(pj) ≥ 1. Clearly, ti is
not firable from m′ although m′ < m. Thus, N is not (strongly) monotonic.
Contradiction.

4Remark that ti is unfirable iff the system of linear inequations m(pj) ≥ Dij
−(m) (for j =

1, 2, . . . , |P |) admits no solution in N|P | (where the variables are m(p1), m(p2),. . . , m(p|P |)).

36 CHAPTER 2. PRELIMINARIES

(b) (βj = 1 and α > 0). In this case, ti is unfirable. Contradiction.

(c) βj = 0 or (βj = 1 and α = 0). Since D−
ij is not of the form α or m(pj), there

is k′ 6= j such that βk′ > 0. By hypothesis, ti is firable from at least one
marking m. Let us construct the marking m′ as follows: ∀pk 6= pk′ ∈ P :
m′(pk) = m(pk), and m′(pk′) = m(pk′) + m(pj) + 1. By construction,
m 4 m′ but ti is not firable from m′. Indeed, for ti to be firable we should
have m′(pj) = m(pj) ≥ D−

ij(m
′) ≥ βk′ ·

(
m(pk′)+m(pj)+1

)
. Since βk′ > 0,

this is not possible. We conclude that N is not 4-strongly monotonic.
Contradiction.

2. If for any ti ∈ T , for any pj ∈ P : D−
ij = α with α ∈ N or D−

ij = m(pj) then
N is 4-strongly monotonic. We proceed per absurdum again. Suppose that N
is not 4-strongly monotonic but for all ti ∈ T, pj ∈ P : D−

ij = α with α ∈ N or
D−

ij = m(pj). Hence there are three markings m1,m2 and m3 and a transition

ti such that m1
ti−→ m2, m1 4 m3 and there does not exist a marking m4 such

that m3
ti−→m4 and m2 4 m4.

Since m1 4 m3 and m1(pj) ≥ D−
ij(m1) for all pj ∈ P , m3(pj) ≥ D−

ij(m3) for all

pj ∈ P . As a consequence, ti is firable from m3. Suppose that m3
ti−→ m4.

Let m′
k (k ∈ {1, 2}) be such that m′

k(pj) = mk(pj) − D−
ij(mk) for all pj ∈ P .

Since m1 4 m3, m′
1 4 m′

3. Moreover, we have that D+
ij(m1) ≤ D+

ij(m3) for
all j such that 1 ≤ j ≤ |P |. Since m2(pj) = m′

1(pj) + D+
ij(m1) and m4(pj) =

m′
3(pj) + D+

ij(m3) for all pj ∈ P , we conclude that m2 4 m4. Contradiction.

�

SMPN are WSTS Our interest in strongly monotonic SMPN is of course highly moti-
vated by the fact that any strongly monotonic SMPN defines a transition system that
is a WSTS when considering the WQO 4.

Proposition 2.2 Let N = 〈P, T, D+, D−,m0〉 be a strongly monotonic SMPN and let
SN = 〈S, s0,⇒〉 be the transition system that corresponds to N . Then, 〈S, s0,⇒, 4〉
is a WSTS.

Proof. By hypothesis, the transition relation of N is monotonic. Moreover, 4 is a
WQO by Proposition 2.1. Hence, 〈S, s0,⇒, 4〉 is a WSTS by Definition 2.16. �

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 37

Motivation of the SMPN model Let us devote a few lines to explain why (ex-
tensions of) Petri nets are such an interesting and widespread model in the field of
verification of concurrent systems. For that purpose, we recall briefly the notion of
counting abstraction, through the following example.

Example 2.11 Let us consider the following excerpt of pseudo-code. It describes a
single process, and we will consider all the possible concurrent systems that one can
obtain by executing one or several copies of this process at the same time.

Shared Semaphore s ;

Process P {

while(true) {

s.try() ;

Critical section ;

s.release() ;

}

}

Each process has to execute a critical section, i.e., a sequence of instructions that
cannot be executed by two different processes at the same time. For that reason, a
mutual exclusion policy has to be enforced. This is obtained thanks to introduction
of a semaphore s, which is shared by the different copies of the process. Initially,
the semaphore is in the state 1. When a process executes the s.try() command, the
semaphore goes to state 0. If a process tries to execute s.try() while the semaphore is
in state 0, the process is blocked: it has to make another call to try later in order to try
again to get access to the critical section. The effect of the s.release() command is
to change the state of the semaphore to 1, hence allowing other processes to get access
to the critical section thanks to a successful try.

A natural question that arises about this system is: ‘is the mutual exclusion policy
enforced ?’ or, ‘Is there an execution of the whole system that reaches a state where
two processes are in the critical section at the same time ?’ Of course, we want
to decide this automatically, and for any number of processes in the system. This
analysis can easily be done by devising an abstract model of the system, which is called
a counting abstraction. Roughly speaking, a counting abstraction is a new (infinite)
system whose states retain how many processes are in each state of the original system
(plus the value of the shared variable). For instance, if we only retain the states ‘outside
critical section’ (state 1) and ‘inside critical section’ (state 2) for the processes, a
counting abstraction of our mutual exclusion system would be a transition system whose
states are vectors of three natural numbers v, where v[i] (i = 1, 2) counts how many
processes are in state i, and v[3] encodes the value of s. Such an abstraction is perfectly
described by an SMPN. As a matter of fact the SMPN Nµ of Example 2.8 is the counting

38 CHAPTER 2. PRELIMINARIES

abstraction we have just described. Places p1 and p3 count respectively how many
processes are outside and inside the critical section, and place p2 encodes the value of
s. Remark that transition t1 can ‘create’ tokens (processes) in place p1 at any time,
which allows us to consider, in a single abstraction, all the possible number of processes
in the system5. Our question then becomes ‘Is there m ∈ Reach (Nµ) s.t. m(p3) ≥ 2 ?’
We will see in the sequel that this question is an instance of the Coverability Problem,
which is decidable on a large subclass of SMPN (which the present example belongs
to). ♦

Since the notion of counting abstraction is quite outside the topic of this thesis, we
will not discuss it into further details. We refer the interested reader to [GS92] for the
basic ideas, and to [Van03, DRVB02, DB01, Del00] for practical applications of this
concept.

Extended Petri nets In the previous example, we have considered processes that
somehow communicate through the semaphore only. In practice, other means of com-
munications are offered by the programming languages one can use to implement
a concurrent system. For instance, in the Java programming language, two key-
words notify and notifyAll are available. Their respective meaning is, roughly
speaking, to send a message to one non-deterministically chosen process or to all
the processes (broadcast) from a given subset of the active processes (see [Lea00,
OW99, Gra97b, Fla97] for more details). Similar communication procedures exists
in other common programming languages. These communication procedures can be
modelled in an SMPN, but their syntax (in particular the D+ and D− matrices) are
not very intuitive for that purpose. On the other hand, the Petri nets with trans-
fer arcs and the Petri nets with non-blocking arcs we are about to introduce have
a syntax which simplify the modelling of the aforementioned communication proce-
dures. Moreover, these classes have been extensively studied in the literature as in
[Pet81, Cia94, Van03, RVB04, FGRVB06, GRVB06c].

Following the presentation of [FGRVB06], we have grouped these two classes, along
with the (plain) Petri nets [Pet62] and the Petri nets with reset arcs, into the class of
Extended Petri Nets (EPN for short), as stated by the next definition.

5Remark that, in the present case, we do not need to consider the destruction of processes, although
this behaviour can easily be added to our model, simply by adding a transition that consumes only one
token in p1 and produces no token. Indeed, we are interested in coverability properties and the system
is monotonic. Hence, if the set of bad states is reachable by an execution of the system that involves
the destruction of some processes, it is also reachable by an execution along which no processes are
destroyed. On the other hand, the destruction of processes does not allow more processes to enter the
critical section.

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 39

Definition 2.22 ([FGRVB06]) (Extended Petri nets) An Extended Petri
Net (EPN) N is a tuple 〈P, T,m0〉, where:

• P is a finite set {p1, p2, . . . , pn} of places;

• T is a finite set of transitions. Each transition is of the form 〈I, O, s, d, b〉, where
I and O : P 7→ N are multi-sets of input and output places respectively. By
convention, O(p) (resp. I(p)) denotes the number of occurrences of p in O (resp.
I). s, d ∈ P ⊎ {⊥} are the source and the destination places respectively of a
special arc, and b ∈ N ∪ {+∞} is the bound associated to the special arc;

• T ∩ P = ∅;

• m0 is the initial marking.

Let us partition T into Tr and Te such that T = Tr ⊎ Te. Without loss of generality,
we assume that for each transition 〈I, O, s, d, b〉 ∈ T , either b = 0 and s = ⊥ = d

(regular Petri transitions, grouped into Tr); or b > 0, s 6= d, s 6= ⊥ and d 6= ⊥
(extended transitions, grouped into Te). We identify several non-disjoint classes of
EPN, depending on Te:

1. Petri nets (PN for short): an EPN is a PN iff Te = ∅;

2. Petri nets with non-blocking arcs (PN+NBA): an EPN is a PN+NBA iff for any
t = 〈I, O, s, d, b〉 in Te: b = 1;

3. Petri nets with transfer arcs (PN+T): an EPN is a PN+T iff for any t =
〈I, O, s, d, b〉 in Te: b = +∞;

4. Petri nets with reset arcs (PN+R): an EPN is a PN+R iff there exists one place
pT ∈ P , called the trash can, s.t., for any t = 〈I, O, s, d, b〉 in T : I(pT) =
O(pT) = 0, and t ∈ Te implies that d = pT , s 6= pT , and b = +∞. Remark that
any PN+R is also a PN+T. �

The graphical convention we adopt to depict EPN is very similar to that for SMPN.
Places are graphically depicted by circles; transitions by filled rectangles. For any
transition t = 〈I, O, s, d, b〉, we draw an arrow from any place p ∈ I to transition t and
from t to any place p ∈ O. When I(p) (resp. O(p)) is strictly greater than 1, we label
the corresponding arrow by I(p) (O(p)). For a PN+NBA, we draw a dotted arrow from
s to t and from t to d (provided that s, d 6= ⊥). For every PN+T that is not a PN+R,
we draw a thick grey arrow from s to t and from t to d (provided that s, d 6= ⊥). For
a PN+R, the trash can is usually not depicted since no token can ever escape from it.
For any transition t of the form 〈I, O, s, pT , +∞〉 of a PN+R, we simply draw an edge
bearing a cross from s to t.

40 CHAPTER 2. PRELIMINARIES

Let us now define the dynamics of an EPN. As in the case of SMPN, transitions can
be enabled or not in some markings, and, when they are enabled, they can fire and
modify the marking. This is stated by the following definition:

Definition 2.23 (Enabled transitions and firing) Given an extended Petri
net N = 〈P, T, Σ,m0〉, and a marking m of N , a transition t = 〈I, O, s, d, b〉 is said

to be enabled in m (notation: m
t−→) iff ∀p ∈ P : m(p) ≥ I(p). An enabled transition

t = 〈I, O, s, d, b〉 can occur or fire, which deterministically transforms the marking m

into a new marking m′ (we denote this by m
t−→m′). m′ is computed as follows:

1. First compute m1 such that: ∀p ∈ P : m1(p) = m(p)− I(p).

2. Then compute m2 as follows. If s = d = ⊥, then m2 = m1. Otherwise:

m2(s) =

{
0 if m1(s) ≤ b

m1(s)− b otherwise

and

m2(d) =

{
m1(d) + m1(s) if m1(s) ≤ b

m1(d) + b otherwise

and
∀p ∈ P \ {d, s} : m2(p) = m1(p)

3. Finally, compute m′, such that ∀p ∈ O : m′(p) = m2(p) + O(p). �

The following example should clarify these notions.

Example 2.12 Figure 2.3 presents a transition t = 〈I, O, s, d, +∞〉 equipped with a
transfer arc. I and O are such that : I(p1) = I(s) = 1, I(p2) = I(d) = 0, O(p2) = 1
and O(p1) = O(s) = O(d) = 0.

The successive steps to compute the effect of the firing of t are shown. Namely, (a)
presents a marking m before the firing of t; (b) presents the marking m1 obtained by
removing I(p) tokens in every place p; (c) presents m2 obtained from m1 by transferring
to d the two tokens present in s; and (d) presents the resulting marking m′ obtained
after producing O(p) tokens in every place p.

If t had been equipped with a non-blocking arc (hence t = 〈I, O, s, d, 1〉), only one
token would have been transferred from s to d at step (c). In both cases, t would have
been firable, even if m1(s) had been 0. ♦

A direct consequence of Definition 2.23, is that EPN are (strongly) monotonic, as
sated by the following lemma (taken from [RVB04]):

Lemma 2.14 ([RVB04]) Let m1, m2 and m′
1 be three markings of an EPN, such

that m1 4 m2 and m1
t−→m′

1 for some transition t of the EPN. Then, there exists m′
2

such that m2
t−→ m′

2 and m′
1 4 m′

2.

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 41

s •••

p1 •• d

p2

t

(a)
s ••

•p1 d

p2

t

(b)
s

•p1 d••

p2

t

(c)

s

•p1 d••

• p2

t

(d)

Figure 2.3: The four steps to compute the effect of a transfer arc

EPN are WSTS As in the case of strongly monotonic SMPN, EPN define transitions
systems that are WSTS when we consider the ordering 4, as stated by the following
proposition:

Proposition 2.3 Let N = 〈P, T,m0〉 be an EPN and let SC = 〈S, s0,⇒〉 be the tran-
sition system that corresponds to N . Then, 〈S, s0,⇒, 4〉 is a WSTS.

Proof. By Lemma 2.14,⇒ is 4-monotonic. Moreover, 4 is a WQO by Proposition 2.1.
Hence, 〈S, s0,⇒, 4〉 is a WSTS by Definition 2.16. �

Comparison of SMPN and EPN Let us close this introduction on EPN by discussing
briefly the relationship between the SMPN and the PN, PN+NBA, PN+T and PN+R.
We first consider the PN, PN+T and PN+R:

1. LetN = 〈P, {t1, . . . , tn},m0〉 be a PN, and let us show how to build a correspond-
ing SMPN N ′ = 〈P, T ′, D−, D+,m0〉. For any transition ti = 〈I, O,⊥,⊥, 0〉 ∈ T ,
we create one and only one transition t′i in T ′ where, for any 1 ≤ j ≤ |P |,
D−

ij = I(pj) and D+
ij = O(pj).

2. Let N = 〈P, T,m0〉 be a PN+T that respects the following condition6:

∀t = 〈I, O, s, d, b〉 ∈ Te : O(d) ≥ I(s) (2.3)

Let us build a corresponding SMPNN ′ = 〈P, T ′, D−, D+,m0〉. For any transition
ti ∈ Tr, we create in T ′ one and only one transition t′i thanks to the same method

6In several works such as [Cia94], Petri nets with transfer arcs have a slightly different definition
that ensures that for any t = 〈I,O, s, d, b〉 ∈ Te: O(d) = I(s) = 0. Remark that this condition implies
(2.3)

42 CHAPTER 2. PRELIMINARIES

as in the case of PN. For any transition ti = 〈I, O, s, d, +∞〉 in Te we create one
and only one transition t′i in T ′ where:

∀1 ≤ j ≤ |P | : D−
ij(m) =

{
I(pj) if pj 6= s

m(pj) if pj = s

and:

∀1 ≤ j ≤ |P | : D+
ij(m) =

{
O(pj) if pj 6= d

m(s)− I(s) + O(d) if pj = d

Remark that the definition of D+ follows from the semantics of EPN transitions:
the transfer of the tokens in pj occurs after the I(pj) tokens have been removed
from pj .

Remark further that if we consider a PN+T N with a transition ti = 〈I, O, s, d, b〉
s.t. I(s) > O(d), we have (assuming that d = pj): D+

ij(m) = m(s) + α with
α < 0. Thus, α 6∈ N, which does not fit into the definition of SMPN (see
Definition 2.17).

3. By definition, any PN+R is a PN+T, hence, any PN+R that respects (2.3) also
admits a corresponding SMPN.

Let N be a PN, a PN+T that respects (2.3) or a PN+R that respects (2.3), and
let N ′ be its corresponding SMPN (built as described above). Let σ be a sequence of
transitions of N , and let σ′ be the sequence of transitions of N ′ obtained by replacing,
in σ, each transition ti by its corresponding t′i. Then, for any marking m, it is not

difficult to see that m
σ−→ iff m

σ′

−→ and that m
σ−→ m′ iff m

σ′

−→ m′. This implies, e.g.
that Reach (N) = Reach (N ′).

Finally, remark that, by Lemma 2.13 the SMPN corresponding to a PN, a PN+T or
a PN+R is a strongly monotonic SMPN (when it exists). This is a further motivation
for the study of this peculiar class.

Unfortunately, the class of PN+NBA does not form a syntactic sub-class of SMPN.
This is due to the fact that the effect of a non-blocking arc cannot be expressed by
a function of the form α +

∑
i βi ·m(pi). For instance, if we consider the transition

ti = 〈I, O, pj, pk, 1〉, then D−
ij should be of the form I(pj) + min{m(pj), 1}. Clearly,

the min function is problematic here.

Remark that one could think to build an SMPN in which two transitions t1 and
t2 correspond to a single extended transition t = 〈I, O, pj, pk, 1〉 of a PN+NBA, where
t1 simulates the effect of t when the non-blocking arc has no effect (D−

1j = I(pj) and
D+

1k = O(pk)), and t2 when the non-blocking arc has an effect (D−
2j = I(pj) + 1 and

D+
2k = O(pk) + 1). However, that solution is not completely satisfactory because

nothing prevents t1 from firing in a marking m with m(pj) > I(pj). In this case, it is

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 43

t2 that should fire, because the non-blocking arc of the PN+NBA would have an effect
in such a marking m.

Nevertheless, we will see in the sequel (see Section 5.4.3) that, given a PN+NBA,
one can build an SMPN that has some properties in common with the original PN+NBA

(actually, the same coverability properties). These properties will be enough for the
applications of PN+NBA we are interested in. The same holds for the PN+T and the
PN+R that do not enforce (2.3).

2.3.4 Lossy Channel Systems

Let us now turn our attention to the Lossy Channel Systems (or LCS for short). The
study of this model from the ‘computer-aided verification’ point of view is due mainly
to Abdulla and Bouajjani [AAB99, ABJ98]. Intuitively, an LCS is a finite set of finite
automata that communicate through a finite number of unbounded FIFO channels.
These channels have the characteristic to be lossy, that is, they can spontaneously lose
messages at any time (however the FIFO property is always preserved). In the case of
LCS, communicating through FIFO channels means that each transition of one of the
automata is labelled by a function that assigns one operation to each channel. This
operation tells how the channel has to be modified when the transition occurs. The
possible operations are (for a character a taken from some alphabet Σ):

• ?a, which means consume a letter a in the channel;

• !a, which means produce a letter a in the channel;

• nop which means do not modify the channel.

The following definition states this more formally:

Definition 2.24 ([ABJ98]) (Lossy Channel System) A Lossy Channel System,
LCS for short, is a tuple C = 〈Q, q0, F, Σ, T 〉 where

• Q = {q1, . . . , qn} is a finite set of locations;

• q0 ∈ Q is an initial location;

• F is a finite set of channels;

• Σ is a finite alphabet;

• T ⊆ Q× Op×Q is a transition relation where

Op : F 7→
⋃

a∈Σ

{?a, !a} ∪ {nop}

�

44 CHAPTER 2. PRELIMINARIES

Dynamics of LCS An LCS defines a transition system with infinitely many states,
since the channels are not bounded. A state of an LCS is made up of a tuple that
indicates the current location and the content of each channel, as stated by the next
definition.

Definition 2.25 ([ABJ98]) (State and set of states of an LCS) Given an
LCS C = 〈Q, q0, F, Σ, T 〉, a state of C is a pair 〈q, W 〉 where q ∈ Q and W : F 7→ Σ∗

assigns a content to each channel. Moreover, States (C) = {〈q, W 〉 | q ∈ Q ∧W : F 7→
Σ∗} denotes the set of states of C. �

For any word w ∈ Σ∗, let Subword (w) denotes the set of sub-words of w. That is,
if w = a1a2 · · ·an (for n ≥ 1), then Subword (w) is:






1 ≤ k ≤ n ∧
aρ(1)aρ(2) · · ·aρ(k) ρ : {1, . . . k} 7→ {1, . . . n} ∧

∀1 ≤ i < k : ρ(i) < ρ(i + 1)




 ∪ {ε}

Moreover, Subword (ε) = {ε}. We extend Subword to functions W : F 7→ Σ. In that
case, Subword (W) denotes the set of functions W ′ : F 7→ Σ∗ such that ∀f ∈ F :
W ′(f) ∈ Subword (W (f)).

Equipped with this notion, we can define the transition relation of a LCS. As in
the case of SMPN or EPN, we first identify in which states transitions are firable.
Intuitively, the only restriction on the firing of a transition is in the case where an
operation of the form ?a has to be applied on a channel f . Obviously, in this case,
f must contain at least one a. Remark that the character a does not need to be at
the first position in the channel. For instance, consider the channel whose content7 is
cbad. It is actually possible to read an a from that channel under the condition that
the c and b characters are lost (which can always occur).

Then, we explain how a firable transition can occur and hence modify the current
state of the LCS. As far as the channels are concerned, that effect is computed in three
steps, which correspond respectively to (i) losing some characters, (ii) the actual effect
of the transition (with the obvious semantics) and (iii) losing some characters again.
The following definition states this in a formal way:

Definition 2.26 ([ABJ98]) (Firable transition of LCS and effects) Given
an LCS C = 〈Q, q0, F, Σ, T 〉, a transition t = 〈q1, Op, q2〉 ∈ Ti is firable from state
〈q, W 〉 if q1 = q and for all f ∈ F : Op(f) =?a implies that a ∈ Subword (W (f)).

Firing t from 〈q, W 〉 leads non-deterministically to any state 〈q2, W
′〉 s.t. there are

W ∈ Subword (W), W ′ with W ′ ∈ Subword
(
W ′
)

and, for any f ∈ F :

• Op(f) =?a implies that W (f) = a ·W ′(f) and

7We assume that the rightmost character is the last one that has been written to the channel.

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 45

• Op(f) =!a implies that W ′(f) = W (f) · a and

• Op(f) = nop implies that W (f) = W ′(f)

Such a transition is noted 〈q, W 〉 t−→ 〈q2, W
′〉. �

A consequence of Definition 2.26 is that any LCS C = 〈Q, q0, F, Σ, T 〉 defines a
transition system SC = 〈States (C) , s0,⇒〉 where:

• s0 = 〈q0, Wi〉 with Wi(f) = ε for all f ∈ F ;

• for any s1, s2 ∈ States (C) : s1 ⇒ s2 if and only if ∃t ∈ T with s1
t−→ s2.

In the sequel we often confuse an LCS C with its corresponding transition system
SC, and write, for instance Reach (C) instead of Reach (SC).

Remark 2.2 In the general setting of [ABJ98], an LCS is made up of several finite
automata. In our case, we have restricted ourselves to the case where there is only one
finite automaton. As a matter of fact, this is not a real restriction. In the definition
of [ABJ98], an LCS is of the form

C′ =
〈
{Q1, . . . Qn}, {q1

i , . . . , q
n
i }
〉
, F, Σ, {T 1, . . . , T n}

where each triple
〈
Qj , q

j
i , T

j
〉

corresponds to a single automaton. The set of states of
such a system is

{〈
(q1, . . . , qn), W

〉
|W : F 7→ Σ∗

∧
∧1≤i≤nqi ∈ Qi

}

The semantics the system is an interleaving semantics (one automaton can progress at
a time). Then, it is not difficult to see that the LCS C = 〈Q, q0, F, Σ, T 〉 where:

• Q = Q1 ×Q2 × · · · ×Qn;

• q0 = (q1
0, q

2
0, . . . , q

n
0);

• T =






(qi, Op, q′i) ∈ Ti(
(q1, q2, . . . , qn), (q′1, q

′
2, . . . , q

′
n)
)
∃1 ≤ i ≤ n : ∃Op : and∧

j 6=i qj = q′j






is equivalent to C′ in the sense that any sequence of transitions t1t2 . . . tk firable in C is
firable in C′ and leads to the same states (and vice-versa). This implies in particular
that Reach (C) = Reach (C′).

Moreover, this remark still holds if we add synchronisation labels on the transitions
of the automata that compose C′. In that case, several automata can progress at the

46 CHAPTER 2. PRELIMINARIES

same time, according to the synchronisation labels. One just has to adapt the definition
of the transition relation in order to take the labels into account.

Thus our choice to keep a single automaton is not problematic as far as reachability
properties are concerned. On the other hand, this restriction makes the presentation
easier.

Before introducing the necessary notions to define WSTS from LCS, and in order
to clarify the previous definitions, we introduce an example of LCS that should also
serve as a practical motivation of this model.

Example 2.13 The example we are about to discuss is a model of the alternating bit
protocol [ABJ98]. In this communication protocol, two entities, called the sender and
the receiver exchange messages through two unreliable communication channels A and
M . The sender sends, to the receiver, messages that are numbered alternatively by 0
and 1 on the channel M . Each time the receiver receives a message numbered by i

(i = 0, 1), it sends to the receiver an acknowledgement labelled by i through channel
A. The purpose of the numbering of messages and acknowledgements is to allow both
entities to detect losses of messages, and proceed to the appropriate retransmissions if
necessary. For instance the sender first sends a message numbered by 0. The receiver
waits for such a message and thus discards any message numbered by 1. When the
receiver has received a message numbered by 0, it sends an acknowledgement numbered
by 0. The receiver acts symmetrically, that is, once it has sent a message numbered
by 0, it waits for an acknowledgement numbered by 0 and, up to then, discards all the
acknowledgements numbered by 1. Then the protocol continues with a message and an
acknowledgement numbered by 1, then by 0 again and so forth (hence the alternating
bit name).

In order to model this protocol by an LCS, we first devise two finite automata that
correspond respectively to the receiver and the sender, and whose transitions are labelled
by operations (in the LCS sense) on the two channels A and M . These automata are
presented in Figure 2.4. Remark that in this model, we have abstracted away the
actual content of the messages. We only distinguish between two types of messages:
those labelled by 0 (denoted by character m0) and those labelled by 1 (denoted by m1).
The messages a0 and a1 are of course the respective acknowledgements.

Following Remark 2.2, there is an LCS Cabp = 〈Q, q0, F, Σ, T 〉 whose set of states
is Q = {qs

0, q
s
1, q

s
2, q

s
3} × {qr

0, q
r
1, q

r
2, q

r
3}, initial state is q0 = (qs

0, q
r
0), set of channels

is F = {A, M}, alphabet is Σ = {m0, m1, a0, a1} and transition relation T is s.t.(
(qs

i , q
r
j), Op, (qs

k, q
r
ℓ

)
∈ T iff (i) either j = ℓ and there is a transition in the sender

that goes from qs
i to qs

k and is labelled 8 by the operations given by Op, or (ii) i = k

and there is a transition of the receiver that goes from qr
j to qr

ℓ and is labelled by the
operations given by Op.

8The nop operations have been omitted in the figure.

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 47

Sender Receiver

qs
0 qs

1

qs
2qs

3

A?a0A?a1

A?a1

M !m0

A?a0

M !m1

qr
0 qr

1

qr
2qr

3

M?m0

M?m1

M?m1

A!a1

M?m0

A!a0

Figure 2.4: The two automata that make up the LCS model of the alternating bit
protocol.

Although quite coarse, this model of the alternating bit protocol still allows to check
for some behavioural properties. For instance, when a message is sent by the sender,
the following message should not be sent before the first one has been actually received
by the receiver (because that would mean that the acknowledgement mechanism didn’t
work properly). Let us label 9 some of the transition of the two automata of Figure 2.4 in
order to identify when these operations occur. We assume that the transitions from qs

0

to qs
1 and that from qs

2 to qs
3 correspond to a send, and label them by snd. Symmetrically,

we identify the transitions from qr
1 to qr

2 and from qr
3 to qr

4 with the receive operation,
and label them by rcv. Then it is not difficult to see that we can check the property
that we have stated informally above by synchronising, on the labels snd and rcv, the
two automata of Figure 2.4 with the observer of Figure 2.5. Then we can check that
the resulting LCS can never reach a state that corresponds to the observer being in
location Err. ♦

A WQO for LCS States of LCS can be compared by an ordering - that we define
now. Roughly speaking s1 - s2 iff s1 and s2 correspond to the same location of the
automaton and the contents of the channels in s1 are subwords of the contents of the
same channels in s2. The following definition states this more formally.

9These labels are completely separated from the labelling by channel operations and will serve for
synchronisation purpose with an observer.

48 CHAPTER 2. PRELIMINARIES

qo
0 qo

1

Err

rcv

rcv snd

snd, rcv

snd

Figure 2.5: An observer for the LCS of Figure 2.4

Definition 2.27 ([ABJ98]) (The WQO -) Let C be an LCS. Then, the ordering
-⊆ States (C)× States (C) is s.t. for any pair of states s = 〈q, W 〉 and s′ = 〈q′, W ′〉:

s - s′ iff q = q′ and for any f ∈ F : W (f) ∈ Subword (W ′(f))

�

It is well-known that - is a WQO:

Proposition 2.4 ([ABJ98]) - is a WQO.

LCS are WSTS Here again, the main motivation for the study of the LCS model is
that they naturally define transition systems which are WSTS when considering - as
WQO as stated by the following proposition:

Proposition 2.5 ([ABJ98]) Let C be an LCS and let SC = 〈S, s0,⇒〉 be the transition
system that corresponds to C. Then, 〈S, s0,⇒, -〉 is a WSTS.

Because of the lossiness of LCS, this WSTS enjoys the peculiar property that if a
configuration c is reachable in the WSTS, then, any configuration c′ - c is reachable
too:

Lemma 2.15 Let C = 〈Q, q0, F, Σ, T 〉 be an LCS and let SC = 〈S, s0,⇒, -〉 be the
WSTS that corresponds to C. Then, for every c ∈ Reach (SC), for every c′ - c: c′ ∈
Reach (SC).

Proof. Follows directly from Definition 2.26 and Definition 2.27. �

2.3.5 Other classes of WSTS

Other classes of WSTS have been introduced and studied in the literature. This section
briefly recalls two of them. A more complete list of WSTS that have been identified in
the literature can be found in [FS01].

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 49

Broadcast protocols In this section, we recall the model of broadcast protocols (BP

for short), which have been introduced in [EN98]. A BP describes a system made up
of an unbounded number of processes which evolve according to one or several finite
automata. Each state of the automaton corresponds to a state of the process, and the
transitions are of three different types:

Unguarded transition Such transitions are simply labelled by an action a and can
be taken at any time by any process whose current state is the originating state
of the transition.

Rendez-vous These transitions describe a one-to-one blocking synchronisation. The
synchronisation is made on the same action a. One of the processes is the sender:
it fires a transition labelled by a!. The other process is the receiver: it fires a
transition labelled by a?.

Broadcast These transitions describe a one-to-many synchronisation, on a common
action a. The sender process fires a transition labelled by a!!. At that point,
all the other processes fire the a??–labelled transition that originates in their
current state (it is assumed that such a transition always exists, i.e., any process
is always willing to receive a broadcast, possibly for doing nothing).

The formal definition (taken from [EFM99]) is as follows:

Definition 2.28 ([EFM99]) (Broadcast Protocol) A broadcast protocol (or
BP, for short) is a triple B = 〈S, L, R〉 where:

• S is a finite set of states;

• L is a finite set of labels that is partitioned into:

– A set Σℓ of local labels

– A set Σr × {?} ∪ Σr × {!} of input and output Rendez-vous

– A set Σb × {??} ∪ Σb × {!!} of input and output broadcasts.

• R ⊆ S × L× S is a set of transitions that satisfies: ∀a ∈ Σb : ∀s ∈ S : ∃s′ ∈ S :
(s, a??, s′) ∈ R. �

In the sequel, we denote by Σ the set Σℓ∪Σb∪Σr, and assume that Σ∩{!, !!, ?, ??} =
∅. We note s

x−→ s′ to mean that (s, x, s′) ∈ R, for any states s, s′ ∈ S and any label
x ∈ L. In the sequel, we restrict ourselves to the broadcast protocols that satisfy the
three additional constraints:

1. For any s ∈ S, for any a ∈ Σb, there is exactly one state s′ ∈ S s.t. s
a??−−→ s′

2. For any a ∈ Σb, there is one and only one (s, a!!, s′) ∈ R.

50 CHAPTER 2. PRELIMINARIES

3. For any a ∈ Σr, there is one and only one (s, a!, s′) ∈ R and one and only one
(s, a?, s′) ∈ R.

These constraints are actually not restrictive. Given a BP B, one can always translate
it into a BP B′ that has the same coverability properties and enforces the three points
above. See [EFM99] for the details.

A BP naturally defines a WSTS which corresponds to the counting abstraction of
the BP: each configuration of the corresponding WSTS is a tuple of natural numbers
that counts how many processes are in each state of the BP, and the transitions modify
the states according to the semantics of the BP that we have sketched above.

More precisely, let B = 〈S, L, R〉 be a BP with S = {s0, . . . , sn}. In order to
represent a possibly unbounded number of processes, the configurations of the WSTS

SB = 〈C, c0,⇒, 4b〉 associated to B are tuples of N ∪ {ω}, where ω represents ‘any
number of processes’. The operations + and - and the ordering ≤ on natural numbers
are extended to handle ω as follows: ω + ω = ω; ω − ω = 0 and for any c ∈ N:
ω + c = ω − c = ω; c ≤ ω; ω 6≤ c.

Let v0 ∈ (N∪{ω})n be a tuple that describes the initial configuration of the system:
for any 1 ≤ i ≤ n, there are initially v0(i) processes in state si. Let us denote, for any
1 ≤ i ≤ n, by ui the vector of natural numbers s.t. ui(i) = 1 and for any 1 ≤ j ≤ n:
j 6= i implies ui(j) = 0. The WSTS SB = 〈C, c0,⇒, 4b〉 is defined as follows:

1. C = (N ∪ {ω})n;

2. c0 = v0;

3. ⇒ is s.t. (c, c′) ∈⇒ iff one of the following holds:

• there is 1 ≤ i ≤ n, a ∈ Σℓ and sj ∈ S: s.t. c(i) ≥ 1, si
a−→ sj, c′ = c−ui +uj .

• there are 1 ≤ i, j ≤ n, a ∈ Σr and sk, sℓ ∈ S: s.t. i 6= j implies (c(i) ≥ 1

and c(j) ≥ 1), i = j implies c(i) ≥ 2, si
!a−→ sk, sj

?a−→ sℓ and c′ = c − ui −
uj + uk + uℓ.

• there is 1 ≤ i ≤ n, a ∈ Σb and sj ∈ S s.t. c(i) ≥ 1, si
!!a−→ sj and c′ = c3,

where c3 is computed as follows:

(a) c1 = c− ui

(b) for any 1 ≤ k ≤ n, c2(k) =
∑

ℓ∈pred(k,a) c1(ℓ), where pred(k, a) is the set

{ℓ | sℓ
??a−−→ sk}

(c) c3 = c2 + uj .

4. for any c1, c2 ∈ C: c1 4b c2 iff for any 1 ≤ i ≤ n: c1(i) ≤ c2(i).

The proof that SB is indeed a WSTS can be found, for instance, in [EFM99].

2.3. WELL-STRUCTURED TRANSITION SYSTEMS 51

p1 p2

p3

t1 t2 t3

[5, 7]

[3, 5]

[1, 3]

[5, 6]

[0, 1] [1, 2]

[1, 3]

Figure 2.6: An example of TPN taken from [ADMN04].

Timed Petri nets Let us finally mention the model of timed Petri nets (TPN for
short) as a class of WSTS that has been well covered by the literature [AN01, AN02,
ADMN04]. A TPN has a structure similar to a PN: it is a bipartite graph whose nodes
are called places and transitions, and places can be marked by (an unbounded number
of) tokens. Unlike PN, each token has an age, which is a positive real number 10. The
in– and out–edges of the transitions bear intervals of the form 〈a, b〉 where a ∈ N,
b ∈ N ∪ {∞}, 〈 is either ‘(’ or ‘[’ and 〉 is either ‘)’ or ‘]’ in the case where b 6= ∞.
As usual, (and) mean that the interval is open on the corresponding bound; [and]
mean that it is closed. A transition t is enabled if, for any input place p, there is a
token whose age is inside the interval labelling the arc (p, t). In that case, t can fire,
consume tokens with the right ages in the input places and produce in each output
place p′ a fresh token whose age is non-deterministically chosen in the interval that
labels the arc (t, p′). Remark thus that a TPN induces two dimensions of infinity: the
unbounded number of tokens, and the unbounded value of the ages of the tokens.

In [ADMN04], the authors define a region construction (similar to that for Timed
automata [AD94]). The (potentially infinite) transition system whose configurations
are the regions and whose transitions correspond to the semantics of the TPN, lifted
to the regions, is shown to be a WSTS (for a WQO defined in the paper).

Since we do not deal with TPN in this thesis, we do not describe it with further
details. The interested reader is referred to the aforementioned publications for more
details.

10Timed Petri nets should not be confused with Time Petri nets [Mer74, PZ91] where the ages are
assigned to the transitions. Remark that other notions of Timed Petri nets exist [Ram74]

52 CHAPTER 2. PRELIMINARIES

2.4 Language Theory

The second part of this thesis deals with the expressiveness of well-structured transition
systems. This section briefly recalls relevant notions of language theory. Most of them
are classical and are present in every introductory book on language theory, such as
[Sal73], [HMU01] or [Gin75].

2.4.1 Words and languages

The very first notion is that of word. We distinguish two kinds of words: the (finite)
words and the infinite words (or ω-words).

Definition 2.29 (Words) Given a finite set Σ called an alphabet and whose
elements are called letters or characters, a (finite) word w on Σ is either a finite
sequence a1a2 . . . an of letters in Σ or the empty word ε. An ω-word on Σ is an infinite
sequence a1a2 · · ·aj · · · of letters in Σ.

We denote by |w| the length of w:

|w| =






0 if w = ε

+∞ if w is and ω-word
n if w = a1a2 · · ·an

�

An ω-word is sometimes called a word when the context makes it clear that it is infinite.
From this definition follows directly the notion of language:

Definition 2.30 (Languages) Given an alphabet Σ, a (finite words) language L

on Σ is a (possibly infinite) set of finite words on Σ.

An ω-language L on Σ is a (possibly infinite) set of ω–words on Σ. �

When the context permits it, we sometime refer to ω-languages simply as languages.
We adopt the widespread notation Σ∗ to denote the language containing any finite
word on the alphabet Σ.

2.4.2 Operations on words and languages

Let us begin with the operation of concatenation of two words. It is defined as follows:

Definition 2.31 (Word concatenation) Let w1 be a (finite) word on Σ and w2

be a word or an ω-word on Σ. Then, w1 ·w2, called the concatenation of w1 and w2, is

2.4. LANGUAGE THEORY 53

defined as follows:

w1 · w2 =






w1w2 if w1 6= ε and w2 6= ε

w1 if w1 6= ε and w2 = ε

w2 if w1 = ε and w2 6= ε

ε if w1 = w2 = ε

�

Let us now introduce several operations on finite words and finite words languages:

1. Let w = w1w2 · wn be a finite word. Then, the mirror of w, noted wR, is the
word wnwn−1 · · ·w1.

2. If L1 and L2 are two finite words languages on Σ, then L1 · L2 denotes the
concatenation of L1 and L2 and is such that

L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}

3. Another common operation on a finite words language L consists to apply an
homomorphism which can be seen as a function that substitutes some letters
for others in every word of L. Given a finite alphabet Σ, a homomorphism is a
function h : Σ∗ 7→ Σ∗ s.t. ∀w1, w2 ∈ Σ∗ : h(w1 · w2) = h(w1) · h(w2). The inverse
of h is the function h−1 : Σ∗ 7→ 2Σ∗

such that h−1(w) = {w′ | h(w′) = w}. If L is
a language on Σ, then h(L) = {h(w) | w ∈ L} and h−1(L) = ∪w∈Lh−1(w).

Remark that, by this definition, any homomorphism h must satisfy h(ε) = ε.
Indeed, let w 6= ε be a word. We have w = w · ε. Hence, h(w) = h(w · ε) =
h(w) · h(ε), which implies that h(ε) = ε. Moreover, still by this definition, any
homomorphism h can be completely characterised by a function fh : Σ 7→ Σ∗ s.t.
for any a ∈ Σ, fh(a) = h(a). Indeed, let w = a1a2 · · ·an be a non-empty word
(with a1, a2, . . . , an ∈ Σ). Then, h(w) = h(a1 ·a2 · · ·an) = h(a1)·h(a2) · · ·h(an) =
fh(a1) ·fh(a2) · · · fh(an). In the sequel, we sometimes confuse the homomorphism
h with its characteristic function fh.

4. The iteration of a finite words language L is the language L+ = {w1 · . . . · wn |
n ≥ 1 ∧ ∀1 ≤ i ≤ n : wi ∈ L}. Similarly, L∗ (the Kleene closure of L) is the
language L+ ∪ {ε}.

5. The complement of a finite words language L on the alphabet Σ is the (finite
words) language Σ∗ \ L.

54 CHAPTER 2. PRELIMINARIES

2.4.3 Regular and Context-free languages

Several classes of languages of interest have been identified in the literature (see
[HMU01]). Let us recall two of them, that will be relevant in the sequel. The for-
mer is that of regular languages. It is well-known that this class corresponds the class
of languages recognised by finite state automata or regular expressions [HMU01].

Definition 2.32 (Regular Language) Let Σ be a finite alphabet. Then, the set
of all the regular languages on Σ is defined inductively as follows:

• ∅ is a regular language ;

• {ε} is a regular language ;

• for any a ∈ Σ, {a} is a regular language ;

• if L1 and L2 are two regular languages, then, L1 · L2, L1 ∪ L2 and L∗
1 are all

regular languages. �

The former class is that of context-free languages. A language is context-free iff it
is recognised by some context-free grammar:

Definition 2.33 (Context-Free Grammar) Let Σ be a finite alphabet. A context-
free grammar on Σ is a tuple 〈V, P, S, Σ〉, where:

1. V is a finite set of variables s.t. V ∩ Σ = ∅ ;

2. P ⊆ V × (V ∪ Σ)∗ is a finite set of production rules. It is usual to denote the
elements (T, w) of P by T → w.

3. S ∈ V is the start symbol of the grammar. �

To each (context-free) grammar G, we associate a derivation rule ⇒G, defined as
follows:

Definition 2.34 (Derivation Rule of a Grammar) Let G = 〈V, P, S, Σ〉 be a
(context-free) grammar. Then, ⇒G⊆ (V ∪ Σ)∗ × (V ∪ Σ)∗ is s.t. w1 ⇒G w2 iff:

∃T ∈ V : ∃v1, v2 ∈ (V ∪ Σ)∗ : ∃T → w ∈ P : w1 = v1Tv2 ∧ w2 = v1wv2

�

Thanks to this definition, we obtain the characterisation of context-free languages:

Definition 2.35 (Context-Free Language) Let Σ be a finite alphabet. A lan-
guage L on Σ is a context-free language (CFL for short) iff there exists a context-free
grammar G = 〈V, P, S, Σ〉 s.t. L = {w | S ⇒∗

G w}. �

It is well-known that the class of context-free languages also corresponds to the class
of languages recognised by pushdown automata [HMU01].

2.5. EXPRESSIVENESS OF WSTS 55

2.4.4 Closure properties

Let us consider a set (family) S of languages. A natural question about S asks whether
S is closed under the various operations that we have introduced above, as well as
under classical set theory operations such as union or intersection. Certain families of
languages, called full abstract families of languages (of full AFL for short) have been
identified and vastly studied in the literature (in particular by Ginsburg, see [Gin75]).
A set of languages is a full AFL iff it is closed under certain operations as stated by
the following definition:

Definition 2.36 ([Gin75, Sal73]) (Abstract Family of Languages) A full
abstract family of languages (full AFL for short) is a set of languages closed under (i)
union, (ii) concatenation, (iii) intersection with regular languages, (iv) iteration, (v)
homomorphism and (vi) inverse homomorphism. �

When the family of languages considered is closed under intersection too, one speaks
about a full AFL closed under intersection.

2.4.5 Property of context-free languages

We finish this section by recalling the well-known pumping lemma on context-free lan-
guages:

Lemma 2.16 ([HMU01]) Let L be a context-free language on Σ. Then, there exists
n ∈ N s.t. for any z ∈ L with |z| ≥ n, there are u, v, w, x, y in Σ∗ s.t.:

1. u · v · w · x · y = z and;

2. |v · w · x| ≤ n and;

3. |v · x| ≥ 1 and;

4. for any i ≥ 0: u · vi · w · xi · y ∈ L.

This closes our short survey of language theory. Let us now explain how we can
use WSTS to define languages.

2.5 Expressiveness of WSTS

In many cases, a language L can be defined by means of some associated computational
device that receives a word w in input and replies ‘yes’ or ‘no’ whether w ∈ L or not.
For instance, any regular language is defined by a finite state automaton; context-free

56 CHAPTER 2. PRELIMINARIES

languages correspond to pushdown automata; and so forth. Similarly, the expressive
power of several models of computation, such as Petri nets, has been explored. In the
case of Petri nets, this is done by associating to the Petri net a labelling function of
the transitions, and by defining a notion of accepted word.

We follow the same principles in order to study the expressive power of WSTS. First
of all, we explain how we label transitions of WSTS, and define the notion of accepted
language. Additionally, we show how the syntax of EPN can be adapted in order to
obtain labelled EPN, and a corresponding labelled WSTS.

2.5.1 Labelled WSTS

To define the notion of accepted language in the case of a WSTS, we have to label
the transitions of the underlying transition system. Thus, we adapt the definitions of
transition system and well-structured transition system as follows:

Definition 2.37 (Labelled transition system) A labelled transition system is
a tuple S = 〈C, c0, Σ,⇒〉 such that:

1. C is a possibly infinite set of configurations;

2. c0 ∈ C is the initial configuration;

3. Σ is a finite alphabet that does not contain ε;

4. ⇒⊆ C ×
(
Σ ∪ {ε}

)
× C is the transition relation. �

As we did in the case of transition systems, we adopt several conventional notations.
We write c1

a⇒ c2 instead of (c1, a, c2) ∈⇒. When the character labelling the transition
is not relevant, we might omit it and write c1 ⇒ c2 to mean that there exists a ∈ Σ∪{ε}
s.t. c1

a⇒ c2.

For any finite word w, we also write c
w⇒∗ c′ to mean that w can be accepted along

a finite path from c to c′, as stated by the following definition:

Definition 2.38 (Extension of ⇒) Let S = 〈C, c0, Σ,⇒〉 be a labelled transition
system, let c and c′ be two configurations from C, and let w ∈ Σ∗ be a finite word.
Then, c

w⇒∗ c′ iff:

• either w = ε and c = c′;

• or ∃n ≥ 1: ∃c1, . . . , cn+1 ∈ C: ∃a1, . . . an ∈ Σ ∪ {ε} s.t. c1 = c, cn+1 = c′,

w = a1 · a2 · · ·an and for any 1 ≤ i ≤ n: ci
ai⇒ ci+1. �

2.5. EXPRESSIVENESS OF WSTS 57

Remark that, according to this definition, c
ε⇒∗ c′ means either that c = c′ or that

c
ε⇒ c′ or that there are finitely many configurations d1, d2, . . . , dk s.t. c

ε⇒ d1
ε⇒ d2

ε⇒
· · · ε⇒ dk

ε⇒ c′. Remark further that, for any pair of configurations c1 and c2, and any
character a, c1

a⇒ c2 implies c1
a⇒∗ c2, but the reverse implication does not hold.

Finally, since we can associated to any labelled transition system 〈C, c0, Σ,⇒〉 a
transition system 〈C, c0, {(c, c′) | ∃a : (c, a, c′) ∈⇒}〉, all the notions such as Post, Pre,
Reach, and so on, can be applied to a labelled transition system.

Labelled WSTS Let us now consider the definition of labelled WSTS:

Definition 2.39 (Labelled Well-Structured Transition System) A La-
belled Well-Structured Transition System is a tuple S =

〈
C, c0, Σ,⇒,≤

〉
s.t.

• 〈C, c0, Σ,⇒〉 is a labelled transition system;

• ⇒ is ≤-monotonic, that is: for any c1, c2, c3 ∈ C s.t. there is a ∈ Σ ∪ {ε} with
c1

a⇒ c2 and c1≤c3, there exists c4 ∈ C with c3
a⇒∗ c4 and c2≤c4.

•
〈
C,≤

〉
is an ordered set where ≤ is a WQO. �

Here again, we can associate a (non-labelled) WSTS to any WSTS, as in the case of
(labelled) transition systems. For that reason, we often denote a labelled WSTS simply
by WSTS. The context should make clear whether the labels are relevant or not.

Labelled EPN The same ideas can be applied to the EPN case:

Definition 2.40 (Labelled Extended Petri nets) A Labelled Extended Petri
Net N is a tuple 〈P, T, Σ,m0〉, where:

• P is a finite set {p1, p2, . . . , pn} of places;

• T is a finite set of transitions. Each transition is of the form 〈I, O, s, d, b, λ〉,
where I and O : P 7→ N are multi-sets of input and output places respectively.
s, d ∈ P ∪ {⊥} are the source and the destination places respectively of a special
arc, b ∈ N ∪ {+∞} is the bound associated to the special arc and λ ∈ Σ ∪ {ε} is
the label of the transition. �

As in the cases of transition systems and WSTS, we see a labelled EPN as an EPN whose
transitions have been labelled by characters of Σ or by ε. Hence, the classification into
PN, PN+NBA, PN+T and PN+R of Definition 2.22 is adopted in the present case too.
As a consequence, we sometimes write ‘EPN’ instead of ‘labelled EPN’ and the effects
of (sequences of) transitions are computed the same way (see Definition 2.23). We also

58 CHAPTER 2. PRELIMINARIES

re-use the notation m1
σ−→m2 (where σ is a finite sequence of transitions) to mean that

σ is enabled in m1 and that firing it leads to m2.

A labelled EPN N = 〈P, T, Σ,m0〉 naturally defines CN =
〈
N|P |,m0, Σ,⇒, 4

〉
, a

labelled WSTS s.t. m1
a⇒ m2 iff there exists t = 〈I, O, s, d, b, λ〉 ∈ T with λ = a and

m1
t−→m2.

Finally, we define a function Λ which labels the sequences of transitions of an EPN,
as follows:

Definition 2.41 (Label of a Sequence of Transitions) Let σ be a finite
sequence of transitions.

• If σ is the empty sequence, then Λ (σ) = ε.

• If σ = t, where t = 〈I, O, s, d, b, λ〉 is a single transition, then Λ (σ) = λ.

• If σ is the finite sequence t1t2 . . . tk for k > 1, then Λ (σ) = Λ (t1 . . . tk−1) ·Λ (tk).

• If σ is the infinite sequence t1t2 . . ., then Λ (σ) = limi→+∞ Λ (t1 . . . ti). �

Remark that this definition is sound even in the case where σ is infinite since any
infinite sequence of transitions admits one and only one prefix of length i (for any
i ≥ 0). Remark further that it Λ (σ) might be finite even for an infinite sequence σ.
This happens when σ contains only finitely many occurrences of transitions that are
labelled by a character of Σ (and the others are labelled by ε).

By abuse of notation we also write m
x−→ m′ to mean that there exists a finite

sequence of transitions σ such that Λ(σ) = x and m
σ−→ m′, and m

x′

−→ to mean that
we can fire the infinite sequence of transitions σ′ (with Λ(σ′) = x′) from m. Remark
that if N is a labelled EPN and CN = 〈C, c0, Σ,⇒, 4〉 is its corresponding labelled
WSTS, then for any pair of markings m1 and m2 and any word w, m1

w−→ m2 iff
m1

w⇒∗ m2. The same holds in the case of an ω-word w: m
w−→ iff there is an infinite

execution of CN that starts in m and is labelled by w.

We are now ready to introduce two notions of language of WSTS: in terms of finite
and infinite words. This closely follows a classical approach that has been adopted for
many other models of computations such as finite automata [HMU01].

2.5.2 Accepted finite words language

In order to define the set of finite words that are accepted by a WSTS, one has to fix
an acceptance condition that takes the form of a set of accepting configurations. A
word w is accepted by the WSTS iff w labels some initialised execution of the WSTS

that ends in a configuration belonging to the accepting set of configurations:

2.5. EXPRESSIVENESS OF WSTS 59

Definition 2.42 (Language of a WSTS) Given a WSTS S =
〈
C, c0, Σ,⇒,≤

〉
,

and a set C ′ ⊆ C of accepting configurations, the language of S (for the set C ′ of
accepting configurations), noted L(S, C ′), is the set of all the finite words w such that
c0

w⇒∗ c for some c ∈ C ′. �

By imposing some well-chosen restrictions about the set of accepting configurations,
one can obtain different classes of languages. In the restricted case of PN, this approach
has already been followed in classical works of the literature such as [Pet81], [Sal85] or
[Jan86]. These are the classes we will consider:

Definition 2.43 (Classes of Languages of WSTS) Let W be a (finite or
infinite) set of WSTS. Then:

• LL(W) = {L(S, C ′) | S ∈ W and C ′ is finite} is the set of all the languages that
are defined by a WSTS S in S with a finite set of accepting configurations.

• LT (W) = {L(S, Dead (S)) | S ∈ W} is the set of all the languages that are
defined by a WSTS S in S and where the accepting configurations are all the
deadlock configurations of S.

• LG(W) = {L(S, C ′) | S ∈ W and C ′ is upward-closed} is the set of all the lan-
guages that are defined by a WSTS S in S with an upward-closed set of accepting
configurations.

• LP (W) = {L(S, C) | S =
〈
C, c0, Σ,⇒,≤

〉
∈ W} is the set of all the languages

that are defined by a WSTS S in W and where any configuration is accepting.

Moreover, the classes LL
/ε (W), LT

/ε (W), LG
/ε (W) and LP

/ε (W) are defined the same way
with the additional restriction that the WSTS S that recognises the language has no
ε-labelled transitions. �

Remark that for any set W of WSTS, LL
/ε (W) ⊆ LL(W), LT

/ε (W) ⊆ LT (W),

LG
/ε (W) ⊆ LG(W) and LP

/ε (W) ⊆ LP (W). Moreover, LP (W) ⊆ LG(W) and LP
/ε (W) ⊆

LG
/ε (W), since the set of all the configurations is upward-closed. Hence, we will seldom

discuss the classes LP and LP
/ε (W) in the sequel. Most of the results that hold on

LG (resp. LG
/ε (W)) will be easy to adapt to the class LP (LP

/ε (W)). We also abuse

the notation by writing, for instance LG(PN) to denote the class of languages that
are accepted by some WSTS CN that corresponds to a PN N . Not surprisingly, these
different classes of languages enjoy different properties, as we will see in the sequel.

60 CHAPTER 2. PRELIMINARIES

2.5.3 Accepted ω-language

Let us now consider under which condition an infinite word is accepted by a WSTS.
In the present case, there is no need for a set of accepting configurations since the
executions are never ending11. Remark that we distinguish two cases, depending on
the fact that we allow ε-labelled transitions to fire when accepting a word or not.

Definition 2.44 (ω-Language of a WSTS) Let S = 〈C, c0, Σ,⇒,≤〉 be a WSTS.
An ω-word w on Σ is accepted by S iff there exists an infinite execution c0, c1, . . . , cj, . . .

of C and an infinite sequence a1, a2, . . . , aj , . . . of elements of Σ∪{ε} s.t. for any i ≥ 0:

ci
ai+1⇒ ci+1 and w = a1 · a2 · · ·aj · · ·
The ω-language Lω(S) of S is the set of the ω-words that are accepted by S. �

As in the case of finite words languages, we can define classes of ω-languages:

Definition 2.45 (Classes of ω-Languages of WSTS) Let W be a (finite or
infinite) set of WSTS. Then:

1. Lω(W) = {Lω(S) | S ∈W}.

2. Lω
/ε (W) = {Lω(S) | S ∈W and S has no ε–transition}. �

In the present case too, we abuse the notations and write Lω(PN), Lω(PN+T), and so
forth.

2.6 Decidability problems on WSTS

In the previous sections, we have thoroughly defined the notion of WSTS and shown
how this theoretical model can be of practical interest, by providing several examples
of widely studied models that are (labelled) WSTS. However, these models wouldn’t be
really interesting if only trivial properties could be decided on them. In the present sec-
tion, we present several decision problems on WSTS, or their subclasses. Decidability
results for these problems will be provided in the sequel.

2.6.1 Behavioural properties

The reachability problem The reachability problem asks a question of the form
‘is it guaranteed that a given situation never occurs ?’. It can thus be used to check
safety properties:

11We do not consider here acceptance conditions such as Büchi conditions, which ask that a run
visits infinitely often some states of the systems to be accepting.

2.6. DECIDABILITY PROBLEMS ON WSTS 61

Problem 1 (RPWsts: The reachability problem for WSTS)

• Instance: A WSTS S =
〈
C, c0,⇒,≤

〉
and a configuration c ∈ C.

• Question: Does c ∈ Reach (S) ? �

The coverability problem That problem is closely related to the reachability prob-
lem and is of major interest, as far as WSTS are concerned. For that reason, it has been
widely studied in previous works [KM69, ACJT96, ABJ98, AAB99, AN01, ADMN04,
DR00, DRVB02, RVB04, FS01, FRSB02, EN98, EFM99, DFS98].

The coverability problem asks whether a given upward-closed set of configurations
is reachable in a given WSTS. Many safety properties can thus be reduced to the cov-
erability problem too. For instance, the property we have introduced at Example 2.8,
can be proved by solving an instance of the coverability problem.

Problem 2 (CPWsts: The coverability problem for WSTS)

• Instance: A WSTS S =
〈
C, c0,⇒,≤

〉
and a ≤-upward-closed set U ⊆ C.

• Question: Does Reach (S) ∩ U 6= ∅ ? �

Let us provide an example of instance of CPWsts:

Example 2.14 The WSTS that is defined by the Petri net of Example 2.8, together
with the upward-closed set {m | 〈0, 2, 0〉 4 m} forms an instance of CPWsts. The
mutual exclusion of the system is violated if and only if the answer is positive. ♦

We will see in Section 3.2 that this problem is decidable on the class of EWSTS, and
we shall introduce in Chapter 4 and Chapter 5 a new solution to this problem.

The unbounded computation problem That problem asks whether there is an
infinite computation in the WSTS:

Problem 3 (UCWsts: The unbounded computation for WSTS)

• Instance: A WSTS S =
〈
C, c0,⇒,≤

〉
.

• Question: Does S admit an infinite initialised execution ? �

62 CHAPTER 2. PRELIMINARIES

Problems specific to EPN More specific decidability results have been obtained
when considering the restricted class of EPN. Three problems of interest are: the place
boundedness, the quasi-liveness and the boundedness.

Problem 4 (PBEpn: The place-boundedness for EPN)

• Instance: An EPN N = 〈P, T,m0〉, a place p ∈ P

• Question: Is there n ∈ N, such that for all m ∈ Reach (N): m(p) ≤ n ? �

Problem 5 (QLEpn: The quasi-liveness problem for EPN)

• Instance: An EPN N = 〈P, T,m0〉 and a transition t ∈ T

• Question: Is there m ∈ Reach (N) such that m
t−→ ? �

Remark that this problem can be reduced to the coverability problem. Indeed, let
t = 〈I, O, s, d, b〉 be a transition of an EPN. Then t is firable from any marking m s.t.

for any place p: m(p) ≥ I(p). Thus, there exists a m ∈ Reach (N) with m
t−→ iff the

upward-closed set U = {m | ∀p : m(p) ≥ I(p)} has a non-empty intersection with
Reach (N).

Problem 6 (BoundEpn: The boundedness for EPN)

• Instance: An EPN N = 〈P, T,m0〉.

• Question: Is Reach (N) finite ? �

Decidability results for these problems will be discussed in Section 3.3

2.6.2 Expressiveness properties

Emptiness The emptiness problem asks whether the (finite words) language of a
WSTS is empty.

Problem 7 (EmptyWsts: The emptiness problem for WSTS)

• Instance: A labelled WSTS S =
〈
C, c0, Σ,⇒,≤

〉
and a set C ′ ⊆ C of accepting

configurations.

• Question: Does L(S, C ′) = ∅ ? �

Remark that a similar notion can be defined on ω-language of WSTS. However, we do
not address it in this thesis.

2.6. DECIDABILITY PROBLEMS ON WSTS 63

Universality The universality problem – defined here again in terms of finite words
language – asks whether the WSTS can accept any finite word definable on its alphabet
Σ:

Problem 8 (UnivEWsts: The universality problem for WSTS)

• Instance: A labelled WSTS S =
〈
C, c0,⇒,≤, Σ

〉
and a set C ′ ⊆ C of accepting

configurations.

• Question: Does L(S, C ′) = Σ∗ ? �

LTL The action–based LTL is a logic that is interpreted over ω–words. Given a finite
alphabet Σ, a formula φ of action–based LTL is syntactically defined by the following
BNF rule:

φ ::= a | ¬φ1 | φ1 ∨ φ2 | ©φ1 | �φ1 | ⋄φ1 | φ1Uφ2

where a ∈ Σ and φ1 and φ2 are action–based LTL formula.

Let w = w1w2 · · ·wi · · · be an ω-word on Σ and let φ be an action–based LTL
formula. For any i ≥ 1, let s(w, i) be the infinite suffix wiwi+1wi+2 · · · of w. We say
that w satisfies φ (written w |= φ) iff one of the following holds:

1. φ = a implies w1 = a;

2. φ = ¬φ1 implies that w 6|= φ′;

3. φ = φ1 ∨ φ2 implies that either w |= φ1 or w |= φ2;

4. φ =©φ1 implies that s(w, 2) |= φ1;

5. φ = �φ1 implies that for any j ≥ 1: s(w, j) |= φ1;

6. φ = ⋄φ1 implies that w |= ¬�¬φ1;

7. φ = φ1Uφ2 implies that there exists k ≥ 1 s.t. for any 1 ≤ j < k: s(w, j) |= φ1

and for any ℓ ≥ k: s(w, ℓ) |= φ2.

Given an ω-language L on Σ, and an action–based LTL formula φ, we say that L

satisfies φ (noted L |= φ) iff for every word w ∈ L, w |= φ. Hence, we define the LTL
satisfiability problem as:

Problem 9 (LTLSatis: The action–based LTL satisfiability problem for
WSTS)

• Instance: A labelled WSTS S =
〈
C, c0,⇒,≤, Σ

〉
, and an action–based LTL

formula (on Σ).

• Question: Does Lω(S) |= φ ? �

64 CHAPTER 2. PRELIMINARIES

Chapter 3

State of the art

I
n the previous chapter, we have introduced the main concepts that will be studied
in this thesis. We have shown how to represent and manipulate upward– and
downward–closed sets (thanks to an adequate domain of limits, in the case of

downward–closed sets); we have stated several decision problems on the models of
computation (WSTS, SMPN, EPN, LCS) that we want to study; and we have defined
their respective notions of accepted languages.

In the present chapter, we review several results of the literature regarding these
three topics. More precisely:

1. In section 3.1, we present adequate domains of limits that are suitable to represent
downward–closed sets of configurations in the case of EPN, SMPN and LCS. This
will be important for the algorithms we discuss in Part I of this thesis.

2. In Section 3.2 and Section 3.3, we recall decidability results on WSTS and some of
their subclasses. More precisely, in Section 3.2, we provide a short survey of the
various results obtained regarding the coverability problem on WSTS. We recall
the general backward algorithm of [ACJT96, FS01], as well as the Karp&Miller
algorithm [KM69], the only complete forward algorithm to decide the coverability
problem on the class PN only. Then, we discuss several attempts to extend the
Karp&Miller procedure to other classes of WSTS. Unfortunately, they have all
produced semi-algorithms.

In section 3.3, we address the other decidability problems. The emphasis on the
coverability problem is motivated by the fact that the first part of this thesis is
devoted to this problem.

3. In Section 3.4 we present several results that have been obtained regarding the
respective expressive powers of PN, PN+T, PN+NBA and PN+R mainly (to the
best of our knowledge, the general case of the expressiveness of WSTS has not
been addressed yet).

65

66 CHAPTER 3. STATE OF THE ART

3.1 Adequate domains of limits

We open the chapter by recalling domains of limits that are suitable to represent
downward-closed sets of tuples of naturals and downward-closed sets of configurations
of LCS.

3.1.1 An adequate domain of limits for
〈
Nk, 4

〉

The domain of limits we are about to introduce is suitable to finitely represent sets of
tuples of naturals that are downward-closed. This will be useful mainly in the analysis
of Petri nets and their monotonic extensions. We will consider ω-markings, which are
tuples over N∪{ω}. The limit elements will be ω-markings with at least one ω (in order
to avoid that the set of limits intersects with the set of configurations). Intuitively, the
ω symbol represents ‘any natural value’. Thus, for instance, the tuple 〈1, 1, ω〉 will be
used to represent all the tuples of naturals 〈i1, i2, i3〉 s.t. i1 ≤ 1, i2 ≤ 1.

The idea of using ω-markings to represent downward-closed sets of tuple of natu-
rals is certainly not new. It appears already in the algorithm that computes a finite
representation of ↓(Reach (N)), introduced by Karp and Miller in [KM69] (we discuss
this algorithm in Section 3.2.4).

We first define precisely the domain of limits and then show that it is adequate for〈
Nk, 4

〉
. Then, we discuss an extension of the transition relation of strongly monotonic

SMPN to handle extended markings. This extension will be useful to compute the most
precise over-approximation of the successors of a given ω-marking, that is representable
by means of an ω-marking.

We consider the domain of limits 〈L, 4e, γ〉 where:

1. L = (N ∪ {ω})k \ Nk;

2. 4e⊆ (N ∪ {ω})k × (N ∪ {ω})k is such that 〈m1, . . . , mk〉 4e 〈m′
1, . . . , m

′
k〉 if and

only if ∀1 ≤ i ≤ k : mi ≤ m′
i where c < ω for all c ∈ N;

3. γ is defined as: γ (m) = {m′ ∈ Nk |m′ 4e m}.

In the following, tuples in L are called ω-markings. We also note m1 ≺e m2 when
m1 4e m2 but m2 64e m1. Notice that in the present case, the ⊤ element (with
γ(⊤) = Nk) is the ω-marking that assigns ω to all the places. The following property
holds on ω-markings:

Proposition 3.1 Given an ω-marking m and a finite set S = {m1,m2, . . . ,mn} of
ω-markings, the following property holds: γ (m) ⊆ γ (S) if and only if there exists
1 ≤ i ≤ n s.t. m 4e mi.

3.1. ADEQUATE DOMAINS OF LIMITS 67

Proof. In the case where there exists 1 ≤ i ≤ n s.t. m 4e mi, we have γ (m) ⊆ γ (mi),
hence γ (m) ⊆ γ (S).

Let us show, per absurdum that γ (m) ⊆ γ (S) implies that there is 1 ≤ i ≤ n

s.t. m 4e mi. Thus, let us assume it is not the case, that is, γ (m) ⊆ γ (S) but
there is no 1 ≤ i ≤ n s.t. m 4e mi. Thus, there are two indices k and ℓ s.t. k 6= ℓ

and s.t. there are two markings mk,ml ∈ γ (m) with: mk ∈ γ (mk) \ ∪i6=kγ (mi) and
mℓ ∈ γ (mℓ) \ ∪i6=ℓγ (mi). This means in particular that there is no 1 ≤ j ≤ n s.t.
mk ∈ γ (mj) and mℓ ∈ γ (mj).

Since both mk and mℓ are in γ (m), we have mk 4e m and mℓ 4e m, by definition
of γ. Thus, for any place p, m(p) ≥ mk(p) and m(p) ≥ mℓ(p). Hence, the marking
m s.t. for any place p, m(p) = max{mk(p),mℓ(p)} is s.t. m 4e m which means that
m ∈ γ (m) ⊆ γ (S). Thus, by definition of γ, there is 1 ≤ j ≤ n s.t. m 4e mj .
Since 4e is transitive, we have mk 4e mj and mℓ 4e mj . We conclude that there is
1 ≤ j ≤ n s.t. mℓ ∈ γ (mj) and mk ∈ γ (mj). Contradiction. �

It is also useful to remark that any downward-closed set in this domain can be
uniquely and finitely represented by a set of ω-markings, as stated by the next lemma:

Lemma 3.1 For any 4-downward-closed set D in Nk there exists a set D ⊆
(
N∪{ω}

)k

which:

1. is a generator of D: γ (D) = D;

2. is canonical: for any m1,m2 ∈ D, m1 6= m2 implies that m1 64e m2;

3. is finite;

4. is unique, i.e., there is no D′ ⊆
(
N∪{ω}

)k
s.t. D′ 6= D and γ (D′) = γ (D) = D.

Proof. Let D be a 4–downward–closed set of Nk. In the case where D = Nk, we let
D = 〈ω, ω, . . . , ω〉. In the case where D = ∅, we let D = ∅. In both cases, it is clear
that D is a finite and canonical representation of D.

In the case where D is neither ∅ nor Nk, we let U = {m | m 6∈ D}. Let us show,
per absurdum that U is ≤–upward–closed. Let us consider m1 ∈ U , and let us assume
that there exists m2 < m1 with m2 6∈ U . The latter implies that m2 ∈ D. Since D is
4–downward–closed, any m3 4 m2 is in D. Hence, m1 is in D. Thus, m1 is not in U .
Contradiction.

By Lemma 2.1, U is representable by a finite set UGen (U) = {m1,m2, . . . ,mn}.
Thus, U is exactly the set of markings m s.t.

n∨

i=1

k∧

j=1

mi(pj) ≤m(pj)

68 CHAPTER 3. STATE OF THE ART

Hence, since D = {m |m 6∈ U}, D is exactly the set of markings m s.t.:

n∧

i=1

k∨

j=1

mi(pj) > m(pj)

By transforming this formula in disjunctive normal form1, we obtain a new equivalent
formula of the form:

Φ =
kn∨

j=1

n∧

i=1

ϕi,j

where each ϕi,j is of the form c > m(pm), c ∈ N and 1 ≤ m ≤ k. Let Ψj denote, for
every 1 ≤ j ≤ kn, the conjunction ∧n

i=1ϕi,j.

The formula Φ can be simplified by applying the following transformations succes-
sively:

1. If there is 1 ≤ j ≤ kn and 1 ≤ i ≤ n s.t. ϕi,j is of the form 0 > m(p), we suppress
Ψj from Φ, since m(p) ∈ N.

2. For any remaining 1 ≤ j ≤ kn s.t. there are 1 ≤ m ≤ k, x, y ∈ N and 1 ≤ ℓ1 <

ℓ2 ≤ n with ϕℓ1,j = x > m(pm) and ϕℓ2,j = y > m(pm), we replace Ψj by:

ℓ1−1∧

i=1

ϕi,j ∧
ℓ2−1∧

i=ℓ1+1

ϕi,j ∧
n∧

i=ℓ2+1

ϕi,j ∧K > m(pm)

where K = min{x, y}.

It is not difficult to see that the resulting formula Φ′ denotes the same set of markings,
i.e., D, than Φ.

Finally, for each remaining 1 ≤ j ≤ kn, replace Φj by the formula m 4e m′
j ,

where, for any 1 ≤ i ≤ k, m′
j = min{y | y > m(pi) is a conjunct of Ψj} − 1 (with the

convention that min ∅ = ω and ω − 1 = ω).

It is thus clear that, for any marking m, m satisfies Ψ′
j iff m 4e m′

j . Since Φ′

contains finitely many Ψ′
j, the set {m′

j | 1 ≤ j ≤ c} is a finite representation of D.
Since this set is finite, we can extract from it a canonical set D = {m′

j | 1 ≤ j ≤
c ∧ ∄1 ≤ i ≤ c : m′

j ≺e m′
i}.

We finish the proof by showing that there exists a unique canonical set D such that
γ(D) = D. This can be done per absurdum: suppose there is another canonical set
D′ of markings that represents D. Without loss of generality, that means that there
exists m ∈ D such that m 6∈ D′. Since ∀m′ ∈ γ(m) : m′ ∈ D and γ(D′) = D by
hypothesis, we have following Proposition 3.1 that there exists m′ ∈ D′ : m ≺e m′.

1Through successive applications of the following distributive rule: φ∧(ψ1∨ψ2) = (φ∧ψ1)∨(φ∧ψ2)

3.1. ADEQUATE DOMAINS OF LIMITS 69

Since γ(m) ⊂ γ(m′) and γ(D) = D, we conclude, by Proposition 3.1, that there exists
m′′ ∈ D : m ≺e m′′. Hence, D is not canonical, which is a contradiction. �

Example 3.1 Let us provide an example of the construction used in the proof of
Lemma 3.1. For that purpose, we consider the downward-closed set of 2-tuples of
natural numbers D = {m | (m(p1) ≤ 1∧m(p2) ≤ 1)∨m(p1) ≤ 0}. Its complement is
the upward-closed set U characterised by the following disjunctive formula:

(
m(p1) ≥ 2 ∧ m(p2) ≥ 0

)

∨(
m(p1) ≥ 1 ∧ m(p2) ≥ 2

)

Thus D, is exactly the set of markings m s.t.:

(
m(p1) < 2 ∨ m(p2) < 0

)

∧(
m(p1) < 1 ∨ m(p2) < 2

)

This formula is equivalent to the the following formula in disjunctive normal form:

(
m(p1) < 2 ∧ m(p1) < 1

)

∨(
m(p2) < 0 ∧ m(p1) < 1

)

∨(
m(p1) < 2 ∧ m(p2) < 2

)

∨(
m(p2) < 0 ∧ m(p2) < 2

)

We can suppress from this formula the second and the fourth disjuncts, because they
contain m(p2) < 0. Moreover, the first disjunct is equivalent to m(p1) < 1. Hence, we
obtain: (

m(p1) < 1
)
∨
(
m(p1) < 2 ∧m(p2) < 2

)

We finish the construction by associating one ω-marking to each disjunct. For the
former disjunct, it is 〈0, ω〉, and for the latter it is 〈1, 1〉. Thus:

D = γ
({
〈0, ω〉 , 〈1, 1〉

})

♦

70 CHAPTER 3. STATE OF THE ART

As a direct consequence of Lemma 3.1 and of the definition of γ, we obtain:

Theorem 3.1 〈L, 4e, γ〉 is an adequate domain of limits for
〈
Nk, 4

〉
.

Proof. We prove that 〈L, 4e, γ〉 enforces the four points of Definition 2.11:

(L1) representation mapping: follows directly from the definition of γ;

(L2) top element: ⊤ = 〈ω, ω, . . . , ω〉;

(L3) precision order: follows directly from the definitions of γ and 4e;

(L4) completeness: follows from Lemma 3.1.

�

Remark that Lemma 3.1 also states that each downward–closed set of markings
can be uniquely represented by a finite set of ω-markings (which is not guaranteed in
general by the definition of adequate domain of limits).

Extension of the transition relation Given a strongly monotonic SMPN, it is
possible to extend its transition relation in order to handle directly ω-markings. More
precisely, given an ω-marking m and a transition t, we would like to compute the
unique ω-marking m′ s.t. γ (m′) is the downward-closure of the set of successors of
γ (m) by t.

Let N be a 4-strongly monotonic SMPN. We extend the underlying transition
relation from markings to ω-markings2. For example, let us assume that for some place
j and some transition i, we have D−

ij(m) = m(pj), D+
ij = 5, and D−

ik(m) = D+
ik(m) = 0

for any k 6= j. Let us consider an extended marking m s.t. m(pj) = ω, and let us

compute m′ s.t. m
ti−→ m′. According to the definition of →, we first compute m′′,

which is s.t. m′′(pj) = m(pj) − D−
ij(m) = ω − ω = 0, and m′′(pk) = m(pk), for any

k 6= j. Then, we obtain m′, by letting m′(pj) = m′′(pj) + D+
ij(m) = 0 + 5 = 5, and

m′(pk) = m′′(pk) = m(pk), for k 6= j.

In the sequel, we adopt the following notation. Let N be an SMPN, let m be an

ω-marking of N and let ti be a transition of N . Let m′ be s.t. m
ti−→m′. Then we let

Post (m, ti) = m′. That notation is extended to sets M of ω-markings in the natural
way: Post (M, ti) = ∪m∈MPost (m, ti).

Let us show that the way we have extended the transition relation is well-suited

in the following sense. Let m and m′ be two (extended) markings such that m
ti−→

m′ for some transition ti. Then γ(m′) is the most precise 4e-downward-closed over-
approximation for Post(γ(m), ti).

2Here again, we assume that ω+ω = ω, ω−ω = 0, c ·ω = ω for all c ∈ N\ {0}, 0 ·ω = 0, ω+ c = ω

for all c ∈ Z

3.1. ADEQUATE DOMAINS OF LIMITS 71

Lemma 3.2 Let N = 〈P, T, D+, D−,m0〉 be a 4-strongly monotonic SMPN and let

m,m′ be two ω-markings. If m
ti−→ m′ for some ti ∈ T , then γ (m′) has the two

following properties:

1. Covering: Post(γ(m), ti) ⊆ γ (m′);

2. Preciseness: there is no finite set S ⊆
(
N ∪ {ω}

)|P |
such that Post(γ(m), ti) ⊆

γ (S) ⊂ γ (m′).

Proof. (Covering) Suppose that the covering property is not verified. In this case,
there exist four (possibly extended) markings m,m′,n and n′, and a transition ti ∈ T

such that m
ti−→ m′, n

ti−→ n′, n ∈ γ (m) and n′ 6∈ γ (m′). Hence, there exists pj ∈ P

such that n′(pj) > m′(pj).

Following Lemma 2.133, D−
ij(m) is either α′ ∈ N, or m(pj). Since D+

ij(m) is of the
form

∑
pk∈P β ′′

k ·m(pk) + α′′, with α′′ ∈ N and β ′′
k ∈ N for any 1 ≤ k ≤ |P |, we deduce

that the effect D+
ij(m)−D−

ij(m) of a transition ti on place pj for a marking m, may be
of two forms. Either D+

ij(m)−D−
ij(m) =

∑
pk∈P βk ·m(pk)+α or D+

ij(m)−D−
ij(m) =∑

pk∈P βk · m(pk) + α − m(pj) with βk ∈ N for all k and α ∈ Z. Hence, either
n′(pj) = n(pj) +

∑
pk∈P βk · n(pk) + α and m′(pj) = m(pj) +

∑
pk∈P βk · n(pk) + α, or

n′(pj) =
∑

pk∈P βk ·n(pk) + α and m′(pj) =
∑

pk∈P βk ·m(pk) +α. In both cases, since
n ∈ γ (m), n(pk) ≤ m(pk) for all pk ∈ P , hence

∑
pk∈P βk · n(pk) + α ≤ ∑pk∈P βk ·

m(pk) + α. We conclude that n′(pj) ≤m′(pj) and we obtain a contradiction.

(Preciseness) In order to establish the preciseness property, we prove that if

m
ti−→ m′, then any marking n′ ∈ γ (m′) is covered by a marking n′ ∈ Post(γ (m) , ti).

This clearly implies that the set γ (m′) is the minimal 4e-downward-closed set that
contains Post(γ (m) , ti), since for any 4e-downward-closed set D ⊂ γ (m′), there exists
at least one marking n ∈ Post(γ(m), ti) that is not in D. We proceed by showing how
to build n′, for any n′ ∈ γ (m′).

For that purpose, we first define the marking n, from n′, as follows. Let c be an
natural constant s.t.

c > max{|α1|, . . . , |α|P ||}+ max{n′(pk) | 1 ≤ k ≤ |P |}

where αj is the constant term in D+
ij −D−

ij . Then:

∀1 ≤ j ≤ |P | : n(pj) =

{
m(pj) if m(pj) ∈ N
c otherwise

Remark that, by construction, n ∈ γ (m), and that ti is firable from n. We let n′ be s.t.

n
ti−→ n′. Hence, n′ ∈ Post (γ (m) , ti). Thus, from the covering property, n′ ∈ γ (m′).

3Remember that we have assumed that all the SMPN we consider in this thesis do not contain
unfirable transitions.

72 CHAPTER 3. STATE OF THE ART

Let us show that n′ < n′. For that purpose, we show that, for any 1 ≤ j ≤ |P |,
n′(pj) ≤ n′(pj). Remember that n′ has been obtained by firing ti from n. According
to Lemma 2.13 again, the effect of ti might be of two form:

1. Either D+
ij(m)−D−

ij(m) =
∑

pk∈P βk ·m(pk) + αj −m(pj) with βk ∈ N for all k

and αj ∈ N. In that case, we have, for any pj ∈ P :

n′(pj) = n(pj) +

|P |∑

k=1

βk · n(pk) + αj − n(pj)

=

|P |∑

k=1

βk · n(pk) + αj

Here again, we have to consider two cases:

(a) In the case where, for any 1 ≤ k ≤ |P |, βk 6= 0 implies that m(pk) 6= ω, we
have:

|P |∑

k=1

βk · n(pk) + αj =

|P |∑

k=1

βk ·m(pk) + αj

= m(pj) +

|P |∑

k=1

βk ·m(pk) + αj −m(pj)

= m′(pj)

because m′ has been obtained by applying the effect of ti on m. Hence,
n′(pj) = m′(pj). Since, n′ ∈ γ (m′), we have n′(pj) ≤m′(pj) = n′(pj).

(b) In the case where there is 1 ≤ k ≤ |P | s.t. βk > 0 and m(pk) = ω, then the
term βk · n(pk) of the sum is non-null and equal to βk · c, by definition of
n. Hence, since the other terms of the sum, as well as αj, are positive, we
have:

|P |∑

k=1

βk · n(pk) + αj ≥ c

≥ max{n′(pk) | pk ∈ P}
≥ n′(pj)

2. Or, D+
ij(m)−D−

ij(m) =
∑

pk∈P βk ·m(pk) + αj with βk ∈ N for all k and αj ∈ Z.
In that case, we have, for any pj ∈ P :

n′(pj) = n(pj) +
∑

pk∈P

βk · n(pk) + αj

We consider two cases:

3.1. ADEQUATE DOMAINS OF LIMITS 73

(a) In the case where m(pj) 6= ω and, for any 1 ≤ k ≤ |P |, βk 6= 0 implies that
m(pk) 6= ω, we have:

n(pj) +
∑

pk∈P

βk · n(pk) + αj = m(pj) +
∑

pk∈P

βk ·m(pk) + αj

= m′(pj)

We conclude, as we did in (1a), that n(pj) ≤ n′(pj).

(b) Otherwise, either n(pj) = c or there exists 1 ≤ k ≤ |P | s.t. the k-th term
of the sum is non-null and equal to βk · c. In both cases, we have:

n(pj) +
∑

pk∈P

βk · n(pk) + αj

≥ c + αj

= max{n′(pk) | pk ∈ P}+ max{|α1|, |α2|, . . . , |α|P ||}+ αj

≥ max{n′(pk) | pk ∈ P}
≥ n′(pj)

�

The two conditions that we have just proved (successor covering and preciseness)
will actually be necessary for the ‘Expand, Enlarge and Check’ algorithm (for the cover-
ability problem of WSTS) that we will introduce in Chapter 4. We can obtain a stronger
results, saying that the marking m′ that we compute thanks to the extended transi-
tion relation, as successor by transition ti of m′, represents exactly γ (Post (γ (m) , ti))
(remark that, in general, Post (γ (m) , ti) is not downward-closed):

Proposition 3.2 Let N = 〈P, T, D+, D−,m0〉 be a 4-strongly monotonic SMPN, let

ti ∈ T be a transition and let m and m′ be two ω-markings s.t. m
ti−→ m′. Then

γ (m′) = γ (Post (γ (m) , ti)).

Proof. Per absurdum. Let us assume it is not the case, i.e., γ (m′) 6= γ (Post (γ (m) , ti)).

By Lemma 3.2, Post (γ (m) , ti) ⊆ γ (m′) and there is no finite subset S of
(
N∪{ω}

)|P |

s.t. Post (γ (m) , ti) ⊆ γ (S) ⊂ γ (m′).

Since γ (m′) is 4-downward-closed, we have: γ (Post (γ (m) , ti)) ⊆ γ (m′). Thus,
γ (Post (γ (m) , ti)) 6= γ (m′) implies that γ (Post (γ (m) , ti)) ⊂ γ (m′). By Lemma 3.1,

there exists a finite subset S of
(
N ∪ {ω}

)|P |
s.t. γ (S) = γ (Post (γ (m) , ti)). Hence,

S ⊆
(
N ∪ {ω}

)|P |
is a finite set s.t.: Post (γ (m) , ti) ⊆ γ (Post (γ (m) , ti)) ⊆ γ (S) ⊂

γ (m′). Contradiction. �

Remark that a similar extension could be defined for EPN. We do not need it in
the sequel, so we omit it here.

74 CHAPTER 3. STATE OF THE ART

3.1.2 An adequate domain of limits for 〈States (C) , -〉
Let us show that it is also possible to represent any downward–closed set of config-
urations of a LCS C by a finite set of elements that are algorithmically manipulable.
By definition of -, a set of configurations S is -–downward–closed iff for every con-
figuration 〈q, W 〉 in S, all the configurations of the form 〈q, W ′〉, where W ′(f) is a
subword of W (f), for every channel F , are also in S. Thus, the main difficulty in rep-
resenting downward–closed sets of configurations consists in devising a representation
for downward–closed languages (with respect to word inclusion).

Such a finite representation has been devised by Abdulla, Bouajjani and Jonsson,
and presented in [ABJ98] (most of the results we present in this section come from
this work. Remark however that we sometimes use a slightly different terminology).
In this work, they introduce the simple regular expressions (or sre for short), which are
a special case of regular expressions, suitable to represent any downward–closed set of
words. Thanks to the sre, and according to the definition of -, it is then easy to define
a domain of limits, whose elements represent downward-closed sets of configurations,
simply by combining a location of the LCS with one sre per channel.

We recall the definition of sre, and their normal form. Then, we recall how to sym-
bolically test entailment between two sre. Finally, we show how to define an adequate
domain of limits for LCS, thanks to sre.

Simple regular expression In order to define sre, we first have to state the defini-
tion of --Downward-Closed Regular Expression. These expressions are special cases
of regular expressions (in the classical sense, see [HMU01]). Hence, they will be used
to define regular languages, that have the characteristic to be --downward-closed.

Definition 3.1 ([ABJ98]) (Downward-Closed Regular Expression)
Given a finite alphabet Σ, a downward-closed regular expression (dc–re for short) on
Σ is an expression of one of the following forms:

• either (a1 + . . . + an)∗ where n ≥ 1, for any 1 ≤ i ≤ n: ai ∈ Σ, and for any i, j

s.t. 1 ≤ i ≤ n, 1 ≤ j ≤ n: i 6= j implies that ai 6= aj. Such an expression is
called a ∗–dc–re;

• or (a + ε) where a is a character of Σ. Such an expression is called an ε–dc–re;

• or ε.

Given a dc–re d, we denote by α(d) the alphabet of d. That is:

α(d) =






∅ if d = ε

{a} if d = (a + ε)
{a1, a2, . . . an} if d = (a1 + a2 + · · ·+ an)∗

�

3.1. ADEQUATE DOMAINS OF LIMITS 75

Remark that in [ABJ98], dc–re are called atomic expressions. Given an alphabet Σ,
we denote by L(Σ) the set of all dc–re on Σ. Based on this definition, we can introduce
the simple regular expressions4 (or sre for short), which are finite concatenations of
dc–re:

Definition 3.2 ([ABJ98]) (Simple Regular Expression) Given a finite alpha-
bet Σ, a simple regular expression (sre for short) on Σ is either a dc–re on Σ, or an
expression of the form d1 · . . . · dn where n ≥ 2 and for any 1 ≤ i ≤ n: di 6= ε is a dc–re

on Σ, or ∅.
The size |s| of a sre s is defined as:

|s| =
{

0 if s = ε or s = ∅
n if s = d1 · d2 · · ·dn with n ≥ 1

�

As any regular expression, an sre defines a (regular) language, which is denoted by
[[s]]:

Definition 3.3 (Denotation of an sre) Let s be an sre. Then, [[s]] is the language
generated by s, defined inductively as follows:

• [[∅]] = ∅;

• [[ε]] = {ε};

• For any a ∈ Σ: [[(a + ε)]] = {a, ε}

• For any {a1, a2, . . . , an} ⊆ Σ:

[[(a1 + a2 + · · ·+ an)∗]]
={

ε
}
∪
{
w1w2 . . . wk | k ∈ N0 ∧ ∀1 ≤ i ≤ k : wi ∈ {a1, a2, . . . an}

}

• [[d · s]] = [[d]] · [[s]]. �

Given a set S of sre, [[S]] is the set ∪s∈S[[s]].

In the sequel, we denote by L(Σ)∗ the set of any sre on the alphabet Σ. As a
consequence of the definition, we obtain:

Lemma 3.3 ([ABJ98]) For any sre s, [[s]] is a --downward-closed language.

4In [ABJ98], such expressions are called products and sre are defined as disjunctions of such prod-
ucts. Since we do not need the disjunction, and in order to keep the forthcoming discussion simple,
we restrict our definition of sre to the case where only one product is present in the disjunction.

76 CHAPTER 3. STATE OF THE ART

On the other hand, these expressions are suitable to represent any downward–closed
language, as stated by the following Theorem:

Theorem 3.2 ([ABJ98]) Let Σ be a finite alphabet and let L be a language on Σ s.t.
for any w ∈ L, for any w′ ∈ Subword (w): w′ ∈ L, i.e., L is downward–closed (wrt to
word inclusion). Then, there exists a finite set of sre S on Σ s.t. [[S]] = L.

Remark that this Theorem does not guarantee that the (set of) sre representing L

is unique. However, a notion of normal form exists for sre and is defined as follows:

Definition 3.4 (Normal form sre) Any dc–re and ∅ are normal form sre. An sre

d1 · d2 · · · dn is in normal form if and only if for each 1 ≤ i < n: [[di · di+1]] 6⊆ [[di]] and
[[di · di+1]] 6⊆ [[di+1]]. �

The following lemma states that for any sre, there exists a unique sre in normal form
that has the same denotation, and which is easily computable:

Lemma 3.4 ([ABJ98]) For any sre s there is an unique sre in normal form s′ s.t.
[[s]] = [[s′]]. Furthermore, s′ can be derived from s in linear time.

Example 3.2 Let us consider the four sre:

1. s1 = (a)∗ · (a + ε) · (a + b)∗ · (c + ε)

2. s2 = (a + ε) · (a + ε) · (a + b)∗ · (b + ε) · (c + ε)

3. s3 = (a)∗ · (a + b)∗ · (c + ε)

4. s4 = (a + b)∗ · (c + ε)

It is not difficult to see that:

[[s1]] = [[s2]] = [[s3]] = [[s4]]
={

w · c, w | w = ε ∨
(
w = w1 · · ·wn ∧ ∀1 ≤ i ≤ n = wi ∈ {a, b}

)}

However, s4 only is in normal form. ♦

In the sequel, we use sre in order to represent (downward-closed) sets of contents
of LCS channels. For that purpose, the empty language ∅ is not necessary: the empty
channel will be represented by ε (hence, the only possible content of the channel is the
empty word). As a consequence, we will not consider the empty sre ∅ anymore, from
now on. Remark however that the algorithms and results we are about to present can
be extended to the ∅ case (see for instance [ABJ98]).

3.1. ADEQUATE DOMAINS OF LIMITS 77

Entailment An algorithm to test entailment between two sre is introduced in [ABJ98]
too. The first step to devise such an algorithm consists in defining a procedure to com-
pute entailment between dc–re. This procedure can be deduced from the following
result (from [ABJ98]), that holds for any pair of dc–re d1 and d2.

Lemma 3.5 ([ABJ98]) Let d1 and d2 be two dc–re. Then, the following holds:

[[d1]] ⊆ [[d2]]
iff

d1 = ε

or
d2 is a ∗–dc–re and α(d1) ⊆ α(d2)

or
d1 is an ε–dc–re and d2 = d1

It is then easy to define an algorithm that tests the entailment between two dc–re.
Algorithm 3.1 (from [ABJ98]) realises this (ignore the comment for the moment). Re-
mark that it is a symbolic algorithm in the sense that it works by directly manipulating
the sre s and s′ instead of [[s]] and [[s′]].

Algorithm 3.1: An algorithm to test entailment between two sre.

Data: Two sre s = d1 · d2 · · · dn and s′ = d′
1 · d′

2 · · · d′
k

Result: true if [[s]] ⊆ [[s′]], false otherwise
Boolean TestEntailSre(d1, d2)

begin
i← 1 ;
j ← 1 ;
while i ≤ n and j ≤ k do

if [[di]] ⊆ [[d′
j]] then

// ρ(i)← j ;
i← i + 1 ;1

if d′
j is an ε–dc–re then2

j ← j + 1 ;

else
j ← j + 1 ;

if i = n + 1 then return(true) ;
else return(false) ;

end

As a consequence we obtain the following lemma:

Lemma 3.6 ([ABJ98]) Entailment between sre can be checked in linear time.

78 CHAPTER 3. STATE OF THE ART

If we consider Algorithm 3.1 with care, we remark that it establishes a correspon-
dence between the dc–re of s and those of s′: each dc–re d that makes up s is associated
to a dc–re d′ of s′ s.t. [[d]] ⊆ [[d′]]. As a consequence, [[s]] ⊆ [[s′]] iff there exists a function
ρ that establishes this correspondence, as stated by the following Lemma:

Lemma 3.7 For any pair of sre s = d1 · d2 · · ·dn and s′ = d′
1 · d′

2 · · · d′
k: [[s]] ⊆ [[s′]] iff

there exists a non-decreasing function ρ : {1 . . . n} 7→ {1, . . . k} s.t.:

1. for any 1 ≤ i ≤ n: [[di]] ⊆ [[d′
ρ(i)]];

2. for any 1 ≤ i < n: ρ(i) = ρ(i + 1) implies that d′
ρ(i) is a ∗–dc–re.

Proof. Let us modify Algorithm 3.1 to let it build the function ρ. This is done by
inserting an instruction that lets ρ(i) = j before line 1. It is easy to see that this
modified version of Algorithm 3.1 respects the following invariant:

∀1 ≤ ℓ ≤ i− 2 : ρ(ℓ) ≤ ρ(ℓ + 1)
∧

∀1 ≤ ℓ ≤ i− 1 : [[dℓ]] ⊆ [[d′
ρ(ℓ)]]

∧
∀1 ≤ ℓ ≤ i− 2 : ρ(ℓ) = ρ(ℓ + 1) implies d′

ρ(ℓ) is a ∗–dc–re

In particular, the third point follows from the test of line 2.

We obtain the Lemma by combining the invariant and the fact that, at the end of
the algorithm, i = n + 1 iff [[s]] ⊆ [[s′]]. �

We are thus able to test entailment between two sre. The entailment between an
sre s and a set S of sre can be tested easily, according to the following lemma:

Lemma 3.8 ([ABJ98]) Let Σ be a finite alphabet. Let s ∈ L(Σ)∗ be an sre on Σ
and let S ⊆ L(Σ)∗ be a finite set of sre. Then [[s]] ⊆ [[S]] iff there exists s′ ∈ S s.t.
[[s]] ⊆ [[s′]].

As a consequence, given two sets S and S ′ of sre, we have [[S]] ⊆ [[S ′]] iff for any s ∈ S,
there is s′ ∈ S ′ s.t. [[s]] ⊆ [[s′]].

Adequate domain of limits We are now ready to define a domain of limits for
〈States (C) , -〉, where C = 〈Q, q0, F, Σ, T 〉 is any LCS. According to Definition 2.11,
this boils down to defining a suitable set L(Σ, Q) of limit elements (containing a ⊤
element), together with an ordering ranging over States (C) ∪ L(Σ, Q), and a function
γ that associates a downward closed set to each element of States (C) ∪ L(Σ, Q), such
that any downward-closed set is finitely representable:

3.1. ADEQUATE DOMAINS OF LIMITS 79

• The set of limits is the set L(Σ, Q) =

{〈q, E〉 | q ∈ Q, E : F 7→ L(Σ)∗ assigns an sre to each channel5} ∪ {⊤}

We extend the notation [[]] to elements in L(Σ, Q): for 〈q, E〉 ∈ L(Σ, Q): [[〈q, E〉]]
denotes the set of pairs 〈q, W 〉 ∈ States (C) such that, for any f ∈ F : W (f) ∈
[[E(f)]].

• The function γ : States (C) ∪ L(Σ, Q) 7→ 2States(C) is such that

1. for all 〈q, W 〉 ∈ States (C) : γ(〈q, W 〉) = {〈q, W ′〉 | 〈q, W ′〉 - 〈q, W 〉};
2. γ(⊤) = {〈q, W 〉 | q ∈ Q, W (f) ∈ Σ∗ for all f ∈ F};
3. for all 〈q, E〉 ∈ L(Σ, Q) \ {⊤} : γ(〈q, E〉) = [[〈q, E〉]].

• The ordering ⊑ : (States (C) ∪ L(Σ, Q)) × (States (C) ∪ L(Σ, Q)) is defined as
follows: c1⊑c2 if and only if γ(c1) ⊆ γ(c2).

Remark that ⊑ is a quasiorder, and not a partial order. Indeed, there can be sev-
eral limit elements that represent the same downward-closed set (see Example 3.2 for
instance).

Remark 3.1 In the present case, the ⊤ element is equivalent to a finite set of elements
of the form 〈q, E〉 s.t. q ∈ Q, E : F 7→ L(Σ)∗. Indeed, assume we are considering an
LCS C with alphabet Σ = {a1, a2, . . . , an} and set of states Q, and let dΣ be the sre

(a1 + a2 + · · ·+ an)∗. Then, let

S⊤ = {〈q, E〉 | q ∈ Q and ∀f ∈ F : E(f) = dΣ}

It is not difficult to see that γ (S⊤) = States (C) = γ (⊤). Moreover, S⊤ is finite because
there are finitely many states in Q.

With these definitions, we obtain an adequate domain of limits for 〈States (C) , -〉,
as stated by the following theorem:

Theorem 3.3
〈
L(Σ, Q),⊑, γ

〉
is an adequate domain of limits for 〈States (C) , -〉.

Proof. We establish this result by proving the four points of Definition 2.11:

(L1) It is easy to show that for any 〈q, E〉 ∈ States (C) ∪ L(Σ, Q), γ(〈q, E〉) is --
downward-closed (see [ABJ98]);

(L2) the element ⊤ is such that γ(⊤) is equal to States (C);
5We also require that E does not assign ε to all the channels because we require in Definition 2.11

that the set of limits is disjoint from States (C).

80 CHAPTER 3. STATE OF THE ART

(L3) by definition c1⊑c2 if and only if γ(c1) ⊆ γ(c2) for all c1, c2 ∈ States (C)∪L(Σ, Q);

(L4) from Theorem 3.2 we deduce that if S ⊆ States (C) is --downward-closed, then
there exists S ′ ⊆ States (C) ∪ L(Σ, Q) such that S ′ is finite and γ(S ′) = S.

�

Entailment between limit elements The definition of ⊑, together with Algo-
rithm 3.1, provides us a way to test, given two limit elements d1 and d2, whether
γ (d1) ⊆ γ (d2). It remains to show how to test, given a limit element d and a set of
limit elements D, whether γ (d) ⊆ γ (D). It turns out that the entailment holds iff
there is d′ ∈ D s.t. γ (d) ⊆ γ (d′), as shown by the following Lemma:

Lemma 3.9 Let C = 〈Q, q0, F, Σ, T 〉 be a LCS and let
〈
L(Σ, Q),⊑, γ

〉
be an adequate

domain of limits for 〈States (C) , -〉. Let d be an element from L(Σ, Q) \ {⊤} and let
D be a finite subset of L(Σ, Q) \ {⊤}. Then, γ (d) ⊆ γ (D) iff there exists d′ ∈ D s.t.
γ (d) ⊆ γ (d′).

Proof. In the case where there exists d′ ∈ D s.t. γ (d) ⊆ γ (d′), it is trivial that
γ (d) ⊆ γ (D).

The proof of the other direction is as follows. Let us suppose that γ (d) ⊆ γ (D).
Let us assume that d = 〈q, E〉 for some q ∈ Q, and let us assume, without loss of
generality, that, for any 〈q′, E ′〉 ∈ D: q′ = q (this is not restrictive, since the definition
of - imposes that two configurations are comparable only if they are in the same
state. Hence, γ (〈q′, E ′〉) ∩ γ (〈q, E〉) = ∅ when q′ 6= q). Let us finally assume that
F = {f1, f2, . . . , fn}. We prove that there is d′ ∈ D′ s.t. γ (d) ⊆ γ (d′) by induction on
the number n of channels.

• Base case: n = 1. In that case, γ (d) ⊆ γ (D) iff

[[E(f1)]] ⊆ ∪〈q,E′〉∈D[[E ′(f1)]]

by definition of γ. Remark that the expression on the left-hand side of the ⊆ is
a sre, and that the expression on the right-hand side is a finite set of sre. Hence,
by Lemma 3.8, this holds iff there is d′ = 〈q, E ′〉 ∈ D s.t. [[E(f1)]] ⊆ [[E ′(f1)]].
This means that γ (d) ⊆ γ (d′).

• Inductive case n = k + 1. For any k ≥ 1, for any limit element 〈q, E〉 ranging
on at least k channels, we let π(〈q, E〉 , k) = 〈q, E ′〉 s.t. E ′ : F k 7→ L(Σ)∗ and
for any 1 ≤ i ≤ k: E ′(fk) = E(fk). That is, π(〈q, E〉 , k) is a new limit element
ranging on k channels, and whose sre correspond to those of 〈q, E〉 as far as the k

first channels are concerned. We extend the function π to sets S of limit elements
in the usual way: π(S, k) = {π(d′, k) | d′ ∈ S}.

3.1. ADEQUATE DOMAINS OF LIMITS 81

Then, let us consider the set

D′ =
{
d′ ∈ D | γ (π(d, k)) ⊆ γ (π(d′, k))

}

Since γ (d) ⊆ γ (D), we have γ (π(d, k)) ⊆ γ (π(D, k)). Hence, by induction
hypothesis, there exists d′ ∈ π(D, k) s.t. γ (π(d, k)) ⊆ γ (d′). Otherwise stated,
there is d′′ ∈ D s.t. γ (π(d, k)) ⊆ γ (π(d′′, k)). Hence, the set D′ is not empty.
Remark that, by definition of D′ and π, for any d′ = 〈q, E ′〉 ∈ D′, for any
1 ≤ i ≤ k: [[E(fi)]] ⊆ [[E ′(fi)]].

Let us show that γ (d) ⊆ γ (D′). This is proved per absurdum: we assume that
γ (d) 6⊆ γ (D′).

We first build two configurations c and c′ as shown in the two following points:

1. Let c = 〈q, W 〉 be a configuration in γ (d)\γ (D′) (such a configuration has to
exist since we have assumed that γ (d) 6⊆ γ (D′)). Since c 6∈ γ (D′), we have
that, for any d′ = 〈q, E ′〉 ∈ D′, c 6∈ γ (d′). Hence, for any d′ = 〈q, E ′〉 ∈ D′,
there exists 1 ≤ i ≤ k + 1 s.t. W (fi) 6∈ [[E ′(fi)]]. However, by definition
of D′, and since c ∈ γ (D), for any d′ = 〈q, E ′〉 ∈ D′, for any 1 ≤ i ≤ k,
W (fi) ∈ [[E(fi)]] ⊆ [[E ′(fi)]]. We conclude W (fk+1) ∈ [[E(fk+1)]] (because
c ∈ γ (d)), but that for any d′ = 〈q, E ′〉 ∈ D′: W (fk+1) 6∈ [[E ′(fk+1)]].

2. By definition of D′, we have: for any d′ ∈ D \D′: γ (π(d, k)) 6⊆ γ (π(d′, k)).
Since we are dealing with limit elements ranging over k channels, the lemma
holds, by induction hypothesis, and γ (π(d, k)) 6⊆ γ (π(D \D′, k)). Let c′ =
〈q, W ′〉 be a configuration from γ (π(d, k)) \ γ (π(D \D′, k)).

From c and c′, we build a new configuration c =
〈
q, W

〉
, ranging over k + 1

channels, as follows: W (fk+1) = W (fk+1) and for any 1 ≤ i ≤ k: W (fi) = W ′(fi).
By construction, c 6∈ γ (D′) because the content of the channel fk+1 cannot be
covered by any d′ ∈ D′. Moreover, c 6∈ γ (D \D′), because π(c, k) = c′ 6∈
π((D \ D′, k)). Hence, c 6∈ γ (D). However, by construction again, c ∈ γ (d).
Indeed, π(c, k) = c′ is in γ (π(d, k)), which means that for any 1 ≤ i ≤ k,
W (fi) ∈ [[E(fi)]]. Moreover, W (fk+1) = W (fk+1) ∈ [[E(fk+1)]]. Hence, the
existence of c ∈ γ (d)\γ (D) allows to conclude that γ (d) 6⊆ γ (D). Contradiction.

From the previous contradiction, we conclude that γ (d) ⊆ γ (D′). Hence, in
particular, [[E(fk+1)]] ⊆ ∪〈q,E′〉∈D′ [[E ′(fk+1)]]. By Lemma 3.8, this implies that
there exists 〈q, E ′〉 ∈ D′ s.t. [[E(fk+1)]] ⊆ [[E ′(fk+1)]]. Moreover, since 〈q, E ′〉 ∈
D′, and by definition of D′, we know that for any 1 ≤ i ≤ k: [[E(fi)]] ⊆ [[E ′(fi)]].
We conclude that for any 1 ≤ i ≤ k + 1: [[E(fi)]] ⊆ [[E ′(fi)]], which means that
γ (d) ⊆ γ (〈q, E ′〉), with 〈q, E ′〉 ∈ D′ ⊆ D.

�

82 CHAPTER 3. STATE OF THE ART

Entailment between sets of limits and configurations As a consequence of
Lemma 3.9, if D1 and D2 are two finite subsets of L(Σ, Q) \ {⊤}, we have γ (D1) ⊆
γ (D2) iff for any d1 ∈ D1, there is d2 ∈ D2 with γ (d1) ⊆ γ (d2). Since, by Remark 3.1,
the ⊤ element can be replaced by a finite subset of L(Σ, Q) \ {⊤}, one obtains a way
to test whether γ (D′

1) ⊆ γ (D′
2) for any finite subsets D′

1 and D′
2 of L(Σ, Q).

Finally, we handle elements of States (C), thanks to the following definition, that
turns a configuration c ∈ States (C) into a limit element that has the same denotation:

Definition 3.5 (Limit corresponding to a configuration) Let c = 〈q, W 〉
be a configuration of an LCS. Then, limit (c) is the element 〈q, E〉 ∈ L(Σ, Q) s.t.:

∀f ∈ F : E(f) =

{
(a1 + ε) · (a2 + ε) · · · (ak + ε) if W (f) = a1 · a2 · · ·ak

ε if W (f) = ε

�

We extend the definition of limit to limit elements d: in that case, limit (d) = d.

As a consequence, we have the following immediate Lemma (proof omitted):

Lemma 3.10 For any c ∈ L(Σ, Q) ∪ States (C), γ(c) = γ(limit (c)).

Thanks to Lemma 3.10 and Remark 3.1, we conclude that given a finite subset D of
States (C)∪L(Σ, Q), we can build a finite subset D′ of L(Σ, Q)\{⊤} s.t. γ (D) = γ (D′).
Thus, given two finite subsets D1 and D2 of States (C)∪L(Σ, Q), one can test whether
γ (D′

1) ⊆ γ (D′
2) by first building two finite subsets D′

1 and D′
2 of L(Σ, Q) \ {⊤}

corresponding to D1 and D2, and testing whether γ (D1) ⊆ γ (D2), thanks to the
aforementioned techniques.

Computation of Post Finally, it has been shown in [ABJ98] that Post is computable
in a symbolic way on the elements of L(Σ, Q).

Lemma 3.11 ([ABJ98]) Given an LCS C = 〈Q, q0, F, Σ, T 〉 with an adequate domain
of limits (L(Σ, Q),⊑, γ), an element c ∈ L(Σ, Q) ∪ States (C), and a transition t ∈ T ,
it is possible to compute, in linear time (in the size6 of c) an element c′ ∈ L(Σ, Q) ∪
States (C) s.t. [[c′]] = {c2 | ∃c1 ∈ [[c]] : c1

t−→ c2}.

As a consequence (see also Remark 3.1) we can extend the function Post to elements of
L(Σ, Q): for any s ∈ L(Σ, Q), Post (s) returns an element of L(Σ, Q) s.t. [[Post (s)]] =
Post ([[s]]).

6Naturally, the size of an element c ∈ States (C) is the sum of the lengths of the contents of the
channels. The size of an element c ∈ L(Σ, Q), is the sum of the lengths of its sre.

3.2. THE COVERABILITY PROBLEM 83

3.2 The coverability Problem

This section recalls the state of the art regarding CPWsts, the coverability problem
for WSTS. The algorithms to solve this problem are fixed point algorithms that can
be classified into two categories, depending on the way the iterations are computed:

• The forward approach: Compute Post∗ (c0) and answer yes iff U ∩Post∗ (c0) 6= ∅.
This approach follows directly from the definition of CPWsts;

• The backward approach: Compute Pre∗ (U) and answer yes iff c0 ∈ Pre∗ (U). This
stems from the fact that Pre∗ (U) is the set of all the configurations that can reach
U in any number of steps of the transition relation.

As we will see in this section, CPWsts has been proved decidable in [ACJT96]
thanks to a backward algorithm. As a consequence, we discuss backward algorithms
before the forward ones. In section 3.2.1, we recall the general backward algorithm of
[ACJT96]. Then, we recall a well-known forward algorithm, due to Karp and Miller,
that decides coverability on the class PN (Section 3.2.4). That solution works by
computing the coverability set of the PN, which is sufficient to decide the coverability
problem (we discuss this set in Section 3.2.3). Unfortunately, that idea cannot be
applied to other classes of WSTS: in Sections 3.2.5 and 3.2.6, we recall several forward
semi-algorithms for the coverability problem on other classes of WSTS such as BP,
LCS and TPN. All these algorithms, albeit quite efficient in practice, try to compute
the coverability set of the system they analyse, and, therefore, offer no guarantee of
termination.

3.2.1 A general backward algorithm for the CPWsts

Alain Finkel seems to be the first to have presented a solution to CPWsts for a rather
general sub-class of WSTS in [Fin90]. However, at that time, the interest in WSTS was
not as broad as it is today, and a solution to CPWsts, very similar to that of Finkel,
has been independently published by Abdulla et al [ACJT96] some years later. This
is the solution we are about to present now.

To be able to define effective procedures to solve the general coverability problem
on WSTS, we will need to make several assumptions on the WSTS we manipulate.
Indeed, the general definition of WSTS does not impose, for instance, that the WQO

or the transition relation are decidable. Of course, if it is not the case, the WSTS will
hardly be analysable by algorithmic procedures. Hence the following definition that
states several constraints for a WSTS to be effective.

84 CHAPTER 3. STATE OF THE ART

Definition 3.6 (Effective WSTS) An effective well-structured transition system
(or EWSTS for short) is a tuple S =

〈
C, c0,⇒,≤

〉
s.t.:

• S is a WSTS;

• given any pair of configurations c1 and c2 in C, one can decide whether c1 ⇒ c2

or not;

• given any pair of configurations c1 and c2 in C, one can decide whether c1≤c2 or
not;

• given any configuration c ∈ C, one can effectively compute (a finite representation

of) PreUp≤ (c). �

The solution of [ACJT96] is a general one in the sense that it works for any EWSTS.
Let us first explain the general ideas of this algorithm. Consider an EWSTS S =〈
C, c0,⇒,≤

〉
and an upward-closed U . The algorithm of [ACJT96] is based on the

backward approach: starting from U it iterates the operator f(X) = Pre (X) ∪ U up
to stabilisation. That is, it computes all the configurations that can reach U in any
number of steps. It is important to remark that, since the systems we consider are
monotonic, if some set S is upward-closed then Pre (S) is upward-closed too. Moreover,
the union of two upward-closed sets is an upward-closed set. Thus, the algorithm always
maintains an upward-closed set of configurations that can reach U .

In practice, since any upward-closed set U is potentially infinite, we represent it by
means of UGen (U). As we manipulate WSTS, there always exists a finite a canonical
set UGen (U) that represents U , by Corollary 2.1. This implies that we must be able
to compute the Pre of an upward-closed set U , the union of two upward-closed sets
U1 and U2, and the membership of a configuration c to an upward-closed set U in a
symbolic fashion (by manipulating minimal elements of the upward-closed sets only).
More precisely, given three upward–closed sets U , U1 and U2 respectively represented
by finite generators G, G1 and G2, we need to devise:

• a Pre# operator s.t. Pre# (G) is a finite subset of Pre (U) with ↑
(
Pre# (G)

)
=

Pre (U). Thus, Pre# (G) must be a finite representation of PreUp≤ (G). Since G

is finite, and since we consider effective WSTS, this operator exists, by Defini-
tion 3.6.

• a ∪# operator s.t. G1∪#G2 is a finite subset of U1∪U2 s.t. ↑
(
G1 ∪# G2

)
= U1∪U2.

We can simply let ∪# = ∪. It is possible to extract from G1 ∪# G2 a set
UGen (U1 ∪ U2) that is a finite and canonical generator of U1 ∪ U2.

• an ∈# operator s.t. c ∈# G iff c ∈ U . By definition of Min, we can let c ∈# G iff
there is m ∈ G with m≤c.

3.2. THE COVERABILITY PROBLEM 85

The algorithm of [ACJT96] is presented in Algorithm 3.2. In this version of the al-
gorithm, we have used the Min function in order to reduce the size of the sets we
manipulate (this is correct by Lemma 2.5). This does not imply that we manipulate
canonical sets, although this is feasible as we have seen in the above discussion (see
also Lemma 2.6).

Algorithm 3.2: The algorithm of [ACJT96] to solve CPWsts.

Data: An EWSTS S =
〈
C, c0,⇒,≤

〉
and a finite set UGen (U) of minimal

elements of a ≤-upward-closed set U ⊆ C.
Result: true if Reach (S) ∩ U 6= ∅, false otherwise.
begin

F ← UGen (U) ;
R← ∅ ;
while there is c ∈ F s.t. c 6∈# R do

R← Min≤
(
R ∪# F

)
;

F ← Min≤
(
Pre#(F)

)
;

if c0 ∈# R then return(true) ;
else return(false) ;

end

Remark that one can obtain an on-the-fly algorithm by incorporating the test
ifc0 ∈# R in the loop. The test of the while becomes: c0 6∈# R and there is c ∈ F s.t.
c 6∈# R.

Theorem 3.4 ([ACJT96, FS01]) For any EWSTS S =
〈
C, c0,⇒,≤

〉
and any ≤-

upward-closed set U ⊆ C, Algorithm 3.2 always terminates. Moreover, it returns true
iff the answer to CPWsts on S and U is positive.

3.2.2 Practical improvements of the backward algorithm

Efficient techniques to obtain a practical implementation of the backward approach
presented at Algorithm 3.2 have been studied by Delzanno, Raskin and Van Begin
in [DR00, DRVB01, DRVB04], in the case of monotonic extensions of Petri nets. The
two main techniques that they introduce in these papers are:

• The use of invariants to constrain the search and reduce the state space. An
invariant of a PN N [Rei86] is a linear constraint on markings that provide an
over-approximation of Reach (N). Hence, one can use invariants to remove from
the frontier any marking m that does not satisfy all the invariants. The classical
techniques to compute invariants of PN can be extended to monotonic extensions
of Petri nets as shown in [STC96]. This optimisation is thus not restricted to the
class PN.

86 CHAPTER 3. STATE OF THE ART

⊤ 0 0 0

0 2

1 1

2 0

⊥

Figure 3.1: An example of CST that represents the upward-closed set U s.t. UGen (U) =
{〈0, 0, 0, 0, 2〉 , 〈0, 0, 0, 1, 1〉 , 〈0, 0, 0, 2, 0〉}

• The use of an efficient symbolic data-structure to store upward-closed sets of
markings. This data structure is called Covering Sharing Tree [DR00] (CST

for short) and is an extension of the Sharing Trees [Zam97, ZLC95]. The idea
consists in representing an upward-closed set U by a finite set GU that is a
generator of U (not necessarily canonical). The markings m ∈ GU are stored
in a compact fashion: an acyclic graph having a top (⊤) and a bottom (⊥)
node is used. Each node v of the graph, different from ⊤ and ⊥, is labelled
by a natural number Λ (v). Each path ⊤, v1, v2, . . . vk,⊥ from the top to the
bottom node represents a marking 〈Λ (v1) , Λ (v2) , . . . , Λ (vk)〉. This allows to
share the common prefixes and suffixes of the various markings in GU . In the best
cases, the size of the CST is logarithmic in the size of GU . Figure 3.1 presents
an example of CST. The CST on the Figure represents the upward-closed set
U = {m|m < 〈0, 0, 0, 0, 2〉 ∨m < 〈0, 0, 0, 1, 1〉 ∨m < 〈0, 0, 0, 2, 0〉}.
In [DRVB04], symbolic algorithms to manipulate CST are presented. By sym-
bolic, we mean that the operations manipulate directly the CST instead of the set
it represents. For instance, given two CST C1 and C2 representing respectively
the sets U1 and U2, it is possible to compute a third CST that represents U1 ∪U2

by a direct manipulation of the structure of C1 and C2.

CST can be used in Algorithm 3.2 to store the sets F and R, for instance.

The practical efficiency of these heuristics has been demonstrated on the class PN

in [DRVB01], and on an extension of Petri nets, called multi-transfer nets7 in [DRVB02].
In the latter paper, the authors analyse counting abstractions of multithread Java pro-
gram and are able to analyse models with more than 40 places in a few seconds.

3.2.3 Forward algorithms for CPWsts

The design of a forward algorithm to decide CPWsts is harder than the backward
case. Indeed, in a first attempt, one could think of an algorithm that is symmetrical to
the backward one and computes the least fixed point of f(X) = Post (X)∪{m0}. This

7That class contains the class EPN.

3.2. THE COVERABILITY PROBLEM 87

would amount to compute the set of reachable states of the considered WSTS. However,
this is not feasible since the set of reachable states is not computable in general for LCS

[CFI96]. Even for PN, this task seems difficult because the set of reachable markings
is not semilinear in general [HP79].

A more realistic approach to devise a forward algorithm to CPWsts consists in
computing a coverability set of the WSTS. That set is a finite representation of the
downward-closure of the reachable states (such a finite representation always exists
when we have an adequate domain of limits at our disposal). It is well–known that
the coverability set is sufficient to decide the coverability problem.

That line of research has been pursued for many years, since the introduction in
1969 by Karp&Miller of an algorithm that computes a coverability set for Petri nets
(see Section 3.2.4). As we will see in Section 3.2.5 and Section 3.2.6, several attempts to
extend the Karp & Miller algorithm to other classes of WSTS have been endeavoured.
However, as far as we can tell, they have led to incomplete algorithms, i.e., without
guarantee of termination. In chapter 4 of the present thesis, we introduce the first
general forward algorithm to decide CPWsts.

In this section we recall the notion of coverability set. Sections 3.2.4, 3.2.5 and 3.2.6
present the Karp&Miller algorithm, as well as some of the semi-(forward) algorithms
that have been presented in the literature.

Coverability set The notion of coverability set relies on the covering set:

Definition 3.7 (The Covering Set) Let S =
〈
C, c0,⇒,≤

〉
be a WSTS. The

covering set of S, noted Cover (S), is the set ↓(Reach (S)). �

The following proposition states that the covering set is indeed suitable to decide
the coverability problem.

Proposition 3.3 For any WSTS S =
〈
C, c0,⇒,≤

〉
, for any ≤-upward-closed set

U ⊆ C: Reach (S) ∩ U = ∅ if and only if Cover (S) ∩ U = ∅.

Proof. We prove the two directions of the iff independently:

Reach (S) ∩ U 6= ∅ ⇒ Cover (S) ∩ U 6= ∅. Stems from the fact that, by Definition 3.7,
Reach (S) ⊆ Cover (S) for any WSTS S.

Cover (S) ∩ U 6= ∅ ⇒ Reach (S) ∩ U 6= ∅. Let c be a configuration in Cover (S)∩U . By
definition of Cover (S), there exists c′ ∈ Reach (S) s.t. c≤c′. Since U is ≤-upward-
closed, c′ is in U too. Hence c′ ∈ Reach (S) ∩ U and thus, Reach (S) ∩ U 6= ∅.

�

88 CHAPTER 3. STATE OF THE ART

In general, Cover (S) might be infinite. Indeed, Reach (S) may be infinite in the
case of WSTS and, by definition, Reach (S) ⊆ Cover (S) for any WSTS S. However,
by Definition 2.11, any downward-closed set of configurations can be finitely repre-
sented thanks to an adequate domain of limits. Such a finite representation is called a
coverability set:

Definition 3.8 (Coverability Set) Let S =
〈
C, c0,⇒,≤

〉
be a WSTS and let

〈L,⊑, γ〉 be an adequate domain of limits to represent downward-closed sets of C. A
finite set CS ⊆ L ∪ C is called a coverability set of S iff γ (CS) = Cover (S). �

Since L is an adequate domain of limits, there always exists a finite canonical set
that respects Definition 3.8. Moreover, when it is unique, this set is called the minimal
coverability set and is denoted by CS (S). By Lemma 3.1, it is the case for EPN and
SMPN: their coverability sets can be finitely represented by an unique canonical set of
ω-markings (hence called the minimal coverability set).

It is not difficult to see that the coverability problem on a WSTS S can be decided
thanks to any coverability set of S. Indeed, let

〈
S,≤

〉
be a well-quasi ordered set with

adequate domain of limits 〈L,⊑, γ〉, let D ⊆ S be a ≤-downward-closed set, and let
U ⊆ S be a ≤-upward-closed set. Then D ∩ U 6= ∅ iff there are d ∈ DGen (D) and
u ∈ UGen (U) s.t. u ⊑ d. Hence, given a WSTS S =

〈
C, c0,⇒,≤

〉
, a ≤-upward-closed

U represented by a finite generator G, and a coverability set CS of S, one can effectively
test whether U ∩ Cover (S) = ∅ or not.

Let us now look into the Karp & Miller algorithm, that computes a coverability set
for any PN.

3.2.4 The Karp&Miller algorithm

The Karp & Miller algorithm is a procedure to compute a coverability set of any PN.
It relies on the computation of a tree whose nodes are labelled by ω-markings, and
whose edges correspond to the firing of (sequences of) transitions. At the end of the
algorithm, the labels of the tree’s nodes form a (not necessarily minimal) coverability
set of the Petri net . That algorithm also exploits acceleration techniques to avoid the
computation of an infinite tree (remember that, in general, the number of reachable
ω-markings of a Petri net is infinite).

Let us first define the notion of labelled tree as well as the acceleration function.

Definition 3.9 (Labelled Tree) Given a set S, a S-labelled tree is a tuple T =
〈N, B, root , Λ〉, where N is a set of nodes, B ⊆ N×N is a set of edges, root ∈ N is the
root node and Λ : N 7→ S is a labelling function of the nodes by elements of S. Given
two nodes n and n′ in N , we write respectively B(n, n′), B∗(n, n′) B+(n, n′) instead of
(n, n′) ∈ B, (n, n′) ∈ B∗, (n, n′) ∈ B+.

3.2. THE COVERABILITY PROBLEM 89

Given two nodes n and n′ s.t. B(n, n′), we say that n is the father of n′ and n′ is
a child of n. Given two nodes n and n′ s.t. B∗(n, n′), we say that n is an ancestor of
n′ and n′ is a descendant of n.

The sets N and B respect the following conditions:

1. Each node n ∈ N different from root has one and only one father: ∀n ∈ N \
{root}: |{n′ | B(n′, n)}| = 1;

2. The node root has no father: ∄n ∈ N s.t. B(n, root);

3. For every node n ∈ N , for every descendant n′ of n: n′ is not an ancestor of n:
∀n, n′ ∈ N : n 6= n′ ∧B∗(n, n′) implies ¬B∗(n′, n). �

In the following, we will always consider (N ∪ {ω})|P |-labelled trees, that is, trees
whose nodes are labelled by ω-markings ranging over the set of places P of the Petri
net we deal with.

Let ma and m be two ω-markings and σ be a sequence of transitions s.t. ma ≺e m
and ma

σ−→ m. Hence, the same sequence can be fired repeatedly from m, by the
monotonicity property of PN. Let P ′ denote the set of places that strictly increase
along that sequence, i.e., P ′ = {p | ma(p) < m(p)}. As the effect of a sequence of
transitions is constant, the marking of places in P ′ can exceed any bound: for any place
p ∈ P ′, for any k ≥ 1, there is a marking m′ that is reachable in the PN, and such that
m′(p) ≥ k. We can represent this by computing a ω-marking mω s.t. for any p ∈ P ′:
mω(p) = ω and for any p 6∈ P ′: mω(p) = m(p). This is called the acceleration of m
w.r.t. ma. It can be generalised to any number of ancestor that are strictly smaller
than m, as presented in Algorithm 3.3.

The Accelerate function computes the acceleration of a marking m with respect to
a finite set S of markings (these markings are assumed to label ancestors of the node
labelled by m). The result is a new ω-marking mω. Remark that in the case where no
acceleration is possible, mω = m. Remark also that this procedure is non-deterministic
as we do not fix the order in which the ancestors have to be considered. However, the
result of the function is unique whatever ordering is adopted.

We can now introduce the Karp&Miller algorithm. Given a PN whose initial ω-
marking is m0, it builds a tree T as described in Algorithm 3.4. Roughly speaking, the
Karp&Miller procedure can be seen as the computation of a reachability tree where
accelerations are applied when computing the successors of each node, and branches
are stopped as soon as they contain two different nodes with identical labels.

Initially, the tree consists of a single node n0 labelled by the initial marking m0

of the PN. The algorithm maintains a set to treat of nodes waiting to be processed.
Initially, to treat contains n0 only. At each iteration of the main while loop, T is

90 CHAPTER 3. STATE OF THE ART

Algorithm 3.3: The Accelerate function, à la Karp&Miller.

Data: A finite set S of ω-markings and an ω-markings m
Result: An ω-marking, result of the acceleration of m
Accelerate (S,m)
begin

mω ← m ;
foreach m′ ∈ S s.t. m′ ≺e m do

foreach place p s.t. m′(p) < m(p) do
mω(p)← ω ;

return(mω) ;
end

potentially augmented. For that purpose, each node n in to treat (which is guaranteed
to be a leaf node) is treated. That treatment consists first in searching for an ancestor
n′ s.t. Λ (n′) = Λ (n). If such an ancestor exists, n doesn’t have to be developed.
Otherwise, all the successors of Λ (n) by some PN transitions are computed and ac-
celerated. The successors of n are created accordingly and added to to treat . The
algorithm terminates when to treat is empty, i.e., as soon as there is no node to be
treated left.

Algorithm 3.4: The Karp&Miller algorithm.

Data: A PN N = 〈P, T,m0〉
Result: A coverability set of N
Karp&Miller

begin
T ← 〈N, B, n0, Λ〉 where N = {n0}, B = ∅ and Λ (n0) = m0 ;
to treat ← {n0} ;
while to treat 6= ∅ do

let n be a node of to treat ;
to treat ← to treat \ {n} ;
if ∄n : B+(n, n) ∧ Λ (n) = Λ (n) then

foreach m ∈ Post (Λ (n)) do
S ← {Λ (n′) | B∗(n′, n)} ;
Let n′ be a new node s.t. Λ (n′) = Accelerate (S,m) ;
N ← N ∪ {n′} ;
B ← B ∪ {(n, n′)} ;
to treat ← to treat ∪ {n′} ;

return(∪n∈N{Λ (n)}) ;
end

It is well-known that this algorithm terminates and is correct:

3.2. THE COVERABILITY PROBLEM 91

Theorem 3.5 ([KM69]) For any PN N = 〈P, T,m0〉, the Karp&Miller procedure
terminates. Upon termination, {Λ (n) |n ∈ N} forms a coverability set of N :

γ ({Λ (n) |n ∈ N}) = ↓(Post∗ (m0))

Properties of the Karp&Miller tree The tree built by the Karp& Miller proce-
dure has interesting properties that we will exploit mainly in Chapter 6. Let us discuss
them now.

First, we adopt the following notation. Let n 6= root be a node of some Karp&Miller
tree. Hence, Λ (n) has been obtained by calling Accelerate with parameters S and m.
In this case, we say that n has been obtained by the acceleration of m (with S).
Remark that it might be the case that Λ (n) = m. For any node n 6= root of any
Karp&Miller tree, we assume that the function M(n) returns the marking m s.t. n

has been obtained by the acceleration of m. Remark that, for any node n 6= root ,
M(n) ∈ Post (n′) where n′ is the father of n.

The properties we are looking for can be found in the proof provided by Karp and
Miller for their algorithm. It can be sketched as follows. Let n 6= root be a node
of the tree, and let us consider M(n). Clearly, there exists a (possibly empty) set of
places that have been accelerated when building Λ (n) from M(n). These are all the
places p s.t. M(n) (p) 6= ω and Λ (n) (p) = ω. The proof of the algorithm works by
exposing a sequence of transitions ς (n) associated to n that is (i) firable from m,
(ii) has a strictly positive effect on all the places that have been accelerated when
building n and (iii) has a non-negative8 effect on the other places that did not contain
ω before the acceleration. Remark that we do not constrain the effect on the places
that contained ω before the acceleration, because ω − c = ω + c = ω for any natural
constant c. Thus, ς (n) can be seen as a witness for the correctness of the acceleration
that has been performed when building n. In [KM69], a procedure to build such a
sequence is given.

Let us state this more formally. The sequence ς (n) we are alluding to must satisfy
the following definition. For any sequence of transitions σ, of a PN N , and for any
place p of N let σ(p) denote the effect of σ on p.

Definition 3.10 (The ς (n) sequence) Let N = 〈P, T,m0〉 be a PN and let T =
〈N, B, root , Λ〉 be its Karp&Miller tree. Then, ς : N 7→ T ∗ is a function that associates
a sequence of transitions to every node n, and is defined as follows:

• If n = root, then ς (n) returns the empty sequence.

• If there is no n′ ∈ N s.t. B+(n′, n) and Λ (n′) 4e Λ (n) (hence, n has not been
obtained by an acceleration), then ς (n) returns the empty sequence.

8This is a minimal condition to ensure that the acceleration is sound.

92 CHAPTER 3. STATE OF THE ART

• Otherwise, n has been obtained by the acceleration of M(n). Let Pa = {p ∈ P |
Λ (n) (p) = ω and M(n) (p) 6= ω} and let Pω = {p ∈ P | Λ (n) (p) = M(n) (p) =
ω}. In that case, ς (n) returns one9 of the finite non-empty sequences that re-
spects:

1. for any p ∈ Pa: ς (n) (p) > 0 ;

2. for any p ∈ P \ (Pa ∪ Pω): ς (n) (p) ≥ 0 ;

3. ς (n) is firable from M(n). �

The existence of σn in the third case is guaranteed by the following lemma, that
can be extracted from the main proof of the Algorithm 3.4, in [KM69]:

Lemma 3.12 ([KM69]) Let N = 〈P, T,m0〉 be a PN and let T = 〈N, B, root , Λ〉 be
its Karp&Miller tree. Let n 6= root be a node of T . Let Pa = {p ∈ P | Λ (n) (p) =
ω and M(n) (p) 6= ω} and Pω = {p ∈ P | Λ (n) (p) = M(n) (p) = ω}. Then, there exists
a sequence of transitions σ of N s.t.:

1. for any p ∈ Pa: σ(p) > 0 ;

2. for any p ∈ P \ (Pa ∪ Pω): σ(p) ≥ 0 ;

3. σ is firable from M(n).

Remark 3.2 The Karp&Miller procedure might compute a coverability set that is not
minimal: upon termination, the set {Λ(n) | n ∈ N} might contain two ω-markings
m1 and m2 s.t. m1 ≺e m2. However, this set is finite and it is thus easy to extract
4e-maximal elements from it.

The idea of keeping maximal elements only along the construction of the coverability
tree to avoid to consider unnecessarily large intermediate trees, is at the basis of the
minimal coverability tree algorithm [Fin91] that we discuss in Chapter 6.

3.2.5 An attempt to extend the Karp & Miller algorithm to

broadcast protocols

In [EN98], Emerson and Namjoshi present a generalisation of the Karp & Miller pro-
cedure to the case of Ordered Labelled Transition Systems (OLTS for short). These
models are basically WSTS extended with a labelling function of the transitions, as well
as other information that are necessary to verify liveness properties (such as atomic
propositions). Let us present a version of this procedure adapted to the case of BP

(which form a special case of OLTS).

9Remark that there can be several sequences that satisfy these conditions. Since ς is a function it
returns one and only one of these sequences for each node n.

3.2. THE COVERABILITY PROBLEM 93

The algorithm of [EN98] (henceforth referred to as the EN procedure) receives as
input a WSTS SB = 〈C, c0,⇒, 4〉 that corresponds to a BP B and builds a graph
〈V, E〉 where V ⊆ C is a set of vertices and E ⊆ V × V is a set of edges. At the end
of the computation, V forms a coverability set of SB, i.e., ↓(V) = ↓(Reach (SB)). The
EN procedure is presented in Algorithm 3.5. Our presentation of the EN procedure is
inspired from [EFM99].

The ideas at work in this algorithm are the same as in the Karp & Miller algorithm.
Initially, the graph contains a single node c0. The treatment of a node c consists in
developing all its⇒-successors c′. In the case where there exists another node c′′ in the
graph s.t. c′′ <e c′, an edge (c′, c′′) is added to the graph and c′ is not further developed.
If there exists a path from some node c1 to c′ with c1 ≺e c′, an acceleration10 is applied,
and the result of the acceleration is added to the graph and to the frontier. Otherwise,
c′ is added to the graph as a successor of c, and put into the frontier.

Remark that, since the EN procedure is based on the iteration of the Post operator,
it is a forward procedure.

From [EN98], we have the following theorem:

Theorem 3.6 ([EN98]) Let B be a BP, let SB be its associated WSTS and let 〈V, E〉
be the graph built by the EN procedure on SB. Then, upon termination, V is a cover-
ability set of SB.

Remark that the termination of Algorithm 3.5 is not proved in [EN98]. And indeed,
one year later, Esparza, Finkel and Mayr have presented in [EFM99] an example of
BP on which Algorithm 3.5 does not terminate. Hence, the EN procedure is only a
semi-algorithm to decide the coverability problem on BP.

3.2.6 Other forward semi-algorithms

Several other works of the literature have presented forward algorithms to decide the
coverability problem on various classes of WSTS. All these solutions are guaranteed
to compute a coverability set of the considered WSTS when they terminate. However,
they offer no guarantee of termination.

Timed Petri nets The team of Parosh Abdulla has presented in [ADMN04] a datas-
tructure, called Regions generators to represent (possibly infinite) downward-
closed sets of regions of timed Petri nets. They also introduce a method to
accelerate transitions of timed Petri nets, i.e., to compute in one step the region
generator r′ that is obtained by the unbounded iteration of a given transition t

from another region generator r. By means of this, they are able to analyse, in
a forward fashion, non-trivial examples of timed Petri nets.

10The acceleration function is the same as in the Karp & Miller algorithm. Indeed, according to
the semantics of BP, the configurations of SB are tuples on N ∪ {ω}, i.e., ω-markings.

94 CHAPTER 3. STATE OF THE ART

Algorithm 3.5: The EN procedure [EN98] to compute the coverability graph of
Broadcast Protocols.
Data: A WSTS SB = 〈C, c0,⇒, 4〉 that corresponds to a BP B
Result: A coverability set of SB
begin

V ← {c0} ;
E ← ∅ ;
to treat ← {c0};
while to treat 6= ∅ do

Choose and remove c from to treat ;
foreach c′ s.t. c⇒ c′ do

if ∃c′′ ∈ V s.t. c′ 4e c′′ then
E ← E ∪ {(c, c′′)} ;

else if ∃c1, c2, . . . cn ∈ V s.t. c1 ≺e c′ and cn = c and ∀1 ≤ i < n:
(ci, ci+1) ∈ E then

cω ← Accelerate ({c1, . . . , cn}, c′) ;
V ← V ∪ {cω} ;
E ← E ∪ {(c, cω)} ;
to treat ← to treat ∪ {cω};

else
V ← V ∪ {c′} ;
E ← E ∪ {(c, c′)} ;
to treat ← to treat ∪ {c′};

return(V) ;
end

3.3. DECIDABILITY RESULTS FOR WSTS 95

Lossy Channel Systems In [ABS01], Ahmed Bouajjani et al introduce the tool
TReX. This tool is capable of performing the forward analysis of LCS, by acceler-
ating some (sequences of) transitions. It uses the sre datastructure to represent
the computed state space.

3.3 Decidability results for WSTS

In this section, we consider the problems that we have introduced in Section 3.3, and
recall the decidability results that have been established in the literature regarding
these problems. These results are summarised in Table 3.1.

3.3.1 Behavioural properties

Reachability Reachability is, in general, not decidable on WSTS: it is not decidable
on PN+NBA nor on PN+T:

Theorem 3.7 ([RSVB03]) RPWsts is not decidable on the class PN+NBA.

Theorem 3.8 ([DFS98]) RPWsts is not decidable on the class PN+T.

However, it has been shown decidable on the class PN:

Theorem 3.9 ([May84]) RPWsts is decidable on the class PN.

Quite surprisingly, it is also decidable on LCS. Indeed, it is equivalent to coverability
because LCS are lossy, and coverability is decidable on LCS (see Section 3.2.1).

Proposition 3.4 RPWsts is decidable on the class LCS.

Proof. Let SC =
〈
C, c0,⇒,≤

〉
be the WSTS that corresponds to a given LCS C, and

let c ∈ C be a configuration whom we want to test reachability. Let U = ↑({c}) and
let us show that c ∈ Reach (SC) iff U ∩ Reach (SC) 6= ∅. Clearly, if U ∩ Reach (SC) = ∅,
then, in particular c 6∈ Reach (SC), because c ∈ U (- is reflexive). On the other hand,
if U ∩ Reach (SC) 6= ∅, then, there exists c′ ∈ Reach (SC) s.t. c - c′. But this imply
that c ∈ Reach (SC) by Lemma 2.15. �

Coverability We have seen in Section 3.2.1 that the coverability problem is decidable
on the class EWSTS:

Theorem 3.10 ([ACJT96]) The coverability problem is decidable for EWSTS.

Since, on the other hand, reachability is not decidable in general on EWSTS, this
provides a further motivation for the interest in the coverability problem.

96 CHAPTER 3. STATE OF THE ART

Place-boundedness Place-boundedness is clearly decidable for the class PN since
the minimal coverability set is computable for that class (thanks to the Karp&Miller

procedure, for instance).

Theorem 3.11 PBEpn is decidable when we consider PN

The problem of place-boundedness for PN+T has been studied in [DFS98] by Du-
fourd, Finkel and Schnoebelen. One of the main results of the paper is that:

Theorem 3.12 ([DFS98]) PBEpn is undecidable when we consider PN+T.

Since every PN+R is a PN+T, we obtain:

Corollary 3.1 PBEpn is undecidable when we consider PN+R.

A similar result has been proved by Raskin and Van Begin:

Theorem 3.13 ([RVB04]) PBEpn is undecidable when we consider PN+NBA.

Coverability sets are not computable in general It is not difficult to see that,
given a coverability set CS of an EPN N , place p is unbounded in N iff there exists
m ∈ CS s.t. m(p) = ω. Hence, one cannot compute a coverability set for any class of
WSTS on which PBEpn is not decidable:

Corollary 3.2 There is no algorithm that computes a coverability set for the classes
PN+R, PN+T and PN+NBA.

One can show that, given a PN+T N , it is possible to build a BP B that simulates
N , in the sense that a coverability set of N can be deduced from one of B. Hence, a
procedure to compute a coverability set of BP would provide us with a way to compute
a coverability set of PN+T. Since the latter is not computable (Corollary 3.2), such a
procedure cannot exist:

Corollary 3.3 There is no algorithm that, given a BP B, computes a coverability set
of B.

As far as LCS are concerned, it has been shown in [CFI96], that the reachability
set Reach (C) is not computable in general. However, because of the lossiness of LCS

(Lemma 2.15): for any LCS C, Reach (C) = Cover (C). Hence, a coverability set is not
computable in general for LCS.

Theorem 3.14 ([CFI96]) There is no algorithm that, given a LCS C, computes a
coverability set of C.

3.3. DECIDABILITY RESULTS FOR WSTS 97

Corollary 3.3 and Theorem 3.14 explain why the algorithms to decide the coverabil-
ity problems on BP (presented in [EN98]) and on LCS (in [ABJ98]) are semi-algorithms.
Indeed, upon termination, these algorithms are guaranteed to compute a coverability
set. Hence, they are necessarily incomplete.

The unbounded computation problem That problem is decidable by a very
simple algorithm that can be sketched as follows. The algorithm [ACJT96] assumes
that the WSTS is recursively finitely branching, i.e., that for any c ∈ C, the set Post (c)
is computable and finite. The algorithm consists in unfolding the transition relation
of S under the form of a tree rooted in c0, and to stop the construction and answer
‘yes’ as soon as two configurations c and c′ s.t. c ∈ Post∗ (c0), c′ ∈ Post∗ (c) and c≤c′

are met. If no such pair of configurations exists, all the executions of S are necessarily
finite, by WQO property, and the construction of the tree eventually terminates. In
that case, the algorithm answers ‘no’.

Theorem 3.15 ([ACJT96]) UCWsts is decidable for recursively finitely branching
WSTS.

Boundedness Remark that the decidability of PBEpn implies the decidability of
BoundEpn. Indeed, for any EPN N , Reach (N) is finite iff every place p of N is
bounded. On the other hand, the decidability of BoundEpn does not imply the
decidability of PBEpn: if some EPN N is bounded, then, each of its place is bounded.
However, for Reach (N) to be infinite, it is sufficient that one place be unbounded.
Hence, it might be the case that Reach (N) is infinite whereas some place p is bounded.

Unfortunately, place-boundedness is decidable in the case of PN (Theorem 3.11)
but not in the case of PN+NBA (Theorem 3.13), PN+T (Theorem 3.12) and PN+R

(Corollary 3.1). Thus, the above reasoning allows us to obtain the decidability of
PBEpn for the class PN only. Remark that the decidability of boundedness can also
be deduced from the fact that one can compute a coverability set of any PN. Indeed,
a PN N is bounded iff for any m ∈ CS (N), for any place p: m(p) 6= ω.

Theorem 3.16 BoundEpn is decidable when we consider PN.

As far as PN+T are concerned, the following results are to be found in [DFS98]:

Theorem 3.17 ([DFS98]) BoundEpn is decidable when we consider PN+T.

Since every PN+R is a PN+T, we obtain:

Corollary 3.4 BoundEpn is decidable when we consider PN+R.

98 CHAPTER 3. STATE OF THE ART

Remark 3.3 It is important to remark that, by Definition 2.22, any PN+R is a PN+T,
hence the previous corollary. However, another extension of Petri nets by means of
special arcs that reset the content of certain places has been routinely studied in the
literature. It is the class of Petri nets with reset arcs [Cia94, DFS98].

A Petri net with reset arcs is a PN augmented with special transitions that, when
fired, empty the content of a given place (see [Cia94] for the exact definition). Thus,
the only difference between a Petri net with reset arcs and a PN+R, is that, in the
case of a PN+R, the tokens that are taken away from the places that are reset do not
disappear from the net. They are rather transferred to a trash can place pTr from which
they can never escape.

That difference is important, because, its has been proved in [DFS98] that bound-
edness becomes undecidable on this class. This might sound intriguing to the reader,
who might think that Corollary 3.4 is in contradiction with the result of [DFS98]. Let
us explain why it is not the case. Let N be a Petri net with reset arcs, and let us
transform it into a PN+R N ′ by adding to N a trashcan place pTr, and by replacing
each reset arc of N by an extended transition whose source place is the place that the
transition resets, and the destination is pTr. We obtain a PN+R. Since BoundEpn
is decidable on that class, we can decide the boundedness of N ′. Unfortunately, this
does not allow us to conclude whether N is bounded or not.

Indeed, since every place of N is a place of N ′, the boundedness of N ′ implies that
N is bounded. On the other hand, if N ′ is unbounded, it might be the case that pTr

is the only unbounded place. Since PBEpn is undecidable on PN+R and PN+T, we
cannot determine whether it is the case or not. Hence, we cannot deduce anything
about the boundedness of N .

Thus, the main difference between PN+R and Petri nets with reset arcs is to be
found in the fact that a ‘reset’ (actually a transfer) in the case of PN+R does not
modify the total amount of tokens in the net, whereas a reset in a Petri net with reset
arcs can decrease the total number of tokens of the net by an arbitrarily large amount
of tokens.

The case of PN+NBA has been addressed in [RVB04]:

Theorem 3.18 ([RVB04]) BoundEpn is decidable when we consider PN+NBA.

3.3.2 Expressiveness properties

Emptiness and Universality To the best of our knowledge, these problems have
not yet been addressed in the literature for the general case of WSTS.

LTL The problem that asks whether the ω-language of a WSTS satisfies some formula
of action-based LTL has been shown decidable by Esparza on the class PN [Esp94].

3.4. EXPRESSIVE POWERS 99

It is not decidable in general for WSTS, because it is not decidable on PN+NBA, for
instance [RSVB03].

Theorem 3.19 ([Esp94]) LTLSatis is decidable on the class PN.

Theorem 3.20 ([RSVB03]) LTLSatis is undecidable on the class PN+NBA.

3.4 Expressive powers

The expressive power of WSTS in the general case has seldom been studied in the
literature. All the results we are aware of concern the expressive powers of PN, PN+T

and PN+R, mostly in the finite words case, with a finite set of accepting states.

3.4.1 Results on PN

An important source of results regarding the expressive power of PN in the finite words
case is [Pet81]. A first general result states some relationships that exist between the
class LL(PN), LP (PN), LT (PN) and LG(PN) (see Definition 2.43):

Theorem 3.21 ([Pet81]) LT (PN) = LL(PN) ⊇ LG(PN) ⊇ LP (PN).

In the case where ε-labelled transitions are disallowed, we have:

Theorem 3.22 ([Pet81]) LT
/ε (PN) ⊆ LL

/ε (PN) ⊇ LG
/ε (PN) ⊇ LP

/ε (PN).

Remark that LT (PN) = LL(PN) and LG(PN) ⊇ LP (PN) follow from the definitions.
The proof of LL(PN) ⊇ LG(PN) requires an easy construction that can be found in
[Pet81].

Then, several closure properties are also stated, regarding the class LL(PN):

Theorem 3.23 ([Pet81]) LL(PN) is closed under concatenation, union, intersection
and homomorphism.

LL(PN) is not closed under iteration.

Hence, LL(PN) is not a full AFL.

The membership of certain languages to various classes of PN language has also
been studied in [Pet81]:

1. L = {anbn|n ≥ 1} is in LL(PN).

10
0

C
H

A
P

T
E

R
3
.

S
T
A

T
E

O
F

T
H

E
A

R
T

Problem
Model RPWsts CPWsts UCWsts PBEpn cov. set. BoundEpn QLEpn LTLSatis

EWSTS U D D irr. NC irr. irr. U
PN D D D D C D D D

PN+NBA U D D U NC D D U
PN+T U D D U NC D D ?
PN+R U D D U NC D D ?
LCS D D D irr. NC irr. irr. U

Table 3.1: Summary of the decidability results for various classes of WSTS. U = undecidable; D = decidable; C =
computable; NC = not computable; irr. = irrelevant for this class of systems; ? = no result found in the literature.

3.4. EXPRESSIVE POWERS 101

2. The language of all palindromes on some alphabet Σ, LR = {w ·wR | w ∈ Σ∗} is
not in LL(PN). As a consequence, it is not in LG(PN), LT (PN) nor LP (PN).

The argument to show that LR 6∈ LL(PN) is quite involved and can be sum-
marised as follows. Let us assume that there exists a PN N and a finite set S s.t.
L(N , S) = LR. Then, since the number of places of N is finite, it is possible to
find two words x1 ·xR

1 and x2 ·xR
2 in LR that are long enough in the sense that the

marking m1 reached after reading x1 and the marking m2 reached after reading
x2 are equal. Hence, N accepts x1 · xR

2 too. The proof of existence of these two
words is quite involved. In Section 8.3.1, we exhibit a proof that LR 6∈ LG(PN)
which is much simpler thanks to the pumping Lemmata that we introduce in
Chapter 8.

3. Lcs = {anbncn|n ≥ 1} is in LL(PN).

These results are used to deduce the relationship between LL(PN) and some well-
studied classes of the Chomsky hierarchy [HMU01]. It is not difficult to see that any
non-deterministic finite automaton can be translated into a Petri net with the same
language. However, it is well-known that L is not regular. Hence:

Theorem 3.24 ([Pet81]) R ⊂ LL(PN) where R is the class of regular languages.

Since L and LR are both context–free, we also have:

Theorem 3.25 ([Pet81]) LL(PN) is incomparable to the class of context-free lan-
guages.

Finally:

Theorem 3.26 ([Pet81]) Any language in LL(PN) is context-sensitive.

Remark that the class LG(PN) has not been studied as much as LL(PN). In [Pet81],
Peterson limits himself to the study of the class LL(PN), and remarks that:

[LL(PN)] has been investigated in the literature [. . .] Some results have
been obtained [. . .] for the prefix languages11 [. . .] The [classes LG(PN)
and LT (PN)] have been defined but no work has been done on their devel-
opment.

11That is, the class LP (PN).

102 CHAPTER 3. STATE OF THE ART

3.4.2 Results on PN+T and PN+R

As far as these Petri nets extensions are concerned, the main source of results is
[Cia94], which provides a survey of the literature and completes the previous results
when necessary. A first result holds for any kind of accepting sets, and follows from
the definitions of PN, PN+T and PN+R:

Theorem 3.27 ([Cia94]) For any X ∈ {L, G, P, T}, we have:

LX(PN) ⊆ LX(PN+R) ⊆ LX(PN+T) ⊆ R.E.

and
LX

/ε (PN) ⊆ LX
/ε (PN+R) ⊆ LX

/ε (PN+T) ⊆ R.E.

Then, Ciardo focuses on the classes with L-type sets of accepting markings too:

Theorem 3.28 ([Cia94]) The following holds:

LL(PN) ⊂ LR(PN) = LT (PN) = R.E.

and
LL

/ε (PN) ⊂ LL
/ε (PN+R) ⊆ LL

/ε (PN+T) ⊂ R.E.

Remark that it is not known whether there exists a language L that can be accepted
by a PN+T without ε-transitions but not by a PN+R without ε-transitions. Ciardo
conjectures that it is the case. We come back on this conjecture in Section 8.3.6.

3.4.3 Results on WSTS

The expressive power of WSTS has, to the best of our knowledge, not yet been stud-
ied per se. From the definition of classes LL(WSTS), LG(WSTS), LT (WSTS) and
LP (WSTS), we have trivially:

Proposition 3.5

LT (WSTS) ⊆ LL(WSTS)

LP (WSTS) ⊆ LG(WSTS)

LT
/ε (WSTS) ⊆ LL

/ε (WSTS)

LP
/ε (WSTS) ⊆ LG

/ε (WSTS)

By the definition 3.6 of effective WSTS, there exists, for any EWSTS S, a Turing
machine MS that computes the successors of any configuration of the WSTS. This also
implies that there exists an encoding of the configurations of the WSTS in terms of a

3.5. DISCUSSION 103

word that one can store on the ribbon of a Turing machine. Thus, the language of any
EWSTS can be recognised by a Turing Machine (that uses MS as a sub-procedure).
Hence, LL(EWSTS) ⊆ R.E.. Thus, we can deduce the following result from Theo-
rem 3.28 and Proposition 3.5:

Proposition 3.6 LL(EWSTS) = LT (EWSTS) = R.E.

Since many problems are undecidable on the class R.E., this result is a strong indication
that other accepting conditions should be considered to obtain positive decidability
results. This will be done in Chapter 8, where we will consider in particular the class
LG(WSTS), and show that many interesting results can be obtained on it.

3.5 Discussion

It should now be clear that WSTS are interesting models of computations:

1. WSTS subsume the classes PN, strongly monotonic SMPN, LCS and TPN, that
have been widely studied in the literature, and that have proved to be useful in
the modelling of real computer systems (the interest of BP is more theoretical).

2. Adequate domains of limits have been identified12 for PN, SMPN and LCS. This
means that their upward– and downward–closed sets of configurations are algo-
rithmically manipulable.

3. The coverability problem, to which many safety properties can be reduced, is
decidable on the class EWSTS.

4. In the particular case of PN, the coverability set is computable, thanks to the
Karp&Miller algorithm. This allows to decide other problems than the cover-
ability problem.

5. WSTS in general, and EPN in particular, can be used to represent finite words
languages or ω-languages, that are interesting in practice to represent traces of
execution of computer systems.

On the other hand, we are now able to identify several noteworthy problems:

1. Although a general backward algorithm exists, no general forward algorithm is
known to solve the coverability on the general class of WSTS. Such an algorithm
would be interesting, both from the theoretical and from the practical point of
view (as shown in [HKQ03] – see the introductory discussion of Chapter 4).

12We have not discussed an adequate domain of limits for TPN. It exists however. See [ADMN04],
for instance.

104 CHAPTER 3. STATE OF THE ART

2. The Karp&Miller algorithm is known to be rather inefficient in practice (see
[Fin91], and the introduction of Chapter 6).

3. The expressive power of WSTS has seldom been addressed in the literature. The
expressiveness of the classes PN, PN+NBA, PN+T and PN+R has been studied
very sparsely when upward–closed sets of accepting markings are considered.
Moreover, in this case, the relationship between the respective expressive powers
of these classes of EPN are not clearly established.

We partly close these problems in the sequel of this thesis. In Chapter 4 and
Chapter 5, we present a general forward algorithm to solve the coverability problem on
WSTS. In Chapter 6, we discuss several improvements to the Karp&Miller procedure
that have been proposed in the literature [Fin91, Lut95], and introduce a new solution
to compute the coverability set of PN. In Chapter 7, we study the expressiveness of
EPN in terms of ω-words. Finally, in Chapter 8, we consider the expressive power of
WSTS, and more particularly EPN, on finite words.

Part I

Coverability properties

105

Chapter 4

Expand, Enlarge and Check

T
he present chapter introduces the Expand, Enlarge and Check algorithmic schema
(EEC for short), a new solution to the coverability problem of WSTS. The need
for a solution to CPWsts that is different from that of [ACJT96] (see Algo-

rithm 3.2 in Section 3.2.1) can be motivated by the following observation, quoted from
the introduction of the paper [HKQ03] by Henzinger, Kupferman and Qadeer:

Forward state traversal has several obvious advantages over backward state
traversal. First, for operational system models, successor states are often
easier to compute than predecessor states. Second, only the reachable part
of the state space is traversed. Third, optimisations such as on-the-fly
[GPVW95] and partial-order [Pel94, God96] methods can be incorporated
naturally.

As a way to emphasise this observation, the authors also report on experimental
results that confirm the superiority of forward exploration on the backward one,
from a practical point of view. The advantage of forward traversal in practice has

also been observed in many other works such as [ADMN04, ABS01, FRSB02]. When
they terminate, the forward semi-algorithms presented in these papers are usually
more efficient than their backward counterpart. Thus, an algorithm that decides the
coverability problem by relying on the Post operator only would be interesting, both
from a theoretical and a practical point of view.

Unfortunately, the state of the art is quite remote from this situation, as far
as CPWsts is concerned. The only general algorithm to decide CPWsts is that
of [ACJT96], and relies on the Pre operator (it is a so-called backward algorithm). In
the notable case of Petri nets, the Karp&Miller procedure is a forward algorithm that
computes the coverability set, and allows thus to decide the coverability problem. Re-
grettably, as we have seen in Section 3.2.3, the idea of computing the coverability set
to decide the coverability problem does not scale up to other classes of WSTS, because
this set is, in general, not computable.

107

108 CHAPTER 4. EXPAND, ENLARGE AND CHECK

In this chapter, we introduce the first general forward algorithm to decide CPWsts
(under some reasonable effectiveness requirements and assuming that there exists an
adequate domain of limits1). Unlike its predecessors, this solution gives up the idea of
computing the coverability set. It rather relies on the idea of approximating the WSTS.

In order to decide CPWsts, we claim that two types of approximations are neces-
sary:

• In the case where the upward-closed set U is reachable in the WSTS S, there
exists a finite execution of S that ends up in U . That finite execution can be
regarded as a very simple transition system that forms an under-approximation
of S, and is a finite witness of the reachability of U in S. Remark that any
under-approximation of S whose set of executions contains at least the execution
alluded to is also suitable to prove that U is reachable.

• In the case where the upward-closed set U is not reachable in the WSTS S, then,
we know by Proposition 3.3 that Cover (S) is sufficient to prove this. However,
any other downward-closed set O s.t. Cover (S) ⊆ O and O ∩ U = ∅ is also
sufficient. Such a set O forms an over-approximation of (the covering set of) S.
Moreover, O is finitely representable and effectively manipulable, provided that
we have an adequate domain of limits at our disposal, and under our effectiveness
requirements (see Section 4.1).

We conclude that there always exists a finite object to prove that U is reachable or
not in S.

The EEC algorithm is essentially a procedure that enumerates a sequence of pairs
of approximations (an under– and an over–approximation). At each step of the enu-
meration, the following tests are made:

1. is U reachable in the under-approximation ? If yes, U is reachable in S.

2. is U unreachable in the over-approximation ? If yes, S can’t reach U .

The sequence of approximations computed by EEC has the property that one of these
tests is eventually true.

It remains to devise a procedure to compute these sequences of approximations.
Given a WSTS S =

〈
C, c0,⇒,≤

〉
with adequate domain of limits 〈L,⊑, γ〉, the com-

putation of the under– and over–approximations relies on two functions: Under (S, C ′)
and Over (S, C ′, L′). The former receives S and a finite set C ′ ⊆ C and returns a
transition system whose behaviours are those of S when we restrict ourselves to the
configurations in C ′. The latter receives S, a finite set C ′ ⊆ C and a finite set L′ ⊆ L,

1A recent work [GRVB06a] provides a way to automatically devise such an adequate domain of
limits.

4.1. PRELIMINARIES 109

and returns an over-approximation of S whose behaviours are those of S as long as
they stay inside the configurations of C ′, while the reachable configurations that do not
belong to C ′ are over-approximated by elements of L′. Thus, in practice, one simply
has to enumerate a sequence C0, C1, . . . , Ci, . . . of finite sets of configurations and a
sequence L0, L1, . . . , Li of finite sets of limits, as sketched on Figure 4.1. How these
sets are enumerated depends on the type of WSTS that is analysed. In Chapter 5,
we apply EEC to the case of strongly monotonic SMPN and of LCS, and show that a
simple prototype outperforms previous tools to decide CPWsts on these models.

This chapter is organised as follows. In section 4.1, we recall some preliminaries
such as And-Or graphs (that we use to represent the over-approximations). In Sec-
tion 4.2, we explain how the under– and over–approximations are computed. Finally,
in Section 4.3, we present the EEC algorithmic schema.

The content of this chapter is based on the articles [GRVB04] and [GRVB06b].

4.1 Preliminaries

This section states some preliminary definitions that will be used throughout the chap-
ter. More precisely, we explain which WSTS our algorithm can handle, by providing
effectiveness requirements on WSTS. We then define the notion of And-Or graph, a
special kind of bipartite graph that we will use to over-approximate WSTS. We also
define the associated avoidability problem on And-Or graph.

4.1.1 Effectiveness requirements

Let us first state several conditions that a WSTS has to satisfy to ensure the effective-
ness and termination of the algorithms we are about to present.

Definition 4.1 (Effective WSTS and Domain of Limits)
A WSTS S =

〈
C, c0,⇒,≤

〉
and an adequate domain of limits 〈L,⊑, γ〉 are effective if

the following conditions are satisfied:

(E1) C and L are recursively enumerable;

(E2) for any c1, c2 ∈ C, we can decide whether c1 ⇒ c2;

(E3) for any d ∈ L ∪ C and for any finite subset D ⊆ L ∪ C, we can decide whether
Post (γ(d)) ⊆ γ(D);

(E4) For any finite subsets D1, D2 ⊆ L∪C, we can decide whether γ(D1) ⊆ γ(D2).�

110 CHAPTER 4. EXPAND, ENLARGE AND CHECK

Figure 4.1: A graphical sketch of the EEC algorithmic schema. This figure illus-
trates the construction of the successive under- and over-approximations (during the
Expand and Enlarge phases respectively). The Check takes place after each pair of
approximation has been built and consists in testing whether there exists (i) an execu-
tion (nodes in grey in the last under-approximation) of the under-approximation that
reaches U and (ii) an unfolding (nodes in grey in the last over-approximation) of the
over-approximation that avoids U .

4.1. PRELIMINARIES 111

Remark that the domains proposed in the literature to handle forward analysis of
WSTS, respect these conditions. For instance, in Section 3.1, we have introduced the
domains of ω- markings and simple regular expressions to handle extensions of Petri
nets and LCS respectively. From classical results of the literature [ABJ98] and from
the results of Section 3.1, it is easy to deduce that conditions (E1) through (E4) hold
on these two domains.

Finally, in the present chapter we request that the WSTS be deadlock-free (see
Definition 2.15). That property will be assumed in the proofs of the EEC algorithmic
schema. Remark that this is not restrictive in practice since one can always turn any
WSTS S =

〈
C, c0,⇒,≤

〉
in a deadlock-free WSTS S ′ =

〈
C, c0,⇒′,≤

〉
that has the

same reachability properties, by letting ⇒′=⇒ ∪{(c, c) | c ∈ C}. It is not difficult to
see that Reach (S) = Reach (S ′).

4.1.2 And-Or graphs and unfoldings

As stated before, the definition of And-Or graphs is central to our analysis of WSTS.
An And-Or graph is a bipartite graph whose set of nodes is divided into so-called Or
and And nodes. Such graphs have been routinely used in numerous applications such
as the modelling of turn-based games for instance [AHK02] (an Or node represents
the possible choices of the protagonist, which are thus controllable; and an And node
represents the possible uncontrollable moves of the antagonist). In our setting, And-Or
graphs will be used in a slightly different way. This is the definition:

Definition 4.2 (And-Or Graph) An And-Or graph is a tuple G = 〈VA, VO, vi, ֌〉
where V = VA ∪ VO is the finite set of nodes (VA is the set of ‘And’ nodes and VO is
the set of ‘Or’ nodes), VA ∩ VO = ∅, vi ∈ VO is the initial node, and ֌⊆ (VA × VO) ∪
(VO × VA) is the transition relation, such that for any v ∈ V , there exists v′ ∈ V with
(v, v′) ∈֌. �

We adopt the following convention for the graphical representation of And-Or graphs:
And nodes are represented by square nodes and Or-nodes are represented by round
nodes.

A classical notion in the analysis of And-Or graphs is that of unfolding, which
intuitively corresponds to the notion of path in a plain graph. When considering a
plain graph that compactly represents the whole transition relation of a system, a
path is simply an unfolding of the transition relation, that is, a possible execution of
the system. Such a path represents the choices for the next action that has been taken
in each node. In the case of And-Or graphs, all the successors of each And-node have to
be taken into account. Hence, the structure we obtain by unfolding an And-Or graph
is actually a tree (labelled by nodes of the And-Or graph), where each Or-node has
exactly one child, and each And-node has as many children as it has successors in the
And-Or graph. This is stated more precisely in the next definition:

112 CHAPTER 4. EXPAND, ENLARGE AND CHECK

Definition 4.3 (Compatible Unfolding) A compatible unfolding of an And-Or
graph G = 〈VA, VO, vi, ֌〉 is an infinite labelled tree TG = 〈N, root , B, Λ〉 where: (i)
N is the set of nodes of TG, (ii) root ∈ N is the root of TG, (iii) B ⊆ N × N is the
transition relation of TG, (iv) Λ : N 7→ VA∪VO is the labelling function of the nodes of
TG by nodes of G. Λ respects the three following compatibility conditions (Λ is extended
to sets of nodes in the usual way):

(C1) Λ(root) = vi;

(C2) for all n ∈ N such that Λ(n) ∈ VA, we have that:

1. for all nodes v′ ∈ VO such that Λ(n) ֌ v′, there exists one and only one
n′ ∈ N such that B(n, n′) and Λ(n′) = v′, and ;

2. for all nodes n′ ∈ N such that B(n, n′), there exists v′ ∈ VO such that
Λ(n) ֌ v′ and Λ(n′) = v′.

(C3) for all n ∈ N such that Λ(n) ∈ VO, there exists one and only one n′ ∈ N such
that B(n, n′), and Λ(n) ֌ Λ(n′). �

Since we see an unfolding as a possible evolution of a system represented by the
And-Or graph, it is natural to define the avoidability problem in this setting. Quite
naturally, one can avoid a set E in an And-Or graph G iff there exists an unfolding of
G that does not intersect with E:

Problem 10 (AOGAvoid: The avoidability problem for And-Or graphs)

• Instance: An And-Or graph G = 〈VA, VO, vi, ֌〉 and a set E.

• Question: Does there exist T = 〈N, root , Λ, B〉, a compatible unfolding of G,
such that Λ(N) ∩ E = ∅ ? �

When the answer is positive, we say that E is avoidable in G. Otherwise, we say
that it is unavoidable.

The following result states that AOGAvoid is an easily decidable problem:

Theorem 4.1 ([Imm81]) AOGAvoid is complete for PTIME.

We are now ready to explain how to exploit these definitions to build under and
over-approximations of a WSTS.

4.2. UNDER AND OVER-APPROXIMATIONS 113

4.2 Under and Over-approximations

In the present section, we define two kinds of (parametrised) approximations of WSTS

that will be used by ‘Expand, Enlarge and Check’.

We first explain, in section 4.2.1, how to build an under-approximation of a given
WSTS w.r.t. to a finite subset of reachable states C ′ ⊆ C. Intuitively, that approx-
imation contains all the initialised computations of the WSTS that visit states of C ′

only. It allows us to decide the positive instances of the coverability problem since an
upward-closed set of configurations is reachable in a WSTS S iff there exists a finite
execution of S that reaches it.

In section 4.2.2, we show how to build an over-approximation of a given WSTS,
w.r.t. a given finite set of reachable states C ′ ⊆ C and a given finite set of limit
elements L′ ⊆ L. These abstractions are And-Or graphs whose nodes are annotated by
≤-downward-closed sets of states of a WSTS. We show that any unfolding of this And-
Or graph is able to simulate [Mil89] the behaviours of its associated WSTS (Proposition
4.3). Moreover, if the ≤-downward-closed sets that are used to annotate the And-Or
graph are precise enough (in a sense that we make clear in Proposition 4.5), then the
And-Or graph allows us to decide negative instances of the coverability problem.

4.2.1 The C ′-Exact Partial Reachability Graph Under (S, C ′)

Given a WSTS S = 〈C, c0,⇒,≤〉 and a finite set C ′ ⊆ C (with c0 ∈ C ′), let us show
how to build the C ′-exact partial reachability graph (C ′-EPRG for short) Under (S, C ′).
It is an under-approximation of S (in the sense of Proposition 4.1). Let us first define
precisely the notion of C ′-EPRG:

Definition 4.4 (The Exact Partial Reachability Graph) Given a WSTS

S =
〈
C, c0,⇒,≤

〉
and a set C ′ ⊆ C with c0 ∈ C ′, the C ′-EPRG of S is the transition

system Under (S, C ′) =
〈
C ′, c0,

(
⇒ ∩(C ′ × C ′)

)〉
. �

The following propositions state the usefulness of the C ′-EPRG to decide the cover-
ability problem. The first one states that these graphs are adequate in the sense that
when a set U of configurations2 is reachable in the C ′-EPRG, it is also reachable in the
corresponding WSTS.

Proposition 4.1 (Adequacy) Given a WSTS S =
〈
C, c0,⇒,≤

〉
, a finite set C ′ ⊆ C

with c0 ∈ C ′ and a set U ⊆ C: If Reach (Under (S, C ′))∩U 6= ∅ then Reach (S)∩U 6= ∅.

Proof. If Reach (Under (S, C ′))∩U 6= ∅, then there exists a finite execution c0, c1, . . . cn

of Under (S, C ′) s.t. cn ∈ U . However, by definition of Under (S, C ′), that execution is
also an execution of S. Hence, u is reachable in S. �

2The proposition holds for any subset U of C, whether it is ≤-upward-closed or not.

114 CHAPTER 4. EXPAND, ENLARGE AND CHECK

〈0, 1, 0〉 〈1, 1, 0〉

〈0, 0, 1〉 〈1, 0, 1〉

Figure 4.2: Under
(
SNµ

, C ′
)

for C ′ = {m | ∀p ∈ {p1, p2, p3} : m(p) ≤ 1}.

The second proposition states the completeness of C ′-EPRG for some sets C ′ ⊆ C:
when a given set3 U is actually reachable in a WSTS, there exists a set C ′ ⊆ C that
allows to prove the reachability of U thanks to the C ′-EPRG.

Proposition 4.2 (Completeness) Given a WSTS S =
〈
C, c0,⇒,≤

〉
and a set U ⊆

C: If Reach (S) ∩ U 6= ∅ then there exists a finite set C ′ ⊆ C with c0 ∈ C ′ such that
Reach (Under (S, C ′)) ∩ U 6= ∅.

Proof. Since U is reachable in S there exists a finite execution c0, c1, . . . cn of S s.t.
cn ∈ U . Let C ′ = {c0, . . . , cn}. Then, c0, c1, . . . cn is also an execution of Under (S, C ′),
and U is reachable in Under (S, C ′) (note that c0 ∈ C ′, by construction). �

Example 4.1 Let us consider the Petri net Nµ of Figure 2.1. Let SNµ
be the WSTS

that corresponds to Nµ. Let C ′ = {m | ∀p ∈ {p1, p2, p3} : m(p) ≤ 1}. Then,
Under

(
SNµ

, C ′
)

is the transition system depicted in Figure 4.2.

Let U1 = {m | m(p3) ≥ 1} and U2 = {m | m(p1) ≥ 5}. Remark that U1 and U2

are both reachable in SNµ
, but that U1 only is reachable in Under

(
SNµ

, C ′
)
.

Clearly, SNµ
is an under-approximation of SNµ

. As a matter of fact, it corresponds
to Nµ restricted to a single process (see Example 2.11 for the explanation of the model).

4.2.2 The And-Or Graph Over (S, C ′, L′)

Let us now show how to over-approximate a WSTS S =
〈
C, c0,⇒,≤

〉
by means of

an And-Or graph. Just as the EPRG was parametrised by a finite set of concrete
elements, this over-approximation relies upon C ′ ⊆ C, a finite set of concrete ele-
ments; and L′, a finite set of limit elements. It has the form of an And-Or graph
Over (S, C ′, L′) whose unfoldings all simulate S (as shown later, in Proposition 4.3).
Intuitively, Over (S, C ′, L′) will represent the exact behaviours of S as long as these
behaviours stay inside the set C ′. When an execution of S reaches a state outside
C ′, this execution is not precisely represented in Over (S, C ′, L′) anymore. However,

3The proposition holds for any subset U of C, whether it is ≤-upward-closed or not.

4.2. UNDER AND OVER-APPROXIMATIONS 115

all the configurations outside C ′ that will be reached during such an execution will be
over-approximated (covered) by elements of L′.

The key observation that motivates the use of And-Or graphs in our algorithm relies
on the fact that, when we consider a configuration c, s.t. Post (c) 6⊆ C ′ (hence Post (c)
must be over-approximated), there might be several subsets elements E1, E2, . . . En of
L′ ∪ C ′ that over-approximate Post (c) (that is, with γ (Post (c)) ⊆ γ (Ei)) and that
are incomparable: for any i 6= j, γ (Ei) 6⊆ γ (Ej). Hence, it is not possible to choose
the most precise over-approximation of Post (c). We will represent that situation by
an Or-node labelled by c, and whose successors are labelled by all the possible over-
approximations E1, E2, . . . En of Post (c). All these over-approximations have to be
taken into account because some of them might be too coarse to prove that the upward-
closed set is not reachable, while some others might be precise enough (see Section 4.3.1
for further discussion on this topic). Remark also that for certain classes of WSTS,
we are ensured that there will always be a single most precise (downward-closed) over-
approximation to represent any subset of C ′. We discuss this particular case in the
sequel. Let us now state the precise definition of Over (S, C ′, L′):

Definition 4.5 (The over–approximation And-Or Graph) Given a WSTS

S =
〈
C, c0,⇒,≤

〉
, an adequate domain of limits 〈L,⊑, γ〉 for

〈
C,≤

〉
, a finite subset

C ′ ⊆ C with c0 ∈ C ′, and a finite subset L′ ⊆ L with ⊤ ∈ L′, the And-Or graph
G = 〈VA, VO, vi, ֌〉, noted Over (S, C ′, L′), is defined as follows:

(A1) VO = L′ ∪ C ′;

(A2) And-nodes are non empty subsets of L′ ∪ C ′ which contain ⊑-incomparable ele-
ments only: VA = {S ∈ 2L′∪C′ \ {∅} | ∄d1 6= d2 ∈ S : d1 ⊑ d2};

(A3) vi = c0;

(A4.1) The successors of any And-node are Or nodes: (n1, n2) ∈֌ with n1 ∈ VA, n2 ∈
VO if and only if n2 ∈ n1;

(A4.2) The successors of an Or-node n are all the most precise elements of L′ ∪ C ′

that represent the set of successors of γ(n), i.e., for any n1 ∈ VO, n2 ∈ VA :
(n1, n2) ∈֌ if and only if

1. successor covering: Post (γ(n1)) ⊆ γ(n2) and

2. preciseness: ¬∃n ∈ VA : Post (γ(n1)) ⊆ γ(n) ⊂ γ(n2). �

Notice that all the nodes of Over (S, C ′, L′) have at least one successor. Indeed, for
all n ∈ VA, since n 6= ∅ (following point A4.1 and point A2 of Definition 4.5), n has
at least one successor. Since, by point A2 of Definition 4.5, And-nodes are subsets of
L′∪C ′ that do not contain comparable elements, and since ⊤ ∈ L′, with γ(⊤) = C, by

116 CHAPTER 4. EXPAND, ENLARGE AND CHECK

point L2 of Definition 2.11, there exists an And node which is exactly {⊤}. Hence, for
any n ∈ VO, we can always approximate the (non-empty) set of successors of γ(n), and
we are guaranteed that n will have at least one successor (point A4.2 of Definition 4.5).

Notice also that, under the hypothesis that the effectiveness requirement of Defini-
tion 4.1 are satisfied, Over (S, C ′, L′) is effectively constructible for any finite subsets
C ′ and L′ of C and L respectively.

As stated before, we will use And-Or graphs to decide the negative instances of
CPWsts. For that purpose, we need to define which node of the And-Or graph
corresponds to the ≤-upward-closed set U whose reachability we want to decide.
Given a WSTS S =

〈
C, c0,⇒,≤

〉
, an associated And-Or graph Over (S, L′, C ′) =

〈VA, VO, vi, ֌〉, and an ≤-upward-closed set of states U ⊆ C, we denote by Nodes (U)
the set of nodes v ∈ VA ∪ VO such that γ (v) ∩ U 6= ∅. That is, Nodes (U) is the set of
nodes whose associated ≤-downward-closed set of states intersects with U .

Example 4.2 We refer the reader to Section 4.3.1 for an example of And-Or graph.

Degenerated case If an And-Or graph is such that any Or-node has exactly one
successor, the And-Or graph is said to be degenerated. In that case, the avoidability
problem is equivalent to the (un)reachability problem in a plain graph. From the defi-
nition of Over (S, C ′, L′), we can easily see that the And-Or graph will be degenerated
if for any d ∈ L′ ∪ C ′, there exists a unique minimal set γ (D) such that D ∈ VA and
Post (γ (d)) ⊆ γ (D). Thus, degenerated And-Or graphs will appear when we consider
certain well-chosen domain of limits, that we can characterise. This is the purpose of
the next definition:

Definition 4.6 (Perfect Pairs) Given a WSTS S =
〈
C, c0,⇒,≤

〉
and an adequate

domain of limits 〈L,⊑, γ〉 for
〈
C,≤

〉
, we say that a pair 〈C ′, L′〉, where C ′ ⊆ C with

c0 ∈ C and L′ ⊆ L with ⊤ ∈ L′, is perfect if for any d ∈ L′ ∪ C ′, there exists one and
only one canonical set D ⊆ L′ ∪ C ′ such that the following holds:

1. Post (γ(d)) ⊆ γ(D) and

2. there is no D′ ⊆ L′ ∪ C ′ with Post (γ(d)) ⊆ γ(D′) ⊂ γ(D). �

The next lemma states that this characterisation is sufficient to obtain a degener-
ated And-Or graph:

Lemma 4.1 Given a WSTS S =
〈
C, c0,⇒,≤

〉
, an adequate domain of limits 〈L,⊑, γ〉

for
〈
C,≤

〉
, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset L′ ⊆ L with ⊤ ∈ L′:

if 〈C ′, L′〉 is perfect, then Over (S, C ′, L′) is a degenerated And-Or graph.

4.2. UNDER AND OVER-APPROXIMATIONS 117

Proof. Immediate from Definition 4.5 and Definition 4.6. �

The following example shows that it is possible to devise pairs 〈C ′, L′〉 that are not
perfect.

Example 4.3 Let us consider a LCS C with set of states Q, alphabet Σ = {a, b, c}
and only one channel. Let SC = 〈States (C) , c0,⇒, -〉 be its associated WSTS and〈
L(Σ, Q),⊑, γ

〉
be its adequate domain of limits. Let C ′ = {c0} and L′ be the set of

any limit element containing an sre on Σ of size ≤ 2, plus the ⊤ element. Let us
consider d = 〈q, (a + ε) · (b + ε)〉 ∈ L′, for some state q ∈ Q. From q, let us assume
that the only firable transition consists in adding a c to the channel and move to state
q′. Hence, Post (γ (d)) = γ (d′) where d′ = 〈q′, (a + ε) · (b + ε) · (c + ε)〉. However,
d′ 6∈ L′, because it contains an sre of size 3.

One can devise several canonical subsets of C ′ ∪ L′ that over-approximate d′ as
precisely as possible. This implies that 〈C ′, L′〉 does not form a perfect pair. These sets
are D1 =

{
〈q′, (a + b)∗ · (c + ε)〉

}
and D2 =

{
〈q′, (a + ε) · (b + c)∗〉

}
. Remark that

γ (D1) 6⊆ γ (D2), that γ (D2) 6⊆ γ (D1), and that both D1 and D2 contain sre in normal
form. ♦

Properties of Over (S, C ′, L′) Let us now prove some properties of Over (S, C ′, L′)
that show how it is related to the coverability problem. More precisely, we first prove
that, for any pair 〈C ′, L′〉 such that c0 ∈ C ′ and ⊤ ∈ L′, this abstraction is adequate
to decide negative instances of the coverability problem (Proposition 4.4). That is, we
show that, for any upward-closed set U , if U is avoidable in Over (S, C ′, L′), then it is
also avoidable in S.

Then, we prove that, for some pair 〈C ′, L′〉, it is complete to decide negative in-
stances (Proposition 4.5). This means that, if U is avoidable in S it is always possible
to find a pair 〈C ′, L′〉 s.t. U is avoidable in Over (S, C ′, L′). In some sense, such a pair
〈C ′, L′〉 can be considered as a witness or a proof that U is avoidable in S.

To establish those results, we first show that Over (S, C ′, L′) is a proper over-
approximation of S, in the sense that it can simulate S for any 〈C ′, L′〉 such that
c0 ∈ C ′ and ⊤ ∈ L′. By simulating, we mean that, for any execution c0, c1, . . . , cn of
S, there exists an unfolding of Over (S, C ′, L′) that contains a path whose nodes cover
c0, c1, . . . , cn. This is the purpose of the following proposition:

Proposition 4.3 (Simulation) Given a WSTS S =
〈
C, c0,⇒,≤

〉
with an adequate

domain of limits 〈L,⊑, γ〉 for
〈
C,≤

〉
, the following holds for any C ′ ⊆ C with c0 ∈ C ′

and L′ ⊆ L with ⊤ ∈ L′: for any execution c0c1 . . . ck of S and any unfolding T =
〈N, root, B, Λ〉 of Over (S, C ′, L′) there exists a path n0n1 . . . n2k of T with n0 = root

and ci ∈ γ(Λ(n2i)) for any 0 ≤ i ≤ k.

118 CHAPTER 4. EXPAND, ENLARGE AND CHECK

Proof. Let c0, . . . , ck be a path of S. For any unfolding, we will show, by induction
on the length k of the path in S, that there exists a path n0n1 . . . n2k of the unfolding
such that ci ∈ γ(Λ(n2i)) for all i such that 0 ≤ i ≤ k.
Base case: The base case is trivial since Λ(root) = c0 following A3 and C1.
Induction step: Suppose that there exists a path P = n0, . . . , n2i (i < k) of the
unfolding, such that cj ∈ γ(Λ(n2j)) for all j such that 1 ≤ j ≤ i. Let us show that
there exists a path n0 . . . n2(i+1) of the unfolding, where cj ∈ γ(Λ(n2j)) for all j such
that 1 ≤ j ≤ i+1. Following C3, the successor n of n2i in the unfolding is s.t. Λ(n) = v,
where v = {d1, . . . , dℓ} is an And-node with Λ(n2i) ֌ v. From point A4.2 of Definition
4.5, since ci ∈ γ (Λ(n2i)), and since ci ⇒ ci+1, there is 1 ≤ j ≤ ℓ s.t. ci+1 ∈ γ(dj).
Moreover, following A4.1 and C2, v has a successor v′ such that Λ(v′) = dj. Thus,
ci+1 ∈ γ(Λ(v′)). We conclude that in the path P extended with the nodes v and v′,
each Or-node n2j covers its corresponding cj , i.e., cj ∈ γ(Λ(n2j)). �

Intuitively, this proposition tells us that, for any over-approximation Over (S, C ′, L′),
for any reachable configuration c of S, there is, in any unfolding of Over (S, C ′, L′), an
Or-node4 n that covers c. Since this holds for any reachable configuration, we deduce
that the (labels of the) set of Or-nodes of any unfolding forms an over-approximation
of Reach (S). Hence the following corollary:

Corollary 4.1 Let S =
〈
C, c0,⇒,≤

〉
be a WSTS. Let 〈L,⊑, γ〉 be an adequate of limits

for
〈
C,≤

〉
. Let C ′ be a finite subset of C s.t. c0 ∈ C ′, and let L′ be a finite subset of L

s.t. ⊤ ∈ L′. Then, for any unfolding T = 〈N, root , B, Λ〉 of Over (S, C ′, L′), we have:
Reach (S) ⊆ γ (Λ(N ∩ VO)), where VO is the set of Or-nodes of Over (S, C ′, L′).

Thus, any And-Or graph Over (S, C ′, L′) can be regarded as a compact way to encode
several over-approximations of Reach (S), built upon the sets C ′ and L′. The usefulness
of the And-Or graph for that purpose will be discussed in Section 4.3.1.

A direct consequence of this simulation property is given by Proposition 4.4: if
some set5 U of configurations is avoidable in an over-approximation of a WSTS S,
then S cannot reach U . This implies that And-Or graphs are adequate to decide the
negative instances of the coverability problem.

Proposition 4.4 (Adequacy) Given a WSTS S =
〈
C, c0,⇒,≤

〉
, an adequate do-

main of limits 〈L,⊑, γ〉 for
〈
C,≤

〉
, and a set U ⊆ C, the following holds for any C ′ ⊆ C

with c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′: if Nodes (U) is avoidable in Over (S, C ′, L′),
then Reach (S) ∩ U = ∅.

Proof. Since Nodes (U) is avoidable in Over (S, C ′, L′), there exists an unfolding T =
〈N, root , B, Λ〉 of Over (S, C ′, L′) s.t. N ∩Nodes (U) = ∅. This means that γ (N)∩U =
∅. By Corollary 4.1, Reach (S) ⊆ γ (N ∩ VO) ⊆ γ (N). Hence, Reach (S) ∩ U = ∅. �

4Proposition 4.3 ensures that the configuration c will be covered by a node whose index is even in
the corresponding path of the unfolding. Hence, this nodes is an Or-node.

5That set doesn’t have to be upward-closed.

4.2. UNDER AND OVER-APPROXIMATIONS 119

Finally, we prove a result of completeness. Intuitively, Proposition 4.5 says that,
when the pair 〈C ′, L′〉 is precise enough, Over (S, C ′, L′) allows us to decide negative
instances of the coverability problem. To prove that theorem, we first prove Lemma 4.2
that says that, if L′ ∪ C ′ contains a coverability set and the ≤-upward-closed set U

of configurations is not reachable into the WSTS, then there exists an unfolding that
does not intersect with U .

Lemma 4.2 Given a WSTS S =
〈
C, c0,⇒,≤

〉
, an adequate domain of limits 〈L,⊑, γ〉

for
〈
C,≤

〉
, an ≤-upward-closed set U ⊆ C, the following holds for any C ′ ⊆ C with

c0 ∈ C ′ and L′ ⊆ L with ⊤ ∈ L′ such that there exists a coverability set CS of S with
CS ⊆ L′ ∪C ′: if Reach (S)∩U = ∅ then there exists an unfolding T = 〈N, root, B, Λ〉
of Over (S, C ′, L′) such that ∀n ∈ N : γ(Λ(n)) ∩ U = ∅.

Proof. We construct such an unfolding by induction, and use Proposition 3.3 to con-
clude. More precisely, we show how to compute an unfolding whose nodes n are
such that γ(Λ(n)) ⊆ γ(CS) = Cover (S). Following Proposition 3.3 and the fact that
Reach (S) ∩ U = ∅, that implies that γ(Λ(n)) ∩ U = ∅ for all the nodes n of the
unfolding.

Base case: Notice that Λ (root) = c0 following C1 (Definition 4.3) and A3 (Def-
inition 4.5), and c0 ∈ γ(CS) following Definition 3.7 and Definition 3.8. Moreover,
Post (γ(c0)) ⊆ γ(CS) because Post (γ(c0)) ⊆ γ (Reach (S)), by monotonicity, and be-
cause γ (Reach (S)) = Cover (S) = γ(CS).

Thus, CS covers the successors of vi. Hence, following A4.2 (Definition 4.5), there
exists v ∈ VA (the set of And-nodes) with vi ֌ v and γ(v) ⊆ γ(CS) since v satisfies
the preciseness property of A4.2 (Definition 4.5). We extend the unfolding by choosing
such an And-node v and add one successor node n to root such that Λ(n) = v.

Induction step: Suppose that we can construct 2k layers of the unfolding such
that for all the nodes n of the 2k first layers, γ(n) ⊆ γ(CS). Let us show that we
can construct 2k + 2 layers such that for all the nodes n of the 2k + 2 first layers,
γ(n) ⊆ γ(CS).

By induction hypothesis, all the And-nodes n in the 2k-th layer are such that
Λ(n) = {d1, . . . , dℓ} and γ(Λ(n)) ⊆ γ(CS). Since, following A4.1 (Definition 4.5), all
the successors nodes v of Λ(n) in Over (S, C ′, L′) are such that v ∈ Λ(n), we have that
γ(v) ⊆ γ(CS). We conclude, following C2 (Definition 4.3), that all the Or-nodes n′ of
the 2k + 1-th layer are such that γ(Λ(n′)) ⊆ γ(CS).

For each node n of the (2k + 1)-th layer, since S is monotonic and γ(n) ⊆ γ(CS),
we have that ∀c ∈ γ(n), ∀c′ s.t. c ⇒ c′, there exists c′′ ∈ Reach (S) : c≤c′′ and
c′′ ⇒∗ c′′′ with c′≤c′′′ and c′′′ ∈ γ(CS). Since γ(CS) is ≤-downward-closed we obtain
that Post (γ(n)) ⊆ γ(CS) for all the nodes n of the 2k + 1-th layer.

Hence, there exists following A4.2 (Definition 4.5) an And-node v with γ(v) ⊆ γ(CS)
and Λ(n) ֌ v since v satisfies the preciseness property of A4.2 (Definition 4.5) and CS

120 CHAPTER 4. EXPAND, ENLARGE AND CHECK

covers the successors of γ(Λ(n)). So, we extend the unfolding by choosing such a node
v and add one successor n′ to n such that Λ(n′) = v. That allows us to conclude that
we can construct the 2k + 2-th first layers of the unfolding with the property that all
the nodes n are such that γ(Λ(n)) ⊆ CS. �

We are now ready to prove our completeness theorem:

Proposition 4.5 (Completeness) Given a WSTS S =
〈
C, c0,⇒,≤

〉
, an adequate

domain of limits 〈L,⊑, γ〉 for
〈
C,≤

〉
, a ≤-upward-closed set U ⊆ C and a coverability

set CS of S, the following holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with
⊤ ∈ L′ such that CS ⊆ L′ ∪ C ′: if Reach (S) ∩ U = ∅ then Nodes (U) is avoidable in
Over (S, C ′, L′).

Proof. As Reach (S) ∩ U = ∅, there exists, from Lemma 4.2, an unfolding T =
〈N, root , B, Λ〉 s.t. for every node n ∈ N : γ(n) ∩ U = ∅. Hence, for every node
n ∈ N : n 6∈ Nodes (U). Thus, Nodes (U) is avoidable in Over (S, C ′, L′). �

Remark that we do not request that L′ ∪C ′ = CS. Hence, we can prove that U is not
reachable without having a coverability set at our disposal.

Construction of Over (S, C ′, L′) in practice In the next section, we present the
EEC algorithm. One of the main steps of this algorithm involves the computation of
an And-Or graph and the decision of the coverability problem on this And-Or graph.
The step that consists in computing the And-Or graph deserves some discussion.

First of all, it is important to remark that, given two finite subsets C ′ and L′ of
C and L respectively, Over (S, C ′, L′) is always constructible. The difficult point is
to compute the successors of the Or-nodes, that is, given an element c ∈ L′ ∪ C ′, to
compute all the most precise subsets E1, E2, . . . En of L′ ∪C ′ whose downward-closure
covers Post (γ (c)). This can be done naively be enumerating all the (finitely many)
subsets of L′∪C ′, and keeping the most precise ones. Of course, a more straightforward
algorithm would greatly improve the efficiency of EEC in practice.

Such an algorithm should receive the element c and compute directly the sets
E1, E2, . . . En, in a symbolic fashion. It would also depend on the domain we are
dealing with. In sections 5.4 and 5.5, we apply EEC respectively to the class of strongly
monotonic SMPN, and to that of LCS. In both cases, we provide an algorithm of the
kind we have just alluded to, that directly computes representatives of the most precise
over-approximations of the successors of a set of configurations.

4.3. THE ‘EXPAND, ENLARGE AND CHECK’ ALGORITHM 121

4.3 The ‘Expand, Enlarge and Check’ algorithm

On the basis of the results presented in section 4.2, we now propose a new algorithmic
schema to decide the coverability problem of effective WSTS (in the sense of Defini-
tion 4.1). This algorithmic schema is called ‘Expand, Enlarge and Check’ or EEC for
short. The main ingredients of EEC have already been introduced in the previous sec-
tion: propositions 4.1 and 4.2 state that any EPRG is a suitable under-approximation
to decide positive instances of CPWsts, and that, if U is indeed reachable there exists
an EPRG that is a witness of the reachability of U . Symmetrically, propositions 4.4 and
4.5 say that any And-Or graph is a suitable over-approximation of the set of reachable
states, and that, if U is not reachable, one can always find an And-Or graph that is
a proof for this. Moreover, these under- and over-approximations are parametrised
by subsets of C and L, which are recursively enumerable, according to Definition 4.1.
Thus, our algorithm works by iteratively constructing pairs of approximations (under
and over-approximations) of the WSTS which become more and more precise. After
a finite number of steps either a concrete trace to a covering state will be found (in
the EPRG), or precise enough abstraction (under the form of an And-Or graph) will be
computed to prove that no covering state can ever be reached. This informal statement
is formalised in Theorem 4.2.

Let S =
〈
C, c0,⇒,≤

〉
be a WSTS with adequate domain of limits 〈L,⊑, γ〉. Let

C0, C1, . . . , Cn, . . . be an infinite sequence of finite subsets C such that (i) ∀i ≥ 0 : Ci ⊆
Ci+1, (ii) ∀c ∈ Reach (S) : ∃i ≥ 0 : c ∈ Ci, and (iii) c0 ∈ C0. Let L0, L1, . . . , Ln, . . .

be a infinite sequence of finite sets of limits such that (i) ∀i ≥ 0 : Li ⊆ Li+1, (ii)
∀ℓ ∈ L : ∃i ≥ 0 : ℓ ∈ Li and (iii) ⊤ ∈ L0. In the sequel, these sequences are often
called adequate sequences of sets of configurations (resp. limits). Those sequences of
sets exist because C and L are recursively enumerable, by E1. Remark that these
conditions imply that, for any finite subset D of C (resp. L ∪ C), there exists i (resp.
j) such that D ⊆ Ci (resp. D ⊆ Lj ∪Cj). This holds in particular for any coverability
set CS of S. The schema is given at Algorithm 4.1 and its proof of correctness is stated
in Theorem 4.2.

Theorem 4.2 For any WSTS S with adequate domain of limits 〈L,⊑, γ〉 that are effec-
tive, for any ≤-upward-closed set U represented by UGen (U), for any adequate sequence
C0, C1, . . . , Cn, . . . of sets of configurations and any adequate sequence L0, L1, . . . , Ln, . . .

of sets of limits, Algorithm 4.1 terminates after a finite amount of time and returns
‘Reachable’ if Reach (S) ∩ U 6= ∅, ‘Unreachable’ otherwise.

Proof. Let us first prove that the body of the main loop always terminates. In order
to establish this, let us notice that Ci is finite for all i ≥ 0, that the transition relation
⇒ is decidable (following E2) and that ≤ is decidable too. Hence we can test whether
Reach (Under (S, Ci))∩U 6= ∅ for all i ≥ 0. Then, let us remark that the And-Or graph,
as well as Nodes (U) are both constructible, because of the effectiveness properties

122 CHAPTER 4. EXPAND, ENLARGE AND CHECK

Algorithm 4.1: The EEC schema of algorithm.

Data: a finite representation of a WSTS S =
〈
C, c0,⇒,≤

〉
with the adequate

limit domain 〈L,⊑, γ〉 for 〈C,≤〉 that are effective (Definition 4.1).
Data: a finite representation of an ≤-upward-closed set of states U ⊆ C.
Data: an adequate sequence C0, C1, . . . , Cn, . . . of finite subsets of C.
Data: an adequate sequence L0, L1, . . . , Ln, . . . of finite subsets of L.
begin

i← 0;
while (true) do

‘Expand’
Compute Under (S, Ci);

‘Enlarge’
Compute Over (S, Ci, Li);

‘Check’

if Reach (Under (S, Ci)) ∩ U 6= ∅ then
return ‘Reachable’ ;

else if Nodes (U) is avoidable in Over (S, Ci, Li) then
return ‘Unreachable’ ;

i← i + 1;

end

4.3. THE ‘EXPAND, ENLARGE AND CHECK’ ALGORITHM 123

of Definition 4.1. Hence, we can effectively test whether Nodes (U) is avoidable in
Over (S, Ci, Li) (remember that the avoidability problem is Ptime-complete).

It remains to prove that the algorithm returns a correct answer after a finite number
of iterations of the loop. First remark that, by construction, Cj is a finite subset of C

containing c0 and Lj is a finite subset of L containing ⊤, for any j ≥ 0.

If Reach (S)∩U 6= ∅, Nodes (U) is not avoidable in Over (S, Ci, Li) for all i ≥ 0 (by
Proposition 4.4). Moreover, following Proposition 4.2, and since C0, C2, . . . , Cn, . . . is
an enumeration of the finite subsets of C, there exists j such that Reach (Under (S, Cj))∩
U 6= ∅. We conclude that Algorithm 4.1 returns ‘Reachable’ if Reach (S) ∩ U 6= ∅.

If Reach (S)∩U = ∅, then, following Proposition 4.1, Reach (Under (S, Ci))∩U = ∅
for all i ≥ 0. Moreover, there exists i ≥ 0 such that there exists a coverability set CS of
S with CS ⊆ Li∪Ci. Hence, from Lemma 4.2, Nodes (U) is avoidable in Over (S, Ci, Li)
and we conclude that Algorithm 4.1 returns ‘Unreachable’ if Reach (S) ∩ U = ∅. �

Note that Theorem 4.2, that states the adequation and completeness of our algo-
rithmic schema (for the coverability problem of effective WSTS), is not in contradiction
with the result of [DFS98] which establishes that there does not exist a procedure that
always terminates and returns a coverability set for a large class of WSTS, including
ours. Indeed, to establish the correctness of our algorithm, we only need to ensure
that a coverability set will eventually be included in the sequence of Ci’s and Li’s.
Nevertheless, given a pair 〈Ci, Li〉, it is not possible to establish algorithmically that
this pair contains a coverability set. Furthermore, given a particular ≤-upward-closed
set U , our algorithm may terminate before reaching a pair 〈Ci, Li〉 that contains a
coverability set, because the set U is reachable or because the abstraction constructed
from a pair 〈Cj, Lj〉, with j < i, is sufficiently precise to prove that U is not reachable.

Moreover, the constraints on the sequence of Li’s computed by Algorithm 4.1 may
be relaxed. Indeed, those constraints ensure that the algorithm eventually considers
a set of limits which allows to construct a graph that is precise enough to decide
negative instances of the coverability problem. However, following Proposition 4.5, it
is sufficient to ensure that there exists i ≥ 0 such that Li ∪ Ci contains a coverability
set. Hence, only the limits of a coverability set must appear in the sequence of Li’s.

4.3.1 Why we need And-Or graphs

The reader might wonder why we have used And-Or graphs to represent the over-
approximations of WSTS, and not plain graphs, as it is often the case in other works.
We have already sketched the argument in favour of And-Or graphs when introduc-
ing them: there is no guarantee that any set of configuration can be uniquely over-
approximated by elements of L′∪C ′. Now that we have introduced the EEC algorithm,
we can illustrate this argument by a concrete example.

Consider the WSTS SN = 〈N, 0,⇒,≤p〉, where:

124 CHAPTER 4. EXPAND, ENLARGE AND CHECK

0

2 4 6 8

1 3 5 7

. . .

. . .

ℓ
ℓe

ℓo
ℓ2

⊤

Figure 4.3: The configurations of SN and the limits that cover them.

• ⇒= {(i, i + 2) | i ≥ 0};

• ≤p= {(i, i + 2j) | i ≥ 1, j ≥ 0}.

Thus, the state space of this system contains two infinite ascending chains: 2, 4, 6, . . .
and 1, 3, 5, . . . Remark that 0, the initial state, is incomparable to any other state and
that only the ascending chain of even number is reachable.

Let us fix the adequate domain of limits for SN defined as: L = {ℓ, ℓe, ℓo, ℓ2,⊤},
where (Figure 4.3 depicts this):

1. γ(ℓ) = N \ {0};

2. γ(ℓe) = {2, 4, 6, . . .};

3. γ(ℓo) = {1, 3, 5, . . .};

4. γ(ℓ2) = {1, 2};

5. γ(⊤) = {0, 1, 2 . . .}.

Thus, the unique coverability set of the system is CS (SN) = {0, ℓe}.
Let us now fix C ′ = {0} and L′ = {ℓ, ℓe, ℓ2,⊤}, and let us build Over (SN, C ′, L′).

Remark that CS (SN) ⊆ L′ ∪ C ′. We obtain the And-Or graph of Figure 4.4 (where
And-nodes are represented by rectangles and Or-nodes are represented by circles).
Indeed, ℓe and ℓ2 are two incomparable limits which are both suitable to cover the
one-step successor of the initial configuration. However, while ℓe is sufficient to cover
all the successors of 0, we need ℓ to over-approximate the successors of ℓ2.

4.4. DISCUSSION 125

0
ℓe

ℓ2

ℓe

ℓ2 ℓ ℓ

U

Figure 4.4: The reachable part (from vi) of the And-Or graph obtained with C ′ and
L′. The nodes in the grey box are in the upward-closed set U .

Finally, let us choose the ≤p-upward-closed set of bad states U = {i | 1 ≤p i}.
Remark that the system is safe w.r.t. U , since only even natural numbers (which are
all ≤p-incomparable to 1) can be reached. But, due to the coarse over-approximation,
one of the unfoldings of the And-Or graph intersects with U (see Figure 4.4). And
this happens even though all the elements of the coverability set are present in L′∪C ′.
Thus, one cannot thoroughly represent this over-approximation of the system thanks
to a plain graph. Otherwise, one would have to choose the right successor of the initial
node. At each step i of the algorithm, an exponential number of such plain graphs could
have to be constructed, in order to test for all the possible choices. Such a procedure is
clearly less efficient than the PTime algorithm that decides the avoidability on And-Or
graphs. Remark that a procedure considering plain graphs would have to test whether
U is avoidable in all the graphs it builds, until it finds a graph proving that the system
is safe. Otherwise, it could never terminate: this happens, e.g. if the system is safe
but the only abstractions the algorithm builds and explores are repeatedly too coarse.

4.4 Discussion

This section has introduced the ‘Expand, Enlarge, and Check’ algorithmic schema that
decides the coverability problem on a very large class of WSTS. Examples of WSTS

that this method can handle are strongly monotonic SMPN; Petri nets; Petri nets with
transfer arcs, with reset arcs, with non-blocking arcs; lossy channel systems; timed
Petri nets; broadcast protocols,. . .

Other applications of the EEC algorithm are possible and have already been studied
by other researchers: it has been applied in the verification of asynchronous programs
in [JM07], and has been cited by several papers and PhD. theses related to the verifi-
cation of infinite state systems [Bin05, BH05, Bar06, GRVB06a].

In order to be exploited (on a class of WSTS that respects the effectiveness criteria
of Definition 4.1), this algorithmic schema has to be instantiated. This involves that
an adequate domain of limits must be available, because any downward-closed set of
configurations has to be finitely representable. We have not provided an automatic way
to devise such an adequate domain of limits. However, the recent paper [GRVB06a]

126 CHAPTER 4. EXPAND, ENLARGE AND CHECK

presents a general framework to automatically obtain such an adequate representation
of downward-closed sets.

In this chapter, we have purposely kept the discussion at a purely theoretical level.
This leaves much room for practical improvements of the method. In particular, ef-
ficient methods to build the under- and over-approximations are welcome (and the
sequences of Ci’s and Li’s, which is related). The next chapter addresses some of these
points.

Chapter 5

Practical applications of EEC

I
n the previous chapter, we have introduced the ‘Expand, Enlarge, and Check’ algo-
rithm that decides the coverability problem on WSTS. As we have noticed in the
discussion at the end of this chapter, several sub–procedures (such as the search

for an error trace in the under–approximations, or the construction of the And–Or
graph) of EEC have been presented at a very high level. In this chapter, we consider
these problems with more details, and show how to obtain efficient procedures to solve
them.

The two main improvements that are discussed in this chapter are:

1. We study finite WSTS and present an efficient algorithm to decide coverability
of these systems. We motivate the interest in these finite WSTS by showing that
the reachability problem in the under–approximations built during the ‘Expand’
phase can be reduced to deciding coverability in a finite WSTS. Thus, our effi-
cient algorithm can be used to speed up this phase. We further show that the
avoidability problem that has to be dealt with during the ‘Enlarge’ phase can,
in some cases, be reduced to deciding coverability in a finite WSTS too.

2. We show how the over-approximations can be built in an efficient way when the
WSTS considered are LCS.

The chapter is organised as follows. We begin with some preliminary notions such
as lossiness abstraction and finite WSTS. Then, in Section 5.2, we show how finite
WSTS can be exploited in EEC, and provide in Section 5.3 an efficient algorithm to
decide coverability on these systems. We exploit this in the next two sections, by
instantiating the EEC schema of algorithm to the case of strongly monotonic SMPN

(in Section 5.4) and to the case of LCS (in Section 5.5). In the case of LCS, we explain
how the construction of the over-approximations can be improved.

127

128 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

The content of this chapter is based on the articles [GRVB05], [GRVB04] and
[GRVB06b]. Section 5.3 and Section 5.4.4 contain unpublished material.

5.1 Preliminaries

This first section introduces concepts that are necessary in this chapter.

5.1.1 Simple monotonicity

In our definition of WSTS, we have considered a very weak notion of monotonicity: for
every c1, c2 and c3 s.t. c1 ⇒ c2 and c1≤c3, there exists c4 s.t. c3 ⇒∗ c4 and c2≤c4.
However, all the practical models of WSTS that we have considered (EPN, strongly
monotonic SMPN, LCS, . . .), have the guarantee that there exists c4 s.t. c3 ⇒ c4 and
c2≤c4. That (stronger) definition allows to obtain nice properties (that we will exploit
in the sequel) such as: c1≤c2 implies ↓(Post (c1)) ⊆ ↓(Post (c2)).

This stronger version of monotonicity is called simple monotonicity, and we obtain
the following definition:

Definition 5.1 (Simply Monotonic WSTS) A WSTS S =
〈
C, c0,⇒,≤

〉
is said

to be simply monotonic iff, for every c1, c2 and c3 in C s.t. c1 ⇒ c2 and c1≤c3, there
exists c4 ∈ C with c3 ⇒ c4 and c2≤c4. �

In this chapter, we will assume that all the WSTS we consider are simply monotonic.
Hence, we will write simply ‘WSTS’ instead of ‘simply monotonic WSTS’, ‘monotonic-
ity’ instead of ‘simple monotonicity’, and so forth. . . In practice, this new definition is
not restrictive since EPN, strongly monotonic SMPN and LCS are simply monotonic.

5.1.2 Lossiness abstraction

Let us first consider the notion of lossy WSTS. An LCS is said to be lossy because
messages can be lost by the FIFO channels that ensure the communications between
the automata. From the point of view of the ordering -, it means that if a configuration
c′ is reachable from a configuration c, then, all the configurations c′′ s.t. c′′ - c′ are
reachable from c too. It is clear that not every WSTS enjoys this property. However,
given a WSTS S, one can consider its lossy counterpart lossy(S), defined as follows:

Definition 5.2 (Lossy WSTS) The lossy version of a WSTS S =
〈
C, c0,⇒,≤

〉
is

the WSTS lossy(S) =
〈
C, c0,⇒ℓ,≤

〉
where:

⇒ℓ=
{
(c, c′) | ∃c′′ ∈ C : c⇒ c′′ ∧ c′≤c′′

}

A lossy WSTS is a WSTS S s.t. S = lossy(S). �

5.1. PRELIMINARIES 129

Remark that ⇒ℓ is still ≤-monotonic. Hence, lossy(S) is indeed a WSTS.

Since the transition relation of lossy(S) is defined as an extension of⇒, Reach (S) ⊆
Reach (lossy(S)), for any WSTS S. However, Reach (S) ⊇ Reach (lossy(S)) does not
hold in general. Nevertheless, by definition of ⇒ℓ, for any c ∈ Reach (lossy(S)) \
Reach (S), there exists c′ ∈ Reach (S) with c≤c′:

Lemma 5.1 For any WSTS S =
〈
C, c0,⇒,≤

〉
: for any c ∈ Reach (lossy(S)), there

exists c ∈ Reach (S) s.t. c≤c.

Proof. Let us assume that lossy(S) =
〈
C, c0,⇒ℓ,≤

〉
and let us c be a configuration of

Reach (lossy(S)). Let c0, c1, . . . , cn be a finite execution of lossy(S) s.t. cn = c. Let us
prove, by induction on n that, for any 1 ≤ i ≤ n, there exists ci ∈ Reach (S) s.t. ci≤ci.

Base case: n = 0. In this case, c0 = c0. The lemma holds because c0≤c0.

Inductive case: n = k + 1. By induction hypothesis, there is ck ∈ Reach (S) s.t.
ck≤ck. Let ck+1 be s.t. ck ⇒ℓ ck+1. By definition of ⇒ℓ, there is c′k+1 s.t
ck ⇒ c′k+1 and ck+1≤c′k+1. By monotonicity of ⇒, there is ck+1 s.t. ck ⇒ ck+1

and c′k+1≤ck+1. Hence, ck+1≤ck+1.

�

Hence the following corollary:

Corollary 5.1 For any WSTS S =
〈
C, c0,⇒,≤

〉
:

1. Cover (S) = Cover (lossy(S));

2. for any ≤-upward closed set U ⊆ C: Reach (S)∩U = ∅ iff Cover (lossy(S))∩U =
∅.

As a consequence, when we want to decide the coverability problem on a WSTS

S, we can always consider its lossy version lossy(S). Thanks to this result, we will be
able to apply the algorithm of section 5.3 to any finite under-approximations built by
EEC, and therefore improve the practical efficiency of the ‘Expand’ phase (as well as
the ‘Enlarge’ phase when the over-approximations are degenerated And-Or graphs).

5.1.3 Finite WSTS

As we will see in the next section, one can obtain an efficient algorithm to decide
the coverability problem on finite WSTS by exploiting the monotonicity property to
reduce the space of configurations that have to be explored. The next definition states
precisely what is a finite WSTS:

130 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

〈0, 1, 0〉 〈1, 1, 0〉

〈0, 0, 1〉

〈2, 1, 0〉

〈1, 0, 1〉 〈2, 0, 1〉

Figure 5.1: Under
(
SNµ

, C ′
)

for C ′ = {m | ∀p ∈ {p1, p2, p3} : m(p) ≤ 2}. Only the
nodes that are reachable from the initial node vi = 〈0, 1, 0〉 have been drawn on the
figure.

Definition 5.3 (Finite WSTS) A WSTS S =
〈
C, c0,⇒,≤

〉
is finite iff C is finite.

�

Remark that a finite WSTS can admit infinite executions. In particular, if the
WSTS is deadlock free, every maximal execution of the WSTS is infinite.

5.2 Application of finite WSTS to EEC

We will present, in section 5.3, an efficient algorithm that decides the coverability
problem on finite WSTS. In order to motivate the usefulness of this algorithm, we
first show how it can be used in the framework of EEC. We show that, thanks to
corollary 5.1, finite WSTS can always be used during the ‘Expand’ phase. Moreover,
in the case where the And-Or graph is degenerated, the ‘Enlarge’ phase consists in
deciding coverability on a finite WSTS too.

‘Expand’ phase Let us first consider the ‘Expand’ phase. Unfortunately, the under-
approximations built by EEC are not, in general, finite WSTS, as shown by the following
example.

Example 5.1 Consider the Petri net Nµ introduced in Example 2.8 (Figure 2.1). Fig-
ure 5.1 represents Under

(
SNµ

, C ′
)

for C ′ = {m | ∀p ∈ {p1, p2, p3} : mp ≤ 2}. The tran-
sition system 〈C ′, 〈0, 1, 0〉 ,⇒〉 (where ⇒ is the transition relation of Under

(
SNµ

, C ′
)
)

is not 4-monotonic because if we let c1 = 〈1, 0, 1〉, c2 = 〈2, 0, 1〉 and c3 = 〈2, 0, 1〉, we
have clearly c1 ⇒ c2 and c1 4 c3, but there is no c4 s.t. c2 4 c4 and c3 ⇒ c4.

However, if the WSTS S under analysis is lossy, then Under (S, C ′) is guaranteed to
be a WSTS too, as shown in the following proposition. Remark that this restriction is
not problematic in practice. Indeed, by Corollary 5.1, we can analyse lossy(S) instead
of S, as far as CPWsts is concerned.

5.2. APPLICATION OF FINITE WSTS TO EEC 131

〈0, 1, 0〉 〈1, 1, 0〉

〈0, 0, 1〉

〈2, 1, 0〉

〈1, 0, 1〉 〈2, 0, 1〉

Figure 5.2: Under
(
lossy(SNµ

), C ′
)

for C ′ = {m | ∀p ∈ {p1, p2, p3} : m(p) ≤ 2}. Only
the nodes that are reachable from the initial node vi = 〈0, 1, 0〉 have been drawn on
the figure. The arrows corresponding to the transition relation of Under

(
SNµ

, C ′
)

have
been drawn in grey.

Proposition 5.1 Given a lossy WSTS S =
〈
C, c0,⇒,≤

〉
, and a finite C ′ ⊆ C:

Under (S, C ′) is a finite WSTS.

Proof. According to Definition 2.16, it is sufficient to show that the transition relation
of Under (S, C ′) is ≤-monotonic. Let ⇒′ denote this transition relation. Let c1, c2 and
c3 be three configurations of C ′ s.t. c1 ⇒ c2 and c1≤c3. Since S is monotonic, and
since c ⇒′ c′ implies c ⇒ c′, there exists c4 ∈ C s.t. c2 ⇒ c4 and c3≤c4. Since S is
lossy, we have c2 ⇒ c3 too. As c2 and c3 are both in C ′, we have c2 ⇒′ c3, by definition
of ⇒′. Thus, ⇒′ is ≤-monotonic because c3≤c3. �

Example 5.2 Let us consider once again the Petri net Nµ introduced in Example 2.8
(Figure 2.1). Figure 5.2 shows Under

(
lossy(SNµ

), C ′
)

for C ′ = {m | ∀p ∈ {p1, p2, p3} :
m(p) ≤ 2}. Remark that, unlike Example 5.1, we have this time considered the lossy
version of SNµ

. It is not difficult to see that ⇒ is now (simply) ≤-monotonic. Hence
Under

(
lossy(SNµ

), C ′
)

is a finite WSTS.

‘Enlarge’ phase Let us now discuss the relevance of finite WSTS during the ‘Enlarge’
phase. Let S =

〈
C, c0,⇒,≤

〉
be a WSTS with adequate domain of limits 〈L,⊑, γ〉.

Let C ′′ ⊆ C and L′′ ⊆ L be two finite sets s.t. c0 ∈ C ′′ and ⊤ ∈ L′′. Clearly, not
every over-approximation Over (S, C ′′, L′′) is a finite WSTS, since over-approximations
are, in general, (non-degenerated) And-Or graphs. However, when Over (S, C ′′, L′′) is
a degenerated And-Or graph, the avoidability problem of U in Over (S, C ′′, L′′) can be
reduced to the coverability problem of a finite WSTS OverWSTS (S, C ′′, L′′), defined
hereunder.

132 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Given an element c ∈ L′′∪C ′′ let mps(c) be the most precise set of elements of L′′∪C ′′

that covers Post (γ(c)). That is, mps(c) ⊆ L′′ ∪ C ′′ is s.t. Post (γ(c)) ⊆ γ(mps(c)) and,
there is no D ⊆ L′′ ∪ C ′′ s.t. Post (γ(c)) ⊆ γ(D) ⊂ γ(mps(c)). If 〈C ′′, L′′〉 is a perfect
pair, the set mps(c) is unique for any c ∈ L′′ ∪ C ′′, by Definition 4.6. Moreover, it
always exists, since we impose that ⊤ ∈ L′′ in the EEC algorithm, and Over (S, C ′′, L′′)
is degenerated by Lemma 4.1.

We can now define OverWSTS (S, C ′′, L′′) =
〈
C ′, c′0,⇒′,≤′

〉
:

• C ′ = L′′ ∪ C ′′;

• c′0 = c0;

• for any c1, c2 in C ′: c1 ⇒′ c2 iff c2 ∈ mps(c1);

• ≤′
=⊑ ∩(C ′ × C ′).

Let us show that OverWSTS (S, C ′′, L′′) is indeed a finite WSTS:

Lemma 5.2 Let S =
〈
C, c0,⇒,≤

〉
be a WSTS and let 〈L,⊑, γ〉 be an adequate domain

of limits for
〈
C,≤

〉
. Let C ′′ be a finite subset of C s.t. c0 ∈ C ′′, and let L′′ be a finite

subset of L s.t. ⊤ ∈ L′′. If 〈C ′′, L′′〉 is a perfect pair, then OverWSTS (S, C ′′, L′′) =〈
C ′, c′0,⇒′,≤′

〉
is a finite, simply monotonic WSTS.

Proof. Clearly, 〈C ′, c′0,⇒′〉 is a finite transition system, and ≤′
is a WQO. Let us show

that ⇒′ is (simply) ≤′
-monotonic. Let c1, c2 and c3 be three configurations in C ′ s.t.

c1 ⇒′ c2 and c1≤′
c3, and let us show that there exists c4 ∈ C ′ s.t. c3 ⇒′ c4 and c2≤′

c4.

Since c1≤′
c3, we have c1 ⊑ c3 (by definition of ≤′

) and thus γ(c1) ⊆ γ(c3) (by def-
inition of ⊑). Hence, since ⇒ is monotonic, Post (γ(c1)) ⊆ Post (γ(c3)). By definition
of mps, Post (γ(c3)) ⊆ γ(mps (c3)). Thus, Post (γ(c1)) ⊆ γ(mps (c3)). By definition of
mps, this implies that γ(mps (c1)) ⊆ γ(mps (c3)). Hence, for any c ∈ mps(c1), there is
c′ ∈ mps(c3) s.t. c ⊑ c′, which is equivalent to c≤′

c′. However, c1 ⇒′ c2 implies that
c2 ∈ mps(c1). Hence there is c4 ∈ mps(c3) s.t. c2≤′

c4. Finally, since c4 ∈ mps(c3), we
have c3 ⇒′ c4, by definition of ⇒′. �

Remark that OverWSTS (S, C ′′, L′′) corresponds to the (plain) graph that is nat-
urally associated to the degenerated And-Or graph Over (S, C ′′, L′′). The set of con-
figurations of OverWSTS (S, C ′′, L′′) is the set of Or-nodes of Over (S, C ′′, L′′). The
And-nodes have been omitted since they are redundant in the case of a degenerated
And-Or graph. The transition relation has been adapted accordingly. That is, for
any c1, c2 ∈ C ′, we have c1 ⇒′ c2 in OverWSTS (S, C ′′, L′′) iff there are two Or-
nodes v1 = c1 and v2 = c2 and an And-node v3 = mps(c1) in the And-Or graph,
such that v1 ⇒′′ v3 ⇒′′ v2, where ⇒′′ denotes the transition relation of the And-Or

5.2. APPLICATION OF FINITE WSTS TO EEC 133

graph. As a consequence, testing for the avoidability of U in the And-Or graph is
equivalent to an instance of the coverability problem, where the transition system is
OverWSTS (S, C ′′, L′′), and the upward-closed set is U ′ = {d ∈ L′′∪C ′′ | γ(d)∩U 6= ∅}.
That is, it is the set of the elements of L′′ ∪C ′′ whose associated downward-closed set
(wrt to γ) has a non-empty intersection with U . Remark that for any element d ∈ U ′,
any d′ ∈ L′′ ∪ C ′′ s.t. d ⊑ d′ is in U ′ too, because d ⊑ d′ implies that γ (d) ⊆ γ (d′).
Thus, U ′ is indeed upward-closed wrt to ⊑. Hence, it is also ≤′

-upward-closed, by
definition of ≤′

. Thus, we obtain the following proposition:

Proposition 5.2 Let S =
〈
C, c0,⇒,≤

〉
be a WSTS with adequate domain of limits

〈L,⊑, γ〉. Let C ′′ be a finite subset of C s.t. c0 ∈ C ′′, and let L′′ be a finite subset of
L s.t. ⊤ ∈ L′′. Let 〈C ′′, L′′〉 be a perfect pair. Let U ⊆ C be a ≤-upward-closed set.
Then, U is avoidable in Over (S, C ′′, L′′) iff γ (OverWSTS (S, C ′′, L′′)) ∩ U = ∅.

Proof. Let OverWSTS (S, C ′′, L′′) =
〈
C ′, c′0,⇒′,≤′

〉
. Since 〈C ′′, L′′〉 is a perfect pair,

Over (S, C ′′, L′′) = 〈VA, VO, vi,⇒′′〉 is degenerated, by Lemma 4.1. Hence, it has a
single1 unfolding 〈N, root , B, Λ〉 that intersects with U iff U cannot be avoided in
Over (S, C ′′, L′′). Remark that for every And-node n ⊆ C ′′ ∪ L′′ in any unfolding,
for every d ∈ n, there is an Or-node n′ = d in the unfolding (see Definition 4.5 and
Definition 4.3). Hence, And-nodes are redundant when checking for the intersection of
the unfolding with a given upward-closed set. Thus:

γ

(
⋃

n∈N

Λ (n))

)
∩ U = ∅ iff γ

(
⋃

n∈N∩VO

Λ (n))

)
∩ U = ∅ (5.1)

Let V ′ be the set of every Or-node of Over (S, C ′′, L′′) that are reachable from its ini-
tial node vi. Thus, by construction, V ′ is equal to the set Reach (OverWSTS (S, C ′′, L′′)).
Hence, we have:

U is avoidable in Over (S, C ′′, L′′)
⇔ ∀n ∈ N : γ(n) ∩ U = ∅ Def. of avoidability
⇔ ∀v ∈ V ′ : γ(v) ∩ U = ∅ By (5.1)
⇔ ∀c ∈ Reach (OverWSTS (S, C ′′, L′′)) : γ(c) ∩ U = ∅

V ′ = Reach (OverWSTS (S, C ′′, L′′))
⇔ γ (Reach (OverWSTS (S, C ′′, L′′))) ∩ U = ∅ Def. of U’

�

It should now be clear that an efficient procedure to compute γ (Reach (S)), for any
finite WSTS S, is highly desirable in order to improve the practical efficiency of EEC.
We discuss such a procedure in the following section.

1Up to labelled tree isomorphism.

134 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

5.3 An efficient procedure to decide coverability on

finite WSTS

This section presents an efficient procedure to decide the coverability problem when
dealing with finite WSTS, i.e., WSTS with a finite number of reachable configurations.
The algorithm exploits the monotonicity property of WSTS in order to reduce the
number of elements that have to be treated. More precisely, the algorithm computes
a sequence of downward-closed sets of elements that converges to the coverability set
of the WSTS (which is sufficient to decide coverability as well as other problems, see
Section 2.6). These downward-closed sets are represented and manipulated by means
of sets of maximal elements, which are usually smaller than the sets they represent.
Since we are dealing with finite WSTS, there is no need for limit elements, because no
infinite increasing sequence of reachable elements will appear (see Lemma 2.10).

Let us consider a finite WSTS S =
〈
C, c0,⇒,≤

〉
and the function F (X) = Post (X)∪

{c0} that is defined for any set X ⊆ C. Since F is a monotonic function for ⊆, the
least fixed point µX.F (X) of F exists, is unique, and is equal to Post∗ (c0), by Knaster–
Tarski’s theorem.

Let X0, X1, . . .Xi, . . . be the sequence of subsets of C defined as follows:

Definition 5.4 (The FinCov sequence) Let S =
〈
C, c0,⇒,≤

〉
be a WSTS. Then,

FinCov (S) is the sequence X0, X1, . . . , Xi, . . . defined as follows:

1. X0 = {c0};

2. for any i ≥ 1: Xi+1 = Post (Xi) ∪ {c0}. �

Clearly, that sequence eventually converges to Post∗ (c0) for any finite WSTS. Thus,
the sequence of Xi’s we have just defined provides us a practical way to compute
Post∗ (c0), and hence, to decide the coverability problem. It is presented at Algo-
rithm 5.1. From the discussion above, we have:

Proposition 5.3 Let S =
〈
C, c0,⇒,≤

〉
be a finite WSTS and let X0, X1, . . . , Xi, . . .

be its covering sequence FinCov (S). Then, there exists k ∈ N s.t.:

• for any 1 ≤ i < k: Xi ⊂ Xi+1;

• Xk = Xk+1 = Post∗ (c0).

5.3. A PROCEDURE TO DECIDE CPWSTS ON FINITE WSTS 135

An immediate corollary of this proposition is:

Corollary 5.2 For any finite WSTS S and any upward-closed set U , Algorithm 5.1
terminates and answers ‘Reachable’ iff U ∩ Reach (S) 6= ∅.

Algorithm 5.1: A simple fixed-point algorithm to decide the coverability prob-
lem on finite WSTS.
Data: A WSTS S =

〈
C, c0,⇒,≤

〉

Data: A (finite) generator UGen (U) of a ≤-upward-closed U ⊆ C

Result: Reachable iff U ∩ Reach (S) 6= ∅
X0 ← {c0} ;
i← 0 ;
repeat

i← i + 1 ;
Xi ← Post (Xi−1) ∪ {c0} ;

until Xi = Xi−1 ;
if ∃c ∈ U, c′ ∈ Xi : c≤c′ then return ‘Reachable’ ;
else return ‘Unreachable’ ;

Let us show how this algorithm can be improved by keeping sets of ≤-maximal
elements only. First, remember that, by Proposition 3.3, the covering set Cover (S) =
↓(Reach (S)) is suitable to decide the coverability problem, because Reach (S) ∩U = ∅
iff Cover (S) ∩ U = ∅. Since S is finite, Cover (S) is finite too, because Cover (S) ⊆ C,

by definition. Hence, by Lemma 2.10, it is representable by Max≤ (Cover (S)).

The idea of our improved algorithm consists in building a sequence of ≤-downward-
closed sets that eventually converges to Cover (S). Each downward-closed set is rep-
resented by a set of ≤–maximal elements. Thus, in practice, the algorithm com-
putes the sequence, X0, X1, . . .Xn (defined hereunder) of subsets of C s.t. for any i,
↓(Xi) = ↓

(
X i

)
. Each set X i is obtained from X i−1 by computing the Post operation

and keeping ≤-maximal elements only. Since the sets of maximal elements are typi-
cally smaller than the sets they represent, the practical performance of the algorithm
is improved (see Section 5.4.5 and Section 5.5.5). This is the definition of the new
sequence:

Definition 5.5 (The FinCovMax sequence) Let S =
〈
C, c0,⇒,≤

〉
be a WSTS.

Then, FinCovMax (S) is the sequence X0, X1, . . . , Xi, . . . defined as follows:

1. X0 = {c0};

2. for any i ≥ 1: X i+1 = Max≤
(
Post

(
Xi

)
∪ {c0}

)
. �

136 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Let us show that FinCovMax (S) corresponds to FinCov (S) as far as the downward-
closure is concerned. We first prove the following auxiliary Lemma:

Lemma 5.3 Let S =
〈
C, c0,⇒,≤

〉
be a WSTS and let A ⊆ C and B ⊆ C be s.t.

↓(A) = ↓(B). Then ↓(Post (A)) = ↓(Post (B)).

Proof. Let a be an element of A since ↓(A) = ↓(B), there exists b ∈ B s.t. a≤b. By
monotony of WSTS, for any a′ ∈ Post (a), there exists b′ ∈ Post (b) s.t. a′≤b′. Hence
↓(Post (A)) ⊆ ↓(Post (B)). By a symmetrical reasoning, we prove that ↓(Post (B)) ⊆
↓(Post (A)). Hence, ↓(Post (A)) = ↓(Post (B)). �

We can now show the correctness and adequacy of FinCovMax (S):

Proposition 5.4 For any WSTS S =
〈
C, c0,⇒,≤

〉
s.t.:

FinCov (S) = X0, X1, . . . , Xi, . . .

and
FinCovMax (S) = X0, X1, . . . , X i, . . .

the following holds:
∀i ≥ 1 : ↓(Xi) = ↓

(
X i

)

Proof. The proof is by induction on i.

Base case i = 0: trivial.

Inductive case i = k + 1: by induction hypothesis ↓(Xk) = ↓
(
Xk

)
. Thus:

↓(Xk) = ↓
(
Xk

)

⇒ ↓(Post (Xk)) = ↓
(
Post

(
Xk

))
by Lemma 5.3

⇒ ↓(Post (Xk)) ∪ ↓({c0}) = ↓
(
Post

(
Xk

))
∪ ↓({c0})

⇒ ↓(Post (Xk) ∪ {c0}) = ↓
(
Post

(
Xk

)
∪ {c0}

)

⇒ ↓(Post (Xk) ∪ {c0}) = ↓
(
Max≤

(
Post

(
Xk

)
∪ {c0}

))
Def. of Max

⇒ ↓(Xk+1) = ↓
(
Xk+1

)

�

Thus, Algorithm 5.1 can be improved in practice by keeping maximal elements only
during the computation. This amounts to replace the line:

Xi ← Post (Xi−1) ∪ {c0}

by:
Xi ← Max≤ (Post (Xi−1) ∪ {c0})

in Algorithm 5.1. As we will see in the following sections, this solution improves the
practical efficiency of EEC.

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 137

5.4 Application to strongly monotonic SMPN

This section shows how the EEC algorithmic schema can be instantiated to the class
of strongly monotonic SMPN. First of all, we rely on the adequate domain of limits
〈L, 4e, γ〉 for

〈
Nk, 4

〉
that has been defined in section 3.1.1 (see Theorem 3.1). Then,

remember that the extension of the transition relation, defined in Section 3.1.1, is exact
(in the sense of Proposition 3.2). As a consequence, we show in Section 5.4.1, that we
have an effective domain of limits. Then we define in Section 5.4.2 the sets Ci’s and
Li’s that EEC may consider to build the under– and over–approximations. It turns out
that in the case of SMPN, And-Or graphs are degenerated. Thus, under– and over–
approximations can be represented by finite WSTS, whose coverability problem can
be decided efficiently thanks to the algorithm of Section 5.3. In Section 5.4.3, we rely
on all these results to instantiate the EEC algorithmic schema to the case of strongly
monotonic SMPN.

5.4.1 Domain of limits

Thanks to the discussion of the previous section, we can show that our domain of limits
〈L, 4e, γ〉 meets the effectiveness requirement of Definition 4.1.

Theorem 5.1 Any 4-strongly monotonic SMPN N with the adequate domain of limits
〈L, 4e, γ〉 are effective.

Proof. Points E1, E2 and E4 are obvious. E3 stems from the fact that Post (γ(m)) ⊆
γ(M) iff for any m′ with m →m′, there exists m′′ ∈M with m′ 4e m′′, by Lemma 3.2
(remark that there are finitely many m′ s.t. m → m′). �

5.4.2 Construction of the Ci’s and Li’s

The following definition explains how we construct the Ci’s and Li’s.

Definition 5.6 (Sequences of Ci and Li for SMPN) For any i ≥ 0:

• Ci = {0, . . . , i}k∪{m0}, i.e. Ci is the set of markings where each place is bounded
by i (plus the initial marking);

• Li = {m ∈ {0, . . . i, ω}k | m 6∈ Nk}, i.e., Li is the set of all the ω-markings m
s.t. there is p ∈ P with m(p) = ω, and all the places p′ s.t. m(p′) 6= ω contain
at most i tokens. �

It is easy to see that:

138 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

1. for all i ≥ 0 : Ci ⊂ Ci+1 and Li ⊂ Li+1;

2. for any m ∈ Nk, there exists i ∈ N such that for all j ≥ i : m ∈ Cj ;

3. for any m ∈ L, there exists i ∈ N such that for all j ≥ i : m ∈ Lj ;

4. m0 ∈ C0;

5. ⊤ = 〈ω, . . . , ω〉 ∈ L0.

Degenerated And-Or graph Let us show that in the present case, one obtains
a degenerated And-Or graph. We establish this result by showing, following Lemma
4.1, that the pairs 〈Ci, Li〉 are perfect pairs. For this purpose, we first introduce the
function Bound (m, k) and establish an auxiliary lemma about this function. Given an

ω-marking m over set of places P and k ∈ N, we define Bound (m, k) :
(
N ∪ {ω}

)|P | ×
N 7→

(
N ∪ {ω}

)|P |
as follows:

∀pi ∈ P : Bound (m, k) (pi) =

{
m(pi) if m(pi) ≤ k

ω otherwise

Given that definition, it should be clear, that, for any ω-marking m, m 4e Bound (m, i).
Moreover,

{
Bound (m, i)

}
is the most precise subset of Li ∪Ci to over-approximate of

m, as shown by the following Lemma:

Lemma 5.4 Given any i ∈ N, let Ci and Li be constructed following Definition 5.6
and let m be an ω-marking. There does not exist a finite set S ⊆ Li ∪ Ci such that
γ(m) ⊆ γ(S) and γ(Bound (m, i)) 6⊆ γ(S).

Proof. Per absurdum. Let us assume there exists S ⊆ Li ∪ Ci s.t. γ (m) ⊆ γ (S) and
γ (Bound (m, i)) 6⊆ γ (S). Remark that S is finite since Li ∪ Ci is finite by hypothesis.
Since γ (m) ⊆ γ (S), there is m′ ∈ S s.t. γ (m) ⊆ γ (m′), by Proposition 3.1. More-
over, m′ ∈ Li ∪ Ci, because S ⊆ Li ∪ Ci. Let us show that γ (Bound (m, i)) ⊆ γ (m′).
For that purpose, we show that, for any place p, Bound (m, i) (p) ≤ m′(p). First, ob-
serve that, since γ (m) ⊆ γ (m′), we have m(p) ≤m′(p), for any place p, by definition
of γ. Then, we consider several cases:

1. If m(p) = ω, then, m′(p) = ω because m′(p) ≥ m(p). On the other hand, by
definition, Bound (m, i) (p) = ω. Hence, Bound (m, i) (p) = m′(p).

2. If i + 1 ≤ m(p) < ω, then, m′(p) = ω, because, m′(p) ≥ m(p) and m′(p) ∈
{1, 2, . . . , i, ω}, since m′ ∈ Li ∪Ci. Moreover, Bound (m, i) (p) = ω by definition.
Hence, Bound (m, i) (p) = m′(p).

3. If 0 ≤ m(p) ≤ i, then Bound (m, i) (p) = m(p). Hence, Bound (m, i) (p) =
m(p) ≤m′(p).

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 139

In any case, Bound (m, i) (p) ≤ m′(p). Since this holds for any place p, we have
Bound (m, i) 4e m′. Since m′ ∈ S, we conclude that γ (Bound (m, i)) ⊆ γ (S). Con-
tradiction. �

Let us now extend the definition of Bound to sets of ω-markings. For any i ≥ 1,
for any S ⊆ (N ∪ {ω})|P |, Bound (S, i) = {Bound (m, i) | m ∈ S}. As a consequence
of Lemma 5.4, we obtain the following lemma, that states that γ (Bound (D, i)) is the
most precise downward-closed set of markings that is representable in Li∪Ci and that
covers D.

Lemma 5.5 Given any i ∈ N, let Ci and Li be constructed following Definition 5.6.
Let D be a finite set of ω-markings. Then:

1. γ (D) ⊆ γ (Bound (D, i)) and

2. there is no S ⊆ Li ∪ Ci s.t. γ (D) ⊆ γ (S) and γ (Bound (D, i)) 6⊆ γ (S).

Proof. If D = ∅, then Bound (D, i) = ∅ for any i ≥ 1 and the Lemma is trivial.
Otherwise, we prove the two points separately.

γ (D) ⊆ γ (Bound (D, i)) follows from the fact that, for any m ∈ D, Bound (m, i) ∈
Bound (D, i) (by definition of Bound on sets of ω-markings) and m 4e Bound (m, i)
(by definition of Bound on ω-markings).

Let S be a subset of Li ∪Ci and let us establish that γ (Bound (D, i)) ⊆ γ (S). Let
S ′ ⊆ S be the set of all the ω-markings of S that cover some ω-marking of D, i.e.,
S ′ = {m ∈ S | ∃m′ ∈ D : m′ 4e m}. Since S and D are both subsets of Li ∪ Ci

and since D 6= ∅, we have S ′ 6= ∅. Since S ′ ⊆ S, we have γ (S ′) ⊆ γ (S). Let m
be a marking of S ′ and let m′ be a marking of D s.t. m′ 4e m. By Lemma 5.4,
we have m′ 4e Bound (m′, i) 4e m, since m ∈ S ′ ⊆ Li ∪ ci. Since this holds for
any m ∈ S ′, we have ⊆ γ (∪m∈DBound (m, i)) = γ (Bound (D, i)) ⊆ γ (S ′). Hence,
γ (Bound (D, i)) ⊆ γ (S). �

We can now prove that the pairs 〈Ci, Li〉 constructed according to Definition 5.6
are perfect pairs.

Lemma 5.6 Given a SMPN N = 〈P, T, D−, D+〉 with the adequate domain of limits
〈L, 4e, γ〉 and the sets Ci ⊆ N|P | and Li ⊆ L constructed following Definition 5.6, any
pair 〈Ci, Li〉 is a perfect pair.

Proof. According to Definition 4.6, we have to show that, for any m ∈ Li ∪ Ci, there
exists one and only one canonical set D ⊆ Ci ∪ Li s.t.

1. Post (γ (m)) ⊆ γ (D) and

140 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

2. there is no S ⊆ Li ∪ Ci with Post (γ (m)) ⊆ γ (S) ⊂ γ (D).

First, remark that 4e is an antisymmetric WQO. This follows from the fact that
the definition of 4e is based on ≤ (extended to N ∪ {ω}), which is antisymmetric.

Let us first show that there exists at least one canonical set D ⊆ Li ∪ Ci that
respects the two points of the definition of perfect pair (the unicity will be established
later). For that purpose, we choose D = Max4e (Bound (Post (m) , i)). Remark that
D is canonical by Lemma 2.3 because 4e is antisymmetric, and we keep 4e-maximal
elements only in D.

Let us establish the first point of the definition of perfect pairs, i.e., Post (γ (m)) ⊆
γ (D). By definition of Bound and Max4e , for any m′ in Post (m), there is m′′ ∈ D

s.t. m′ 4e m′′. Let m be a marking of Post (γ (m)) (remark that m necessarily a
marking, since γ (m) is a set of markings only). By Proposition 3.2 (the extension of
the transition relation to ω-marking is exact), this means that there is an ω-marking
m′ ∈ Post (m) s.t. m 4e m′. Thus, there is m′′ ∈ D s.t. m 4e m′′. Since this holds
for any marking m ∈ Post (γ (m)), we conclude that Post (γ (m)) ⊆ γ (D).

Then, in order to establish the second point of the definition of perfect pairs, we
consider S ⊆ Li ∪ Ci s.t. Post (γ (m)) ⊆ γ (S), and show that γ (D) ⊆ γ (S). Remark
that Post (γ (m)) ⊆ N|P |, because γ (m) ⊆ N|P |. Moreover, γ (S) is a downward-
closed set of N|P | too, by definition of γ. Hence, Post (γ (m)) ⊆ γ (S) implies that
γ (Post (γ (m))) ⊆ γ (S). Since S ⊆ Li ∪ Ci and γ (Post (γ (m))) ⊆ γ (S), we have
γ (Bound (Post (γ (m)) , i)) ⊆ γ (S), by Lemma 5.5. However, for any set S ′, we have:
γ
(
Max4e (S ′)

)
= γ (S ′), by definition of γ. Hence:

γ (Bound (Post (γ (m)) , i)) = γ
(
Max4e (Bound (Post (γ (m)) , i))

)
= γ (D)

and we conclude that γ (D) ⊆ γ (S).

Thus, γ (D) is a most precise downward-closed set of markings that is representable
by elements of Li∪Ci and that covers Post (γ (d)). Let us conclude the proof by showing
that D is the sole canonical representation (in Li ∪ Ci) of γ (D) . That part is per
absurdum and relies on the fact that 4e is antisymmetric. Let us assume that there is
D′ ⊆ Li ∪ Ci s.t. D′ 6= D, D′ is canonical and γ (D) = γ (D′). Since D′ 6= D, there
is, without loss of generality, m ∈ D \ D′. Since γ (D) = γ (D′), there is m′ ∈ D′

s.t. m 4e m′. Since m 6∈ D′, we have m 6= m′. Hence, m ≺e m′ because 4e is
antisymmetric. Since γ (D) = γ (D′), again, there is m′′ ∈ D s.t. m 4e m′′. We
conclude that there are m and m′′ in D s.t. m ≺e m′′. Hence, D is not canonical.
Contradiction.

�

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 141

From Lemma 5.6 and Lemma 4.1, the following corollary holds:

Corollary 5.3 Given a 4-strongly monotonic SMPN net N with the adequate domain
of limits 〈L, 4e, γ〉 and the sets Ci ⊆ NkP and Li ⊆ L constructed following Definition
5.6, Over (N , Ci, Li) is a degenerated And-Or graph.

This result makes the task of building under– and over–approximation much easier,
since the bound function provides a way to directly compute the unique and most
precise over-approximation of any ω-marking.

5.4.3 Algorithm for the coverability problem

Let C0, C1, . . . , Ci, . . . and L0, L1, . . . , Li, . . . be the sequences of sets of configurations
and limit elements defined at Definition 5.6. By applying the schema presented in
Section 4.3 to 4-strongly monotonic self-modifying Petri nets, we obtain Algorithm 5.2.

Algorithm 5.2: A forward algorithm to decide the coverability problem on
SMPN.
Data: N , a 4-strongly monotonic self-modifying Petri system
Data: GU , the set of minimal element of the 4-upward-closed set U .
begin

i← 1;
while (true) do

if Reach (Under (N , Ci)) ∩ U 6= ∅ then
return ‘Reachable’ ;

else if γ (Reach (OverWSTS (N , Ci, Li))) ∩ U = ∅ then
return ‘Unreachable’ ;

i← i + 1 ;

end

In this algorithm we have confused the SMPN N with its corresponding WSTS

SN . The reachability of U during the ‘Expand’ phase can be efficiently decided by
considering the lossy version of N , and using the algorithm of Section 5.3. Since we
have shown in Corollary 5.3 that we have perfect pairs in the case of SMPN, we can
consider again OverWSTS (S, Ci, Li) instead of Over (S, Ci, Li) during the ‘Enlarge’
phase, and use the efficient algorithm of Section 5.3 in this case too.

Remark that this algorithm is incremental: Reach (Under (N , Ci+1)) can be com-
puted by extending Reach (Under (N , Ci)) for all i ≥ 0. Similarly, one can construct
Reach (OverWSTS (N , Ci, Li)) from Reach (Under (N , Ci)).

142 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

As a consequence, we immediately obtain:

Theorem 5.2 For any strongly monotonic SMPN N and any upward-closed set U of
markings of N , Algorithm 5.2 returns ‘Reachable’ if Reach (N)∩U 6= ∅, ‘Unreachable’
otherwise.

5.4.4 Handling EPN

We have purposely defined our algorithm to solve the coverability problem on the class
of strongly monotonic SMPN. Let us show that this choice is not restrictive.

Handling PN We have seen in Section 2.3.3 that the class PN is a syntactic subclass
of the class of strongly monotonic SMPN. Thus, we can directly apply our algorithm
to PN.

Handling PN+T and PN+R We have seen in Section 2.3.3 that not every PN+T

or PN+R is an SMPN. However, for any PN+T N and any upward-closed set U of
markings of N , it is not difficult to build, in polynomial time, an SMPN N ′ and an
upward-closed set U ′ of markings of N ′ s.t. Reach (N)∩U = ∅ iff Reach (N ′)∩U ′ = ∅.

The set of places of N ′ is P ′ = P ⊎ {plock} ⊎ {pt | t ∈ Te}, where Te is the set
of extended transitions of N . Initially, plock contains one token and all the places of
the form pt are empty. Let f be a function that associates to each place p of N ′

its ordinal in P ′. That is, if P ′ = {p1, . . . pk}, and p is a place of that set, then
p = pf(i). Let g be a similar function for the transitions. Then, for any regular
transition t = 〈I, O,⊥,⊥, 0〉 ∈ Tr of N , we create a transition t′ in N ′ that satisfies
the following constraints, for any p ∈ P ′:

D−
g(t′)f(p)(m) =






I(p) if p ∈ P

1 if p = plock

0 otherwise

D+
g(t′)f(p)(m) =






O(p) if p ∈ P

1 if p = plock

0 otherwise

That is, t′ has the same effect as t on the places of P . Moreover, a token has to be
present in plock in order to enable t′. The places in {pt | t ∈ Te} are not affected by t′.

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 143

Symmetrically, for each extended transition t = 〈I, O, s, d, +∞〉 of N , we create in
N ′ two transitions t1 and t2 as follows. For any p ∈ P ′ we have:

D−
g(t1)f(p)(m) =






I(p) if p ∈ P

1 if p = plock

0 otherwise

D+
g(t1)f(p)(m) =






O(p) if p ∈ P \ {s, d}
1 if p = pt

0 otherwise

D−
g(t2)f(p)(m) =






m(s) if p = s

1 if p = pt

0 otherwise

D+
g(t2)f(p)(m) =






O(s) if p = s

m(s) + O(d) if p = d

1 if p = plock

0 otherwise

The construction is illustrated in Figure 5.3. The intuition of the construction is
as follows. We split the effect of the transition t ∈ Te in two parts that are realised
by the two transitions t1 and t2. This allows us to ensure that t1 and t2 respect the
syntax of SMPN. Roughly speaking t1 takes care of the constant effect of t on all the
places p ∈ P \ {s, d}. As far as s and d are concerned, t1 also consumes the constant
amount of tokens that t consumes, but does not create any token. Then, t2 transfers
all the remaining tokens from s to d and creates in s and d the constant amount of
tokens that t creates.

Remark that the firing of t1 inhibits all the other transitions of the net, except t2

(because t1 consumes the token in plock). This allows us to guarantee that these two
transitions will always be fired sequentially.

Moreover, it is not difficult to see that N ′ is strongly monotonic, according to
Lemma 2.13.

Let us finish this sketch of the construction by showing how to adapt U . We let:

U ′ = {m |m(plock) ≥ 1 ∧ ∃m′ ∈ U : ∀p ∈ P : m(p) = m′(p)}

Remark that we impose no restriction on the places outside P ∪ {plock}. Hence, that
set is upward-closed. It is not difficult to see that (proof omitted):

Lemma 5.7 Let N be a PN+T, let U be an upward-closed set of markings of N , and
let N ′ and U ′ be respectively the strongly monotonic SMPN and the upward-closed set
of markings obtained from N and U . Then, Reach (N)∩U = ∅ iff Reach (N ′)∩U = ∅.

144 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

p1 p′1

pn p′m

s d

t

x y

x′ y′

...
...

pt

•
plock

p1 pn

p′1 p′n

s

d

t1 t2

x

y′

x′

m(s)

m(s) + y

· · ·

· · ·

Figure 5.3: An example of translation of a PN+T extended transition t into two SMPN

transitions t1 and t2.

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 145

Since every PN+R is a PN+T, the same holds for PN+R.

Remark that, according to Section 2.3.3, all the PN+T and all the PN+R whose
extended transitions t = 〈I, O, s, d, b〉 respect O(d) ≥ I(s) are strongly monotonic
SMPN too. This includes the ‘Petri nets with transfer arcs’ and the ‘Petri nets with
reset arcs’, as defined, for instance, by Ciardo in [Cia94]. Hence, for these PN+T and
PN+R, the above construction is not necessary.

Handling PN+NBA As stated in Section 2.3.3, the class PN+NBA is not a syn-
tactic subclass of that of strongly monotonic SMPN. However, for any PN+NBA

N = 〈P, T,m0〉 and any upward–closed set U of markings of N , we can again build,
in polynomial time, a PN+R N = 〈P ′, T ′,m′

0〉 and an upward–closed set U ′ s.t.
Reach (N) ∩ U = ∅ iff Reach (N ′) ∩ U ′ = ∅.

Let us consider the partition of T into Te and Tr as defined in Definition 2.22, and
a new place pTr (the trashcan place). We now show how to build N ′ = 〈P ′, T ′, Σ,m′

0〉.
First, P ′ = P ⊎ {pTr}. For each transition t = 〈I, O, s, d, 1〉 in Te, we put in T ′ two
new transitions t=0 = 〈I, O, s, pTr, +∞〉 and t6=0 〈Ie, Oe,⊥,⊥, 0〉, such that:

∀p ∈ P : Ie(p) =

{
I(p) if p 6= s

I(p) + 1 otherwise

∀p ∈ P : Oe(p) =

{
O(p) if p 6= s

O(p) + 1 otherwise

We also add into T ′ all the transitions t = 〈I, O,⊥,⊥, 0〉 of Tr (remark that, since
pTr 6∈ P , this implies that these transitions have no effect on pTr). Finally, ∀p ∈ P :
m′

0(p) = m0(p) and m′
0(pTr) = 0. Figure 5.4 illustrates the construction.

The intuition behind this construction is as follows. Let t = 〈I, O, s, d, 1〉 be a
transition of N bearing a non-blocking arc. Let m be a marking of N . In the case
where m(s) = I(s), the non-blocking arc t has no effect, because I(s) tokens are
removed from s, which empties s, before the non-blocking arc exerts its effect. Hence,
in this case, firing transition t=0 has exactly the same effect than firing t. On the other
hand, if m(s) > I(s), the non-blocking arc will move one token from s to d. Thus,
the transition actually removes I(s) + 1 tokens from s and creates O(d) + 1 tokens in
d. This is exactly what t6=0 does. Thus, in any case, we can always choose the right
transition of N ′ to obtain the same effect as in N .

The difference between t and the pair t=0, t6=0 is that t=0 can fire even when m(s) >

I(s), whereas t6=0 should be fired in order to obtain the same effect. However, this is
not problematic from the coverability point of view: in the case where t=0 is fired with
m(s) > I(s), the marking we obtain is smaller (on the places of P) than the marking
we would have obtained by firing t6=0.

Remark that N ′ is indeed a PN+R because none of its transitions consume tokens
from ptR, and each of its transitions is either a regular transition (from N), or an

146 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

p1 p′1

pn p′m

s d

t

x y

x′ y′

...
...

p1 p′1

pn p′m

s d
pTr

t=0

y

x′

x
y′

...
...

p1 p′1

pn p′m

s d

t6=0

x + 1 y + 1
x′ y′

...
...

Figure 5.4: An example of translation of a PN+NBA extended transition t into a PN+R

extended transition. Remark that the places p1, . . . , pn, p′1, . . . , p
′
m, s and d are the same

for the two transitions at the bottom of the figure. They have been represented twice
for the sake of clarity.

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 147

extended transition that transfers all the tokens to pTr (from which they can never
escape).

To prove that this construction is correct, we need the following definitions and
notations:

• Let m1 and m2 be two markings on some set of places P ′ and let P ⊆ P . Then,
m1 4P m2 iff for any p ∈ P : m1(p) ≤ m2(p). We define accordingly =P , ≺P ,
<P and ≻P .

• In order to establish a correspondence between the sequences of transitions of N
and those of N ′, we define two functions f and g as follows.

1. f : T × N|P | → T ′ is the function such that ∀t ∈ Tr : f(t,m) = t and
∀t = 〈O, I, s, d, 1〉 ∈ Te : f(t,m) = t6=0, if m(s) > I(s) and f(t,m) = t=0,
otherwise. Remark that in the case where f(t,m) = t6=0, we are ensured
that the non-blocking arc of t will actually have an effect, because there will
be at least one token in s after I(s) tokens have been removed from this
place.

2. g : T ′ → T is the function such that for all t ∈ Tr: g(t) = t and for all
t ∈ Te : g(t6=0) = g(t=0) = t.

Then, we can establish the two following lemmata2

Lemma 5.8 Let N = 〈P, T,m0〉 be a PN+NBA and let N ′ = 〈P ′, T ′,m′
0〉 be the

PN+R obtained from N . Let σ = τ1τ2 . . . τn be a firable sequence of transitions of N .
Let m1,m2, . . . ,mn be the markings s.t.

m0
τ1−→ m1

τ2−→ m2 . . .mn−1
τn−→mn

Let σ′ = τ ′
1τ

′
2 . . . τ ′

n be the sequence of transitions of N ′ s.t. for any 1 ≤ i ≤ n:

τ ′
i = f(τi,mi). Then, m′

0
σ′

−→m′
n implies that m′

n =P mn.

Proof. By definition of σ′ and function f , we always choose the right transition τ ′
i that

has exactly the same effect than the transition τi on the places of P (and does not
modify pTr). �

Lemma 5.9 Let N = 〈P, T,m0〉 be a PN+NBA and let N ′ = 〈P ′, T ′,m′
0〉 be the

PN+R obtained from N . Let σ′ = τ ′
1τ

′
2 . . . τ ′

n be a sequence of transitions of N ′ s.t.

m′
0

σ′

−→ m′. Let σ = g(τ ′
1)g(τ ′

2) . . . g(τ ′
n) be the corresponding sequence of transitions of

N . Then, m0
σ−→m with m′ 4P m.

2These results may seem too general to prove that the coverability set of N is equal to that of
N ′. We have chosen to proceed this way because we will reuse these results later in Chapter 7 and
Chapter 8.

148 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Proof. Let σ′ = τ ′
1τ

′
2 . . . τ ′

n be a firable sequence of transitions ofN ′. Let m′
1,m

′
2, . . . ,m

′
n

be the markings ofN ′ s.t. m′
0

τ ′
1−→ m′

1

τ ′
2−→ . . .

τ ′
n−→m′

n. Symmetrically, let m1,m2, . . . ,mn

be the markings of N such that m0
g(τ ′

1)−−−→ m1
g(τ ′

2)−−−→ . . .
g(τ ′

n)−−−→ mn. We prove that σ is
indeed a firable sequence of N and has the right property by showing, by induction on
j, that m′

j 4P mj for all 0 ≤ j ≤ n.

• Base case: j = 0. Trivial

• Inductive case: j = k + 1. By induction hypothesis, m′
k 4P mk. Let us

consider g(τ ′
k+1). If g(τ ′

k+1) ∈ Tr, then, g(τ ′
k+1) and τ ′

k+1 both have the same
effect on the places of P . Hence, by monotonicity, g(τ ′

k+1) is firable from mk and
m′

k+1 4P mk+1. Otherwise, let us assume that g(τ ′
k+1) = t = 〈I, O, s, d, 1〉 ∈ Te.

Then, τ ′
k+1 is either t=0 or t6=0. In both cases, the definition of t=0 and t6=0 ensures

that m′
k(s) ≥ I(s). Hence, mk(s) ≥ I(s). Since the number of tokens that are

consumed by t, t=0 and t6=0 is the same on the other places, we are ensured that
t is firable from mk.

– In the case where τ ′
k+1 = t=0, we have m′

k+1(s) = O(s), and, for any place
p ∈ P : m′

k+1(p) = m′
k(p) − O(p) + I(p). By definition of t, we have

mk+1(s) ≥ O(s) (whether the non-blocking arc has an effect or not). As far
as mk+1(d) is concerned, we have either mk+1(d) = mk(d) + O(d)− I(d) or
mk+1(d) = mk(d) + O(d) − I(d) + 1, depending on the effect of the non-
blocking arc. Hence, mk+1(d) ≥ mk(d)+O(d)− I(d). Finally, for any place
p ∈ P \ {s, d}: mk+1(p) = mk(p)− O(p) + I(p). Hence, m′

k+1 4P mk+1.

– In the case where τ ′
k+1 = t6=0, we have m′

k(s) ≥ I(s) + 1, by definition of
τ ′
k+1. Hence, mk(s) ≥ I(s)+1. Thus, the non-blocking arc of g(τ ′

k+1) has an
effect this transition consumes I(s) + 1 tokens in s, and produces O(s) + 1
tokens in d. Hence, g(τ ′

k+1) and τ ′
k+1 both have the same effect on the places

of P , and we have m′
k+1 4P mk+1 by monotonicity.

�

Thus, given an upward–closed set U of markings of N , we can build the upward-
closed set U ′ of markings of N ′ as follows:

U ′ = {m′ | ∃m ∈ U : m =P m′}

In this case, and thanks to Lemma 5.8 and Lemma 5.9, we obtain:

Corollary 5.4 Let N = 〈P, T,m0〉 and U be an PN+NBA and an upward–closed set
of markings of N . Let N ′ = 〈P ⊎ {pTr}, T ′,m′

0〉 and U ′ be respectively the PN+R

obtained from N and the upward–closed set of markings of N ′ obtained from U . Then,
Cover (N) ∩ U = ∅ iff Cover (N ′) ∩ U ′ = ∅.

5.4. APPLICATION TO STRONGLY MONOTONIC SMPN 149

Since any PN+R is also a PN+T, it can be associated to a strongly monotonic SMPN

that has corresponding coverability properties. Hence, we obtain a procedure to turn
any PN+NBA into a corresponding strongly monotonic SMPN on which EEC can be
applied.

Finally, let us mention that for Lossy Petri nets, another monotonic extension
of Petri nets [BM99], one can easily again build, in polynomial time, a correspond-
ing SMPN that has the same coverability properties (by adding transitions that non-
deterministically remove tokens from any place).

Thus, to the best of our knowledge, Algorithm 5.2 can handle any monotonic
extension of Petri nets in the literature.

5.4.5 Experimental evaluation

We have implemented the techniques described so far in a prototype for the analysis of
PN. Remark however, that theses techniques are not restricted to PN. They can also
be applied to PN+T and PN+NBA. Our simple prototype, however, does not handle
them. A more advanced prototype, that handles PN+T and PN+NBA too, has been
described in [GRVB05] and is briefly discussed hereunder. We have run the prototype
on about 12 examples from the literature. Table 5.1 reports on these results. The case
studies retained here are mainly abstractions of mutual exclusion protocols (most of
them taken from [Van03]).

When applied to these examples, the symbolic backward algorithm of [ACJT96]
does not always produce a result within the time limit of 20 minutes we have fixed
(column Pre). A heuristic presented in [DRVB01] uses place-invariants to guide the
search and improves the performance of the prototype (which has been fined tuned
during several years of research). Remark that the performances of the EEC prototype
are close to those of the backward algorithm, although the EEC prototype is still in its
infancy.

More experimental results can be found in [GRVB05]. In this paper, we describe an
efficient algorithm to decide coverability of finite WSTS that is different from that of
Section 5.3. Then, we present a prototype that implements the (accordingly improved)
EEC procedure, and that is capable of analysing EPN. As in Table 5.1, we compare
this prototype to a plain and an improved implementation of the backward algorithm.
The efficiency of this prototype on PN is similar to the one we have presented here.
On several examples of PN+T, it outperforms the backward approach: out of the 14
examples of PN+T that we consider, the plain backward approach can analyse only 9
example and the improved backward, 12 examples within the time limit. On the other
hand, EEC successfully analyses all the 14 examples.

Other tools such as Fast [BFLP03, Fas] can analyse the same examples by using
a forward procedure. Remark that these tools can handle a broader class of systems

150 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

than EEC (like systems that are not WSTS, for instance). In practice, Fast does not
always terminate on our set of examples [Fas].

5.5 Application to LCS

In this section, we show that our general algorithmic schema can be instantiated to
decide the coverability problem on LCS too. For that purpose, we need an adequate
domain of limits. Such a domain has already been introduced in Section 3.1.2. We
prove in Section 5.5.1 that this domain is effective. Then we define in Section 5.5.2
the sequences of sets Ci and Li that we shall use in our instantiation EEC to the LCS

case. In Section 5.5.3, we explain how the sets of all the most precise subsets of Li∪Ci

that over-approximate the successors of a set of configurations can be computed in an
efficient fashion. This result makes the task of constructing the And-Or graph more
efficient in practice. Then, we present in Section 5.5.4 the instantiation of EEC to the
case of LCS, and show in Section 5.5.5 that this algorithm performs well in practice.
We close the chapter on a short discussion that shows, by means of a practical example,
why And-Or graphs are necessary in the case of LCS.

5.5.1 Domain of limits

In order to apply the EEC algorithm to the case of LCS, we have to show that any
LCS C = 〈Q, q0, F, Σ, T 〉 with the adequate domain of limits (L(Σ, Q),⊑, γ) enforce
the effectiveness criteria of Definition 4.1.

Theorem 5.3 Any LCS C with the adequate domain of limits (L(Σ, Q),⊑, γ) are ef-
fective.

Proof. We establish the theorem by proving that the four properties of Definition 4.1
hold:

(E1) the sets States (C) and L(Σ, Q) are recursively enumerable. Indeed, as far as
States (C) is concerned, each configuration 〈q, W 〉 ∈ States (C) can be encoded as
word. Let us associate to every state q ∈ Q a unique character c(q) 6∈ Σ. More-
over, let # be a new character, which is not in Σ nor in {c(q) | q ∈ Q}. Then,
the encoding of c = 〈q, W 〉 is wc = c(q) ·W (f1)#W (f2) ·# ·W (f2)# · · ·#W (fn),
where F = {f1, f2, . . . fn}. Remark that {wc | c ∈ States (C)} is a (possibly
infinite) language on the finite alphabet Σ ∪ {c(q) | q ∈ Q}. Hence, it is recur-
sively enumerable. A similar technique can be applied to encode each element of
L(Σ, Q) into a word on a finite alphabet.

(E2) it is shown in [ABJ98] that the transition relation of LCS is decidable;

5
.5

.
A

P
P

L
IC

A
T

IO
N

T
O

L
C
S

151

Example EEC Pre+Inv Pre
cat. name P T Safe Time Mem Time Mem Time Mem

PN basicME 5 4
√

0 2,040 0 1,308 0 2,076
PN csm 14 13

√
0.03 2,856 0.09 2,516 0.11 2,512

PN fms 22 20
√

13.61 20,456 0 1,356 28.49 8,048
PN mesh2x2 32 32

√
0.96 5,152 0.89 2,740 0.81 2,740

PN mesh3x2 52 54
√

3.25 11,396 10.92 4,568 8.57 4,604
PN multipool 18 21

√
1.05 5,952 0 1,124 1.46 2,980

PN pncsacover 31 36 × 101.52 292,268 40.83 5,012 time out
BPN lamport 11 9

√
0.01 2,580 0.02 2,132 0.06 2,468

BPN newdekker 16 14
√

0.06 2,880 0.05 2,260 0.54 2,536
BPN newrtp 9 12

√
0 2,552 0 1,096 0.05 2,340

BPN peterson 14 12
√

0.01 2,708 0.04 2,244 0.12 2,504
BPN read-write 13 9

√
0.27 3,172 0.16 2,480 0.42 2,496

Table 5.1: Empirical evaluation of the EEC method on PN. Results obtained on Intel Xeon 3Ghz with 4Gb of memory.
cat. : category of example (PN = (unbounded) Petri net, BPN = bounded Petri net), P : number of places, T: number
of transitions. EEC : results obtained with the “Expand, Enlarge and Check” algorithm. Pre + Inv: results obtained
with a backward approach, using invariant heuristics, Pre: same without invariants. All the memory consumptions are
in KB and times in second.

152 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

(E3) it is shown in [ABJ98] how to compute an operator that returns, given c ∈
States (C)∪L(Σ, Q), c′ ∈ States (C)∪L(Σ, Q) such that γ(c′) = Post (γ(c)) (that
is, how to extend the Post operator to sre, see Lemma 3.11). By using that
operator and since ⊑ is decidable following [ABJ98], we conclude that we can
decide whether Post (γ(c)) ⊆ γ(c′) for any c, c′ ∈ States (C) ∪ L(Σ, Q);

(E4) We have discussed at the end of Section 3.1.2 how to decide whether γ(C1) ⊆
γ(C2) for any finite sets C1, C2 ⊆ States (C) ∪ L(Σ, Q).

�

5.5.2 Construction of the Ci’s and the Li’s

The following definition explains how we construct the Ci’s and Li’s in the case of LCS:

Definition 5.7 (Sequences of Ci’s and Li’s for LCS) The sequences of Ci’s and
Li’s are defined as follows:

• Ci = {〈q, W 〉 ∈ SC | q ∈ Q, ∀f ∈ F : W (f) ∈ Σ∗ and |W (f)| ≤ i};

• Li = {〈q, E〉 ∈ L(Σ, Q) | q ∈ Q, ∀f ∈ F : E(f) ∈ L(Σ)∗ and |E(f)| ≤ i}. �

That is, Ci is the set of states where the contents of the channels are words of size at
most i. Similarly, Li is the set of limits that assign sre of size of most i to channels
(plus the ⊤ element).

It is easy to see that

1. Ci ⊆ Ci+1 and Li ⊆ Li+1 for all i ≥ 0;

2. for all c ∈ States (C) there exists i ≥ 0 such that c ∈ Ci and for all ℓ ∈ L(Σ, Q)
there exists i ≥ 0 such that ℓ ∈ Li;

3. 〈q0, W0〉 ∈ C0 where ∀c ∈ C : W0(c) = ε;

4. ⊤ ∈ L0.

5.5.3 Approximation of the successors

Unlike the SMPN case, And-Or graphs built during the ‘Enlarge’ phase are in general
not degenerated when we consider LCS. Hence, the efficient algorithm of Section 5.3
cannot be applied during the ‘Enlarge’ phase in the present case. However, that phase

5.5. APPLICATION TO LCS 153

can be made more efficient in practice by improving the construction of the And-Or
graph.

According to Definition 4.5, the cornerstone in the construction of the And-Or graph
is the computation, for any Or-node v, of the set of most precise subsets of Li∪Ci that
over-approximate Post (v). Since the sets Li and Ci are always finite, this computation
is clearly feasible by enumerating all their possible subsets and keeping the most precise
ones. However, it is possible to compute these most precise approximations in a much
more direct fashion, as we show now. Notice that, following the semantics of LCS, the
Post operation can add at most one character to each channel. Hence, we only need
to be able to approximate precisely any c ∈ Li+1 ∪ Ci+1 by elements in Li ∪ Ci.

Over-approximation of an sre For that purpose, we first show, given an sre s 6= ε

and a natural number i ≥ 1 such that |s| ≤ i + 1, how to compute the most complete
and most precise set of sre (of size at most i) that over-approximate s. This is the
purpose of the Approx function:

Definition 5.8 (The Approx function) Let s = d1 · d2 · · · dn 6= ε be an sre and let
i ≥ 1 be a natural number s.t. |s| ≤ i + 1. Let L(s) be the set defined as:

L(s) =

n−1⋃

j=1






d1 · · · dj−1 · (c1 + . . . + cm)∗ · dj+2 · · · dn

s.t.
{c1, . . . , cm} = α(dj) ∪ α(dj+1)






Let M ⊆ L(s) be a set s.t. for any s′ ∈M : there is no s′′ ∈M with s′′⊑s′. Then:

Approx(s, i) =

{
{s} if |s| ≤ i

M otherwise

�

Remark in particular that Approx(ε, i) = {ε} for any i ≥ 0, since |ε| = 0. Remark
that, since we have not assumed that we manipulate normal form sre only, there can
be several sets that satisfy the definition of M . We simply assume that Approx returns
one of these sets (when |s| = i + 1). This is not problematic however, since all these
sets represent the same set of words. Moreover, this can be avoided by always using
normal form sre3.

Example 5.3 Let us consider the sre s = (a + ε) · (b + c)∗ · (a + ε) · (d + ε). In that
case, L(s) is the set: 





(a + b + c)∗ · (a + ε) · (d + ε)
(a + ε) · (a + b + c)∗ · (d + ε)
(a + ε) · (b + c)∗ · (a + d)∗






3As all the possible sets that satisfy the definition of M represent the same set of words, there is
one and only one set of sre in normal form that represents it, by Lemma 3.4.

154 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Remark that (a+b+c)∗ · (a+ε) · (d+ε) and (a+ε) · (a+b+c)∗ · (d+ε) both represent
the same set: they are both equivalent to the normal-form sre (a+ b+ c)∗ · (d+ ε). On
the other hand, (a + ε) · (b + c)∗ · (a + d)∗ represents a set that is incomparable to the
set represented by the two other sre. Hence, the set Approx(s, 3) is either:

{
(a + ε) · (a + b + c)∗ · (d + ε), (a + ε) · (b + c)∗ · (a + d)∗

}

or {
(a + b + c)∗ · (a + ε) · (d + ε), (a + ε) · (b + c)∗ · (a + d)∗

}

♦

The following proposition shows that Approx(s, i) returns a set containing the most
precise sre of length at most i that over-approximate s:

Proposition 5.5 For any sre s, for any i ∈ N s.t. |s| ≤ i + 1, for any sre s′:

[[s]] ⊆ [[s′]] and |s′| ≤ i

implies
∃s′′ ∈ Approx(s, i) : [[s′′]] ⊆ [[s′]]

Proof. First, remark that the proposition holds trivially when |s| ≤ i, because in that
case Approx(s, i) = {s}.

Then remark that, by construction, any sre in Approx(s, i) is of size i. It is not
difficult to see that any sre s′′ ∈ L(s) is s.t. [[s]] ⊆ [[s′′]]. Hence, it is also the case for
any sre s′′ ∈ Approx(s, i). Let us show that Approx(s, i) contains the most precise sre.

Let s = d1 · · · di+1 and s′ = d′
1 · · · d′

k be two sre s.t. k ≤ i and [[s]] ⊆ [[s′]]. By
Lemma 3.7, this implies that there exists a function ρ : {1 . . . i + 1} 7→ {1 . . . k} s.t.

1. for any 1 ≤ j ≤ i + 1: [[dj]] ⊆ [[d′
ρ(j)]] and

2. for any 1 ≤ j ≤ i: ρ(j) = ρ(j + 1) implies that d′
ρ(j) is a ∗–dc–re.

Since k < i + 1, there exists 1 ≤ j ≤ i s.t. ρ(j) = ρ(j + 1). Thus, d′
ρ(j) is a ∗–dc–re

with [[dj · dj+1]] ⊆ [[d′
ρ(j)]], by Lemma 3.7.

Let us show that there exists in Approx(s, i) an sre s s.t. [[s]] ⊆ [[s′]]. For that
purpose, we first consider the sre s′′ = d′′

1 · d′′
2 · · · d′′

i defined as follows:

1. for any 1 ≤ ℓ ≤ j − 1: d′′
ℓ = dℓ;

2. dj = (c1 + . . . + cm)∗ with α(dj) ∪ α(dj+1) = {c1, . . . , cm};

3. for any j + 1 ≤ ℓ ≤ i: d′′
ℓ = dℓ+1;

5.5. APPLICATION TO LCS 155

Remark that s′′ ∈ L(s) (where L(s) corresponds to Definition 5.8). Let us show that
[[s′′]] ⊆ [[s′]]. Let ρ′ be the function {1 . . . i} 7→ {1 . . . k} s.t.:

∀1 ≤ ℓ ≤ i : ρ′(ℓ) =

{
ρ(ℓ) if 1 ≤ ℓ ≤ j

ρ(ℓ + 1) if j + 1 ≤ ℓ ≤ i

Since the dc–re d′′
1 . . . d′′

j−1 and d′′
j+1, d

′′
i correspond to dc–re of s, we have: for any

1 ≤ ℓ ≤ i: ℓ 6= j implies that [[d′′
ℓ]] ⊆ [[d′

ρ′(ℓ)]]. Moreover, α(d′
ρ′(j)) = α(d′

ρ(j)) ⊇
α(dj) ∪ α(dj+1), and α(d′′

j) = α(dj) ∪ α(dj+1), by construction. Hence, since d′′
j and

d′
ρ′(j) are both ∗–dc–re, we have [[d′′

j]] ⊆ [[d′
ρ′(j)]]. We conclude that for any 1 ≤ ℓ ≤ i:

[[d′′
ℓ]] ⊆ [[d′

ρ′(ℓ)]].

Let us show that for any 1 ≤ ℓ < i: ρ′(ℓ) = ρ′(ℓ+1) implies that d′
ρ′(ℓ) is a ∗–dc–re.

We consider three cases:

1. If 1 ≤ ℓ < j, then

ρ′(ℓ) = ρ′(ℓ + 1) implies d′
ρ′(ℓ) is a ∗–dc–re.

is, by definition of ρ′, equivalent to:

ρ(ℓ) = ρ(ℓ + 1) implies d′
ρ(ℓ) is a ∗–dc–re.

which is true by definition of ρ.

2. If ℓ = j, then the implication is trivially true because d′
ρ(j) has been identified as

a ∗–dc–re.

3. If j + 1 ≤ ℓ < i, then

ρ′(ℓ) = ρ′(ℓ + 1) implies d′
ρ′(ℓ) is a ∗–dc–re.

is, by definition of ρ′, equivalent to:

ρ(ℓ + 1) = ρ(ℓ + 2) implies d′
ρ(ℓ+1) is a ∗–dc–re.

which is true by definition of ρ.

Thus, for any 1 ≤ ℓ ≤ i: [[d′′
ℓ]] ⊆ [[d′

ρ′(ℓ)]] and for any 1 ≤ ℓ < i: ρ′(ℓ) = ρ′(ℓ + 1)

implies that d′
ρ′(ℓ) is a ∗–dc–re. By Lemma 3.7, we conclude that [[s′′]] ⊆ [[s′]]. Since

s′′ ∈ L(s), and by Definition 5.8, we conclude that Approx(s, i) contains an sre s s.t.
|s| ≤ i and [[s]] ⊆ [[s′′]]. Hence the proposition. �

156 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Approximation of the successors in Li∪Ci Thanks to Proposition 5.5, it is easy
to show how to compute, for any element4 d ∈ Li+1 ∪Ci+1 the most precise subsets of
Li ∪ Ci that over-approximate d.

First, we extend the definition of Approx in order to handle limit elements, instead of
sre. Let d be an element of L(Σ, Q). In the case where d = ⊤, we let Approx(d, i) = {⊤}.
Otherwise, we assume that d = 〈q, E〉, and we define Approx(d, i) as:

Approx(d, i) = {〈q, E ′〉 | ∀f ∈ F : E ′(f) ∈ Approx(E(f), i)}

Let us show that, for any element d ∈ Li+1, Approx(d, i) is the set of the most precise
elements of Li that over-approximate d:

Lemma 5.10 Let d be an element of Li+1, and let D′ ⊆ Li be s.t. γ (d) ⊆ γ (D′).
Then, there exists d ∈ Approx(d, i) s.t. γ (d) ⊆ γ

(
d
)
⊆ γ (D′).

Proof. The proof is trivial when d = ⊤. Otherwise, we assume that d = 〈q, E〉.
Since γ (d) ⊆ γ (D′), there is d′ ∈ D′ s.t. γ (d) ⊆ γ (d′), by Lemma 3.9. In the case
where d′ = ⊤, we have γ (D′) = States (C), and we conclude immediately that there
is d ∈ Approx(d, i) s.t. γ (d) ⊆ γ

(
d
)
⊆ γ (D′) = States (C). Otherwise, let us assume

that d′ = 〈q, E ′〉 (remark that the state in d′ has to be the same than the state in d

in order to ensure that γ (d) ⊆ γ (d′)). Since γ (d) ⊆ γ (d′), we have [[E(f)]] ⊆ [[E ′(f)]]
for any channel f . Hence, by Proposition 5.5, there is, for any channel f , an sre

sf ∈ Approx(E(f), i) s.t. [[E(f)]] ⊆ [[sf]] ⊆ [[E ′(f)]]. Let d =
〈
q, E

〉
, where for any

channel f : E(f) = sf . Remark that d ∈ Li, since for any f : sf ∈ Approx(E(f), i).
Moreover, d ∈ Approx(d, i), by definition, and γ (d) ⊆ γ

(
d
)
⊆ γ (d′) ⊆ γ (D′), by

construction. �

Remark that all the elements of this set are pairwise ⊑-incomparable, by definition of
Approx (on the sre).

Thanks to that definition of Approx, one can define a PostApprox function, that,
given a limit element d ∈ Li returns the most precise downward-closed sets repre-
sentable in Li and that over-approximate Post (d).

Definition 5.9 (The PostApprox function) Given an LCS C, its associated se-
quences C0, C1, . . . , Ci, . . . and L0, L1, . . . , Li, . . ., a natural number i ≥ 1, and an
element d ∈ Lj for 1 ≤ j ≤ i:

PostApprox (d, i) =






Post (d) = {d1, d2, . . . dk}{
d′

1, d
′
2, . . . d

′
k

}
and

∀1 ≤ j ≤ k : d′
j ∈ Approx(dj , i)






�

4Remind that, by semantics of LCS, at most one character can be added by a transition to the
channel at any time. Hence, we can restrict ourselves to Li+1 ∪ Ci+1.

5.5. APPLICATION TO LCS 157

Let us show, thanks to Lemma 5.10, that PostApprox (d, i) is indeed the set we are
looking for:

Lemma 5.11 Let C = 〈Q, q0, F, Σ, T 〉 be an LCS, and let
〈
L(Σ, Q),⊑, γ

〉
be an ad-

equate domain of limits for States (C). Let us consider the sequence of sets Li built
according to Definition 5.7. Let i ≥ 1 be a natural number, and let let d be a limit
element from Lj for some 1 ≤ j ≤ i. Then, for every D ⊆ Li s.t. Post (γ (d)) ⊆ γ (D),
there exists D′ ∈ PostApprox (d, i) s.t. Post (γ (d)) ⊆ γ (D′) ⊆ γ (D).

Proof. Post (γ (d)) ⊆ γ (D) implies that, for every dj ∈ Post (γ (d)), there is d ∈ D s.t.
γ (dj) ⊆ γ

(
d
)
, by Lemma 3.9. Thus, for any dj ∈ Post (γ (d)) there is d′

j ∈ Approx(dj, i)

s.t. γ (dj) ⊆ γ
(
d′

j

)
⊆ γ

(
d
)
, by Lemma 5.10. By definition of PostApprox (d, i), the set

D′ = {d′
1, . . . d

′
k} is in PostApprox (d, i). Moreover, Post (γ (d)) ⊆ γ (D′) ⊆ γ (D), by

construction. �

It remains to show how we can over-approximate an element of c ∈ Ci. For that
purpose, we exploit the limit function (see Definition 3.5) that transforms such a con-
figuration into a limit element limit (c) that has the same denotation. We can re-use
the Approx function. For any c ∈ Ci+1, Approx(limit (c) , i) is the set of the most precise
over-approximations of c in Li ∪ Ci.

Lemma 3.10 has two important consequences. First of all, it implies that for any
i ≥ 1, for any c ∈ Cj (1 ≤ j ≤ i), the set PostApprox (limit (c) , i) contains the most
precise over-approximations of Post (c) representable in Li (Lemma 5.11). Second,
it also implies that one cannot find more precise representations of Post (d) by con-
sidering elements of Ci. That is, PostApprox (limit (c) , i) contains the most precise
over-approximations of Post (c) representable in Li ∪ Ci.

Proposition 5.6 Let C = 〈Q, q0, F, Σ, T 〉 be an LCS, with adequate domain of limits〈
L(Σ, Q),⊑, γ

〉
. Let us consider the sequence of sets Li and Ci built according to

Definition 5.7. Let i ≥ 1 be a natural number, and let let d be an element from Lj ∪Cj

for some 1 ≤ j ≤ i. Then, for every D ⊆ Li ∪Ci s.t. Post (γ (d)) ⊆ γ (D), there exists
D′ ∈ PostApprox (limit (d) , i) s.t. Post (γ (d)) ⊆ γ (D′) ⊆ γ (D).

Proof. Since γ (limit (d)) = γ (d) for every d ∈ Li∪Ci, by Lemma 3.10 and Definition 3.5
(extended to limit elements), we are ensured that for every D ⊆ Li s.t. Post (γ (d)) ⊆
γ (D), there exists D′ ∈ PostApprox (limit (d) , i) s.t. Post (γ (d)) ⊆ γ (D′) ⊆ γ (D),
by Lemma 5.11. Let us show, per absurdum that this holds for any D ⊆ Li ∪ Ci.
We assume that there exists E ⊆ Li ∪ Ci s.t. Post (γ (d)) ⊆ γ (E) and there is no
E ′ ∈ PostApprox (limit (d) , i) with γ (E ′) ⊆ γ (E). Let E = (E ∩ Li) ∪ {limit (c) | c ∈
E∩Ci}, i.e., E is obtained from E by replacing in this set all the configurations by their
corresponding limit. By Lemma 3.10, we have γ

(
E
)

= γ (E). Hence, by Lemma 5.11,

there is E
′ ∈ Approx(d, i) s.t. γ

(
E

′
)
⊆ γ

(
E
)

= γ (E). Contradiction. �

158 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Example 5.4 Let us consider an LCS C with two channels f1 and f2. For the sake
of clarity, we will represent configurations 〈q, W 〉 of C as 〈q, W (f1), W (f2)〉, and limit
elements 〈q, E〉 associated to C as 〈q, E(f1), E(f2)〉.

Let us fix i = 2 and let us consider5 ℓ = 〈q1, (a + ε) · (b + ε), (a + ε) · (d + ε)〉 ∈ Li.
Let us assume that two transitions are firable from q1. The former moves the state to
q2 and adds a c in both channels. The latter moves the state to q3, consumes a b in
channel f1 and adds an f to channel f2. Then:

Post (ℓ) = {ℓ1, ℓ2}
where:

ℓ1 = 〈q2, (a + ε) · (b + ε) · (c + ε), (a + ε) · (d + ε) · (c + ε)〉
ℓ2 = 〈q3, (a + ε), (a + ε) · (d + ε) · (f + ε)〉

Let us now apply the Approx function on the sre that make up ℓ1 and ℓ2. We obtain:

Approx((a + ε) · (b + ε) · (c + ε), i) =
{
(a + b)∗ · (c + ε), (a+ ε) · (b + c)∗

}

Approx((a + ε) · (d + ε) · (c + ε), i) =
{
(a + d)∗ · (c + ε), (a+ ε) · (d + c)∗

}

Approx((a + ε), i) = {(a + ε)}
Approx((a + ε) · (d + ε) · (f + ε), i) =

{
(a + d)∗ · (f + ε), (a+ ε) · (d + f)∗

}

As a consequence, we have Approx(ℓ1, i) = {ℓ3, ℓ4, ℓ5, ℓ6} where:

ℓ3 = 〈q2, (a + b)∗ · (c + ε), (a + d)∗ · (c + ε)〉
ℓ4 = 〈q2, (a + b)∗ · (c + ε), (a + ε) · (d + c)∗〉
ℓ5 = 〈q2, (a + ε) · (b + c)∗, (a + d)∗ · (c + ε)〉
ℓ6 = 〈q2, (a + ε) · (b + c)∗, (a + ε) · (d + c)∗〉

and Approx(ℓ2, i) = {ℓ7, ℓ8} where:

ℓ7 = 〈q3, (a + ε), (a + d)∗ · (f + ε)〉
ℓ8 = 〈q3, (a + ε), (a + ε) · (d + f)∗〉

Thus,

PostApprox (ℓ, i) =

{
{ℓ3, ℓ7}, {ℓ3, ℓ8}, {ℓ4, ℓ7}, {ℓ4, ℓ8},
{ℓ5, ℓ7}, {ℓ5, ℓ8}, {ℓ6, ℓ7}, {ℓ6, ℓ8}

}

♦

5We consider limit elements in the example since we have to transform any configuration into its
corresponding limit anyway.

5.5. APPLICATION TO LCS 159

Construction of the And-Or graph The function PostApp provides us with a
practical improvement of the construction of the And-Or graph, in the case of LCS.
Indeed, when building the successors of an Or-node n, we can restrict ourselves to the
And-nodes of PostApprox (limit (n) , i), because, by Proposition 5.6, this set contains
representative of all the most precise downward-closed sets representable in Li ∪ Ci

that over-approximate Post (n). Since that set is typically smaller than 2Ci∪Li, this
represents an improvement of the basic solution that consists in enumerating all the
possible subsets of Ci ∪ Li.

In practice, we can completely ignore elements of c ∈ Ci during the construction
of the And-Or graph and always replace them by their corresponding limit (c) ∈ Li.
This can be obtained by letting the initial node vi of the And–Or graph be limit (c0)
(instead of c0).

5.5.4 Algorithm for the coverability problem

By instantiating the EEC schema in the LCS case, we obtain Algorithm 5.3, that decides
CPWsts on LCS. As in the case of SMPN, the ‘Expand’ phase can be improved thanks
to the algorithm of Section 5.3 (remark that in the present case, C is already lossy). The
‘Enlarge’ phase can use the techniques presented in the previous section to compute
the And–Or graph in an efficient fashion.

Algorithm 5.3: A forward algorithm to decide the coverability problem on LCS.

Data: C, a LCS

Data: GU , the set of minimal element of the 4-upward-closed set U .
begin

i← 1;
while (true) do

if Reach (Under (C, Ci)) ∩ U 6= ∅ then
return ‘Reachable’ ;

else if U is avoidable in Reach (Over (N , Ci, Li)) then
return ‘Unreachable’ ;

i← i + 1 ;

end

5.5.5 Experimental evaluation

We have built a prototype to decide the coverability problem for LCS. It implements
the improvements of the ‘Expand’ and ‘Enlarge’ phases presented above. Another
improvement in the construction of the And-Or graph consists in computing only the

160 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

Case study S T C EEC

ABP 48 192 2 0.18
BRP1 480 2,460 2 0.19
BRP2 480 2,460 2 0.19
BRP3 480 2,460 2 0.35
BRP4 480 2,460 2 0.41
BRP5 640 3,370 2 0.19

Table 5.2: Empirical evaluation of the EEC method on LCS. Results obtained on Intel
Xeon 3Ghz with 4Gb of memory. S and T: number of states and transitions in the
synchronised product; C: number of channels; EEC: execution time (in second) of the
analysis of the synchronised product thanks to EEC.

states that are reachable from the initial state. Table 5.2 reports on the performance
of the prototype when applied to various examples of the literature: the Alternating
Bit Protocol (ABP), and the Bounded Retransmission Protocol (BRP), on which we
verify five different properties [AABJ04]. Table 5.2 shows that our simple prototype
performs well on these examples. All these examples have been provided to the tool
under the form of several LCS, whose synchronised product has to be computed before
the analysis (the time necessary to compute this synchronised product has not been
taken into account in the figures of the table). Columns S and T report respectively
on the number of states an number of transitions of the synchronised product.

5.5.6 Why we need And-Or graphs

Contrary to the SMPN, an And-Or graph is necessary in the case of LCS to ensure the
termination of our algorithm. Let us illustrate this thanks to the LCS of Fig. 5.5. It is
made up of one automaton and a single channel. Its set of reachable configurations is
the --downward-closure of {〈1, ε〉} ∪ {〈2, c · wab〉}, where wab can be any word made
up of an arbitrary number of a and b’s.

Let us suppose we want to prove that the number of c in the channel is always
bounded, when the LCS reaches state 2. This property holds on the LCS of Fig 5.5,
and it corresponds to showing that the --upward-closed set {c| 〈2, cc〉 - c} is not
reachable. Let us further suppose we are trying to compute an over-approximation of
the LCS for some value i ≥ 2 of the bound6. At some point, we will end up computing
the set of successors of the configuration

〈
2, c · aj · bk

〉
with |c · aj · bk| = j + k + 1 = i,

j ≥ 1 and k ≥ 0. Remark that this configuration is in Ci, but its successors are not.
Hence we need to use limit elements to represent them.

6It is easy to see that the algorithm can’t prove the safety of the system for i = 1. For this value,
the only limit that contains a, b and c is (a + b + c)∗, which is clearly too coarse.

5.6. DISCUSSION 161

Actually, two incomparable sets of limit elements can be used for this purpose:
ℓ1 =

{〈
2, (c+a)∗·(b+ε)k+1

〉
,
〈
2, (c+a)∗·(b+ε)k·(a+ε)

〉}
and ℓ2 =

{〈
2, (c+ε)·(a+b)∗

〉}
.

If we represent the over-approximation by an And-Or graph, this is not a problem, since
we can choose between ℓ1 and ℓ2, and ℓ2 allows us to prove the safety of the system
(under the hypothesis that the other branches of the unfolding are also safe). On the
other hand, if we use a plain graph, we have to guess which limit is the good one. By
choosing ℓ1, we are not able to prove the safety, which compels the algorithm to build
another graph. As stated in Section 4.3.1, one could imagine two different ways to
do this. The first solution would be to keep the same value of i, and build another
graph (in which ℓ2, for instance, will be chosen). It is not difficult to see that such a
procedure could have to build an number of graphs that is exponential in the size of
Li ∪ Ci. This solution is clearly less efficient than the PTime algorithm that explores
And-Or graphs. The other solution could be to try to refine the bound, and build a
new approximation for the value i+1. However, suppose now that the bad guess occurs
repeatedly for any i. In this case, it is not difficult to see that the algorithm will fail
to terminate and prove the safety of the system, although the system is safe !

q0 q1!c

!a

!b

Figure 5.5: A LCS with one channel: locations are represented by circles (location q0

is initial); transitions by arrows. The labels are the operations on the channel.

5.6 Discussion

In this chapter, we have shown how the (general) algorithmic schema introduced in
Chapter 4 can be turned into efficient solutions to decide coverability on classes of
WSTS that are interesting in practice: the strongly monotonic SMPN and the LCS.
Some of the optimisations that we have introduced are targeted towards a special class
of system. For instance, we have shown that the And-Or graph is degenerated in
the case of strongly monotonic SMPN, and we have provided an efficient procedure to
compute the most precise over-approximations of the successors of a LCS configuration.

The other optimisations are generic, in the sense that they can be applied to any
class of WSTS that EEC can handle. It is the case of the efficient algorithm of Sec-
tion 5.3, that can always be applied during the ‘Expand’ phase, whatever the class

162 CHAPTER 5. PRACTICAL APPLICATIONS OF EEC

of WSTS we consider. The main optimisation of this algorithm consists in keeping
maximal elements only during the exploration of the finite WSTS.

A natural question regarding the optimisation consisting in keeping maximal ele-
ments only is to know whether it could be applied to infinite-state WSTS. In the case
of these systems, acceleration techniques have to be applied in order to compute, in a
finite number of steps, representative of an infinite number of reachable configurations.
The idea of keeping maximal elements combined with acceleration techniques has been
applied by Finkel in [Fin91] to compute the coverability set of PN in an efficient fashion.
We discuss this Minimal Coverability Tree algorithm in the next chapter, and show, un-
fortunately, that it is flawed, in the sense that it can compute an under-approximation
of the coverability set.

This fact could be hint that keeping maximal elements only (in this case, maximal
ω-markings) is not a correct optimisation when dealing with infinite state systems that
require acceleration techniques. Nevertheless, one can still improve the algorithms in
the case of infinite state systems, by using the new optimisation technique that we
introduce in the next chapter.

Chapter 6

Efficient computation of the
minimal coverability set for PN

I
n the two previous chapters, we have discussed the EEC algorithm that can be used
to solve the coverability problem on a wide range of WSTS, including monotonic
extensions of Petri nets. As we have seen, EEC decides the coverability problem

without computing the coverability set: it is indeed not computable for most classes
of WSTS that are used in practice.

The most notable exception is the class PN of (plain) Petri nets for which the
coverability is computable. Having the coverability set at our disposal is interesting
per se, because it allows us to decide other problems than the coverability problem
such as (see section 2.6.1): PBEpn (place–boundedness), BoundEpn (boundedness),
QLEpn (quasi–liveness),. . .

Hence, practical algorithms to compute the coverability set of PN are needed. A
first algorithm to compute the coverability set of PN has been introduced by Karp and
Miller in [KM69] (we have reviewed it in Section 3.2.4). However, as noted by Finkel in
[Fin91], that algorithm is not efficient enough to handle Petri nets of large dimensions.
This emphasises the need for an efficient algorithm to compute the coverability set
of PN.

In the present chapter, we review two optimisations of the Karp&Miller algorithm,
found in the literature. The first one is the minimal coverability tree (MCT for short)
introduced by Finkel in [Fin91]. The latter is a variation of the former: it has been
introduced in [Lut95] and implemented in the Pep tool [Gra97a].

It is important to mention that the paper [Fin91], that introduces the MCT algo-
rithm, has been often cited in the literature since its publication. At the time we write
this thesis, the site scholar.google.com counts 49 citations of [Fin91]. In some of
these citations, such as [VBvdA01], the MCT algorithm is directly exploited as is. In
other works such as [BCR01] or [LL00], applications of ideas borrowed from the MCT

163

164 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

algorithm to other kinds of systems than PN are presented. The arguments developed
by the authors of these papers explicitly refer to the proof of [Fin91].

Unfortunately, these algorithms are both incorrect: the MCT algorithm may com-
pute an under-approximation of the coverability set, and the algorithm implemented
in Pep, and designed to correct the flaw of MCT algorithm, might not terminate. We
demonstrate these two errors by means of examples on which the algorithms fail, in
Section 6.1 and Section 6.2 respectively.

Remark that the problem uncovered in the MCT algorithm does not imply that
the results in [VBvdA01, LL00, BCR01] (the papers we were alluding to), or in other
papers citing [Fin91] are flawed (they have to be reconsidered). But it is certainly
not acceptable anymore to refer to the arguments developed in [Fin91] in the proof of
another algorithm.

The idea applied in the MCT algorithm consists, roughly speaking, in keeping
maximal markings only in the trees that are maintained during the computation. This
is achieved by the means of reduction rules that cut (supposedly) irrelevant subtrees.
The subtle mistakes we have uncovered in both algorithms tend to show that this
optimisation cannot be applied in the case of Petri nets. Remember, however, that we
have successfully drawn on the same idea in Section 5.3. Still, in this case, we were
considering finite WSTS where no acceleration techniques are needed, which is not the
case for PN in general.

As a consequence, we claim that any optimisation technique that has to be applied
in the presence of accelerations, must, in some sense, take the acceleration into account.
In the Karp&Miller procedure, the results of an acceleration is computed from a
marking and its set of ancestors in the tree. The relation ‘is an ancestor of’ is thus the
one that produces the accelerations. By considering markings isolatedly for pruning –
as does the MCT algorithm – one looses the relationships that exists between them.
Thus, accelerations can be missed because of wrong cuts in the tree.

According to these remarks, we introduce in Section 6.3.1 a new algorithm that
computes the coverability set of Petri nets in an efficient fashion. Instead of keeping
maximal sets of markings, this algorithm maintains maximal sets of pairs of markings
(wrt to an order that we introduce). This allows to relate the individual markings, and
cope with the accelerations. The compelling simplicity of the proofs should convince
the reader that this new solution avoids the mistake of its predecessors.

Remark concerning the ω-markings Throughout this chapter, we will manipu-
late markings and ω-markings to represent downward-closed sets of markings. Accord-
ing to the discussions of Section 2.2 and Section 3.1.1, we will consider the ordered set〈
N|P |, 4

〉
with its associated adequate domain of limits 〈L, 4, γ〉. Remark that in the

present case, we use the same symbol 4 to denote both the ordering ranging over N|P |

6.1. THE MINIMAL COVERABILITY TREE ALGORITHM 165

and the ordering ranging over
(
N ∪ {ω}

)|P |
(which was denoted by 4e in the previous

chapter1). This is not problematic however, since the definitions of these two orderings
are the same when considering markings only (compare Definition 2.19 with that of
4e at the beginning of Section 3.1.1). As a consequence, notice that for any Petri net
N , the covering set of N is γ (Reach (N)) = γ (Post∗ (m0)).

We also rely on the extension of the Post operator to handle ω-markings, that has
been defined in Section 3.1.1 (see in particular Proposition 3.2).

The content of this chapter is still unpublished material.

6.1 The minimal coverability tree algorithm

Let us first recall the algorithm introduced in [Fin91] to compute the coverability set
of PN in an efficient fashion. This procedure can be regarded as an optimisation of the
Karp&Miller procedure. The aim is to ensure that all the intermediate trees computed
by the algorithm are as small as possible, in the sense that all the nodes in the trees
have to be incomparable w.r.t to 4. This requirement stems from the observation
that the transitions of a Petri net are monotonic w.r.t to 4. Hence, only the maximal
ω-markings have to be kept during the construction of a coverability tree.

The principle of this optimisation consists in building a tree à la Karp&Miller and
ensuring the minimality criterion through the application of reduction rules. These
rules remove subtrees when comparable nodes are encountered. Unfortunately, as we
will show in the present section, this algorithm is flawed, because it could, in some
cases, compute a tree whose nodes do not cover the whole set of reachable markings.

This section is organised as follows: we first recall the algorithm proposed in [Fin91],
then we expose our counter-example.

6.1.1 The algorithm

Algorithm 6.1 presents the minimal coverability tree algorithm of [Fin91]. Before
discussing it, we introduce the two auxiliary functions removeSubtree and removeSub-

treeExceptRoot that will be used in the reduction rules to suppress redundant subtrees.
Given a labelled tree T and a node n of T , removeSubtree(n, T) removes the sub-
tree rooted by n from T . The function removeSubtreeExceptRoot(n, T) is similar to
removeSubtree(n, T) except that the root node n is not removed.

We can now consider Algorithm 6.1. As one can see, this algorithm is very similar
to the Karp&Miller procedure. The variable T holds the tree built by the algorithm. A

1We had chosen a different notation because we sometimes needed to explicitly make the difference
between configurations and limit elements in the EEC algorithm. This is not the case anymore here.

166 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

set to treat holds the nodes that are waiting to be processed (initially, this set contains
the root node of the labelled tree, whose label is the initial marking of the PN). The
main loop consists in picking up a node n from to treat , and processing this node. First
remark that, in the case where there is another node n of the tree that has the same
label as n, this node does not need to be developed (see line (a)). Then, the Post of
Λ (n) is computed and all the markings m ∈ Post (Λ (n)) are considered successively.
Two cases may occur:

1. Either, there exists an ancestor n of n that is labelled by an ω-marking strictly
smaller than m (see line (b)). In this case, an acceleration occurs, and the
result of the acceleration is assigned to the label of n. As a consequence, the
whole subtree of n is deleted and n is put back into to treat because it has been
modified. We also have to stop treating the successors of n, because this node
has been deleted along with the subtree of n. Hence the break statement of
line (b.1). When this statement is executed, the algorithm immediately exits the
foreach loop without considering the remaining markings in Post (Λ (n)).

2. Or there is no such ancestor, and a new node with label m has to be added as a
successor of n, under the condition that there is no node n whose label is strictly
larger than m in the tree. If such a n exists, then, it is argued that n does not
need to be present in the tree, since Λ (n) is covered by Λ (n), and since all the
successors of Λ (n) will be covered by some successors of Λ (n), by monotonicity.

After that step of processing the successors of n, to treat is updated by adding to
it the newly computed successors of n. Remark that if n has been suppressed (in the
case of an acceleration), to treat will not be updated at that point (however, the node
n that is labelled by the result of the acceleration has already been added to to treat).

At this point, we are ensured that there are no two strictly comparable ω-markings
along a branch of the tree. However, pairs of comparable nodes might remain in
the tree2, and, since the MinimalCoverabilityTree procedure aims at keeping 4-
incomparable elements only, some nodes may need to be deleted. This is the purpose
of the while loop of line (d).

6.1.2 Counter-example to the algorithm

In this section, we show, by means of an example, that Algorithm 6.1 may fail to
compute a coverability set. More precisely, we present a Petri net and show a possible
erroneous computation of the algorithm. Indeed, it is important to remark that Al-
gorithm 6.1 is non–deterministic, since no constraints are given on the order in which

2This happens for instance when a newly added successor n has a label that is larger than another
node n′ that is not an ancestor of n and was present in the tree before the insertion of n.

6.1. THE MINIMAL COVERABILITY TREE ALGORITHM 167

Algorithm 6.1: The minimal coverability tree algorithm [Fin91].

Data: A PN N = 〈P, T,m0〉.
Result: The minimal coverability set of N .
MinimalCoverabilityTree

begin
T ← 〈N, B, n0, Λ〉 where N = {n0}, B = ∅ and Λ(n0) = m0 ;
to treat ← {n0} ;
while to treat 6= ∅ do

Select some node n in to treat ;
to treat ← to treat \ {n} ;

(a) if ∄n ∈ N s.t. Λ (n) = Λ (n) then
foreach m ∈ Post (Λ (n)) do

(b) if ∃n : B∗(n, n) and Λ (n) ≺ m then
Let n be the highest node s.t. B∗(n, n) ∧ Λ (n) ≺m ;
Let A be {n′ ∈ N | B∗(n′, n)} ;
Λ (n)← Accelerate (A,m) ;
to treat ←

(
to treat \ {n′ | B∗(n, n′)}

)
∪ {n} ;

removeSubtreeExceptRoot(n, T) ;
(b.1) break ;

(c) else if ∄n ∈ N s.t. m ≺ Λ (n) then
Let n′ be a new node s.t. Λ (n′) = m ;
N ← N ∪ {n′};
to treat ← to treat ∪ {n′};
B ← B ∪ (n, n′) ;

(d) while ∃n1, n2 ∈ N : Λ (n1) ≺ Λ (n2) do
to treat ← to treat \ {n | B∗(n1, n)} ;
removeSubtree(n1, T) ;

return({Λ (n) | n ∈ T}) ;
end

168 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

•
p1

p2

p4

p5

p3

p6 p7

t1

t3

t4

t5

t6

t7

t8t2

2

Figure 6.1: A PN on which the algorithm proposed in [Fin91] may not compute the
whole coverability set. Notice that p5 is unbounded.

the nodes have to be chosen in to treat . Thus, the algorithm fails on our counter-
example for the order we present, but might compute a correct result when another
order is considered. However, we conjecture that the counter-example can be adapted
to let the algorithm fail for any given order, which would imply that one cannot fix
Algorithm 6.1 just by imposing a simple criterion on the order in which the nodes are
selected. On the contrary, when discussing the counter-example in section 6.1.3 we
will identify an important concept that is missing in the algorithm.

Let us now present the analysis of the net of Figure 6.1 by Algorithm 6.1. The
main steps of the analysis are detailed at Figure 6.2 and Figure 6.3. When a subtree
is deleted from T , its root node is drawn shaded in the figure. The thick grey arrows
on these figures are not part of the tree, and the reader should ignore them for the
moment. Their precise meaning and utility will be discussed in section 6.1.3.

It is not difficult to see that not all the reachable markings in the net of Figure 6.1
are covered by the labels of the tree (Figure 6.3(b)) obtained at the end of the algorithm.
Indeed, one cannot bound the number of tokens that any firable sequence of transitions
produces in p5. However, according to the result of the algorithm, no more than two
tokens can ever be present in p5. Let us provide more detailed comments on the main
steps of the execution:

Step 1 – Figure 6.2(a) At the first step, the three successors of the initial marking
are computed, and added to T . Then, n = 〈0, 1, 0, 0, 0, 0, 0〉 is picked up from

6.1. THE MINIMAL COVERABILITY TREE ALGORITHM 169

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉

〈0, 0, 1, 0, 0, 0, 0〉

〈0, 0, 1, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉
t1

t2

t3 · t4

t5 t7

≺

(a) Step 1.

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉

〈0, 0, 1, 0, ω, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈0, 0, 1, 0, 3, 0, 0〉
m1

t6

t4 ≺

(b) Step 2.

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉
m3

〈0, 0, 1, 0, ω, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈0, 1, 0, 0, 0, 0〉
m1

〈0, 1, 0, 0, 1, 0, 0〉
m2

t8≺

(c) Step 3.

Figure 6.2: A counter-example to the MCT algorithm. Nodes and edges in grey have
been removed. An underlined markings means that the node is still in the frontier at
the end of the step. Thick grey arrows represent the proofs.

170 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉
m3

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈0, 1, 0, 0, 0, 0〉
m1

〈0, 1, 0, 0, 1, 0, 0〉
m2

〈0, 0, 0, 1, 1, 0, 0〉
m4

〈0, 0, 1, 0, 1, 0, 0〉
t2

t3≻

(a) Step 4.

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉
m3

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈0, 1, 0, 0, 0, 0〉
m1

〈0, 1, 0, 0, 1, 0, 0〉
m2

〈0, 0, 0, 1, 1, 0, 0〉
m4

〈0, 0, 1, 0, 1, 0, 0〉

(b) The result of the algorithm.

Figure 6.3: A counter-example to the MCT algorithm (continued). Nodes and edges in
grey have been removed (or their creation has been avoided). An underlined markings
means that the node is still in the frontier at the end of the step. Thick grey arrows
represent the proofs.

6.1. THE MINIMAL COVERABILITY TREE ALGORITHM 171

to treat . Its successors are computed by firing t2 then t3 and the corresponding
branches are added to T . Remark that all the ω-markings obtained so far are
incomparable. By the firing of t4, we obtain 〈0, 0, 1, 0, 1, 0, 0〉 which is strictly
greater than its ancestor 〈0, 0, 1, 0, 0, 0, 0〉. Thus, the algorithm enters the if at
line (b). The Accelerate function returns the ω-marking 〈0, 0, 1, 0, ω, 0, 0〉 which
replaces its predecessor 〈0, 0, 1, 0, 0, 0, 0〉 and is put again into to treat .

Step 2 – Figure 6.2(b) Figure 6.2(b) shows the labelled tree obtained after the
nodes 〈0, 0, 0, 0, 0, 1, 0〉 and 〈0, 0, 0, 1, 2, 0, 0〉 have been successively picked up
from to treat and their successors have been computed. One then obtains the
marking m1 = 〈0, 0, 1, 0, 3, 0, 0〉, which is strictly smaller than 〈0, 0, 1, 0, ω, 0, 0〉.
Hence, m1 is not added as a successor of 〈0, 0, 0, 1, 2, 0, 0〉 (see line (c)).

Step 3 – Figure 6.2(c) At that point, the node 〈0, 0, 0, 0, 0, 0, 1〉 is selected and its
unique successor m2 = 〈0, 1, 0, 0, 1, 0, 0〉 is computed. m2 is strictly larger than
m3 = 〈0, 1, 0, 0, 0, 0, 0〉, but m3 is not an ancestor of m2. Hence, m2 is put into
to treat , and the subtree rooted at m3 (including the ω-marking resulting from
the acceleration) disappears from T (line (d)).

Step 4 – Figure 6.3(a) and 6.3(b) m2 is the next marking to be looked at. From
this marking, we can compute two successive successors by unrolling the branch
labelled t2 · t3. This is shown at Figure 6.3(a). We obtain m4 = 〈0, 0, 0, 1, 1, 0, 0〉
which is strictly smaller than 〈0, 0, 0, 1, 2, 0, 0〉, and does not appear in the tree
for that reason (line (c)). At that point, the set to treat is empty and the
algorithm terminates. The labelled tree T computed by the algorithm is shown
at Figure 6.3(b). However, that labelled tree is not a coverability tree because
some reachable markings are not covered by any node of this tree. Indeed, if it
were the case, we would conclude that the place p5 is bounded, which is obviously
not the case: the sequence t1 · t2 · (t3 · t4)n puts n tokens in p5 and can be fired
for any n ≥ 0.

6.1.3 Discussion of the counter-example

Let us explain more precisely the problem that occurs when Algorithm 6.1 fails to
compute a coverability set. The main idea exploited in Algorithm 6.1 is the following:
when two nodes n and n′ s.t. Λ(n) ≺ Λ(n′) are present in the tree, then, by monotonic-
ity, one can get rid of n (and its subtree). In that case, we say that n′ is a proof for n,
in the sense that n′ carries enough information to allow us to cut the subtree rooted
at n. This deletion seems acceptable because Petri nets are monotonic and because
the algorithm makes the assumption that either the subtree rooted at n′ will be fully
developed, or n′ will in turn be covered by another node n′′.

Let us now show how this reasoning may fail. For that purpose, let us refer to
Figure 6.2 and Figure 6.3, that present the flawed result of Algorithm 6.1 when it

172 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

is applied on the Petri net of Figure 6.1. On Figure 6.2 and Figure 6.3, we have
represented the notion of proof thanks to grey arrows: such an arrow going from node
n to node n′ means that n′ is a proof for n. Remark that when the subtree rooted at
m3 has been deleted (Figure 6.2(c) and 6.3(a)), we have modified the proof relation.

Now, if one considers the proof relation as well as the edges of the tree, the following
cycle appears in the result of the algorithm, shown at Figure 6.3(b) (the names of the
markings refer to those used along the steps of Figure 6.2 and Figure 6.3):

m1,m2, 〈0, 0, 1, 0, 1, 0, 0〉 ,m4, 〈0, 0, 0, 1, 2, 0, 0〉 ,m1

This cycle is problematic because, roughly speaking, the subtree rooted at m1 has not
been developed with the assumption that the subtree rooted at 〈0, 1, 0, 0, 1, 0, 0〉 would
be completely developed. This implies that the subtree of m4 must be completely
developed. However the development of that subtree has been stopped and discharged
on the full construction of the subtree rooted at 〈0, 0, 0, 1, 2, 0, 0〉. But this last subtree
contains m1. . . There is thus a cycle in the assumptions that must be satisfied in order
to ensure the construction of a proper coverability tree.

6.1.4 Remark concerning the proof of [Fin91]

Thanks to the counter-example we have just discussed, we are now able to identify
the mistake in the proof of [Fin91]. It is to be found at page 232 of the proceedings
[Roz93], in point 1.1 of the proof, that states that, for any m in Reach (N), there is a
node n in the tree built by the MCT algorithm s.t. m 4 Λ (n). That part of the proof
is done by induction on the length of the sequence of transitions that allows to reach
m from m0. The problem appears in the inductive part. The induction hypothesis

states that for any marking m′ with m0
σ′

−→ m′ and |σ′| ≤ x, there is n′ in the tree

s.t. m′ 4 Λ (n′). A marking m, a sequence σ and a transition t s.t. m0
σ−→ m′ t−→ m

with |σ · t| = x + 1 are considered. By induction hypothesis, there is n′ in the tree s.t.

m′ 4 Λ (n′). By monotonicity, t is firable from m′ and m′ t−→ m′′ with m 4 m′′. Two
cases are considered: either there is a node n′′ and an edge (n′, n′′) in the tree with
m′′ 4 Λ (n′′), or it is not the case. In the latter case, the proof states that ‘by definition
of the minimal coverability tree, there is n in the tree s.t. m′′ 4 Λ (n)’. However, the
existence of this node n is not justified any further (and we have seen that it might not
exist). Moreover, the induction hypothesis cannot be invoked at this point, because
there is no guarantee that m′′ is reachable from m0 by a sequence of length ≤ x.

6.2 The INA algorithm

As a matter of fact, the bug presented in the previous section has independently been
discovered by the team of Prof. Starke, around 1995. To the best of our knowledge,

6.2. THE INA ALGORITHM 173

however, this result has never been published, except under the form of the master’s
thesis (in German) of K. Lüttge [Lut95].

In the same work, a correction of Algorithm 6.1 is proposed. This new algorithm has
been implemented into the INA tool [INA], which is part of the PEP toolbox [Gra97a].
This corrected algorithm is ensured to return a coverability set when it terminates (for
the proof, see [Lut95]). Although the authors of [Lut95] provide a proof of termination
of their algorithm, we show that the termination is not guaranteed in general (and so,
the ‘proof’ of [Lut95] is flawed). Indeed, we provide, in this section, a counter-example
on which the algorithm does not terminate. Let us begin by recalling the algorithm.

6.2.1 The algorithm

Crudely speaking, Algorithm 6.1 fails to compute a coverability tree because it some-
times deletes too many nodes. As we have seen in the previous section, it may be the
case that a marking m is reachable, but is not kept in the tree, because it is covered by
another marking labelling a node n. Hence, when a subtree containing n is deleted, the
covering of m is not ensured anymore. The idea presented in [Lut95] tries to prevent
this. It consists in ensuring that, whenever a subtree S gets deleted, the nodes that
were covered by S remain covered by other nodes that are still in the tree. For this
purpose, the two functions removeSubtree and removeSubtreeExceptRoot, have to be
modified: after the actual deletion of the subtree, each remaining node in T but not
in to treat is considered. If one of these nodes has a successor that is not covered by
T , the successor is added to T and to treat .

More precisely, the algorithm of [Lut95] is obtained, by replacing, in Algorithm 6.1,
the calls to removeSubtree and removeSubtreeExceptRoot by two new functions re-

moveSubtreeINA and removeSubtreeExceptRootINA. The first one is shown at Algo-
rithm 6.2. It first removes from T the maximal subtree rooted at n. This is carried
out through a call to removeSubtree, as defined in section 6.1.1. Then, the function
scans all the nodes of T that are not waiting to be processed (i.e., not in to treat),
and tests whether their successors are all covered by nodes in T . If it is not the
case, a relevant node is added to T . The function removeSubtreeExceptRootINA is ob-
tained by replacing the call to RemoveSubtree by a call to RemoveSubtreeExceptRoot

in Algorithm 6.2.

6.2.2 Counter-example to the algorithm

Let us now present a counter-example that shows that the algorithm proposed in
[Lut95] may not terminate. Remark that, since this algorithm is based on Algo-
rithm 6.1, it is non-deterministic too. Our remarks regarding the non-determinism
of Algorithm 6.1 apply here too.

174 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

Algorithm 6.2: The function to remove subtrees in the algorithm of [Lut95].

removeSubtreeINA(node n, tree T = 〈N, root , B, Λ〉)
begin

removeSubtree(n, T);
foreach n′ ∈ N \ to treat do

foreach transition t firable in Λ(n′) do

let m be s.t.: Λ(n′)
t−→m;

if there is no n′′ ∈ N s.t.: m 4 Λ(n′′) then
/* A successor of n′ is not covered anymore */
let n1 be a new node with Λ(n1) = m;
N ← N ∪ {n1} ;
B ← B ∪ {(n′, n1)} ;
to treat ← to treat ∪ {n1} ;

end

•
p1

p4p2 p5

p3

p7

p6

t4t1

t2

t6

t7t5

t3

t8

Figure 6.4: A PN on which the algorithm proposed in [Lut95] may not terminate.

6.2. THE INA ALGORITHM 175

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉 〈0, 0, 0, 1, 0, 0, 0〉 〈0, 0, 0, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉

t1 t4 t6

t7

(a) Step 1

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉 〈0, 0, 0, 1, 0, 0, 0〉 〈0, 0, 0, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉〈0, 0, 0, 0, 0, 1, 1〉
t5

≻
(b) Step 2

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉 〈0, 0, 0, 1, 0, 0, 0〉 〈0, 0, 0, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉〈0, 0, 0, 0, 0, 1, 1〉
m1

〈0, 0, 1, 0, 0, 0, 0〉

〈0, 0, 0, 1, 0, 0, 1〉

t2

t3 ≻

(c) Step 3 – After the deletion of m1, 〈0, 0, 0, 0, 0, 1, 0〉 is not covered
anymore.

Figure 6.5: The counter-example to the algorithm of [Lut95]. Nodes in grey have been
deleted from the tree. An underlined markings means that the node is in the frontier.

176 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉 〈0, 0, 0, 1, 0, 0, 0〉 〈0, 0, 0, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉〈0, 0, 1, 0, 0, 0, 0〉

〈0, 0, 0, 1, 0, 0, 1〉
m2

〈0, 1, 0, 0, 0, 0, 1〉

t7

t8
≻

(a) Step 4 – After the deletion of m2, 〈0, 0, 0, 1, 0, 0, 0〉 is not covered
anymore.

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉 〈0, 0, 0, 1, 0, 0, 0〉 〈0, 0, 0, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉

〈0, 1, 0, 0, 0, 0, 1〉
m3

〈0, 0, 0, 0, 0, 1, 1〉

t4

t5

≻

(b) Step 5 – After the deletion of m3, 〈0, 1, 0, 0, 0, 0, 0〉 is not covered
anymore.

Figure 6.6: The counter-example to the algorithm of [Lut95] (continued). Nodes in
grey have been deleted from the tree. An underlined markings means that the node is
in the frontier.

6.2. THE INA ALGORITHM 177

The counter example consists to apply the algorithm on the Petri net shown in
Figure 6.4. The main steps of the computation are shown at Figure 6.5 and Figure 6.6,
and detailed below. When a subtree is deleted from T , its root node is drawn shaded
in the figure.

The counter-example exhibits a possibly cyclic behaviour of the algorithm: the tree
one obtains at the end of step 5 (Figure 6.6(b)) is the same tree that is computed at
the end of step 2 (Figure 6.5(b)), after the deletion of m1 (which is covered by a new
marking). Thus, the algorithm cycles on that example. Let us now look into the main
steps of the computation with more details:

Step 1 – Figure 6.5(a) The three successors of the initial marking are computed,
by firing t1, t4 and t6. Then, the successor by t7 of 〈0, 0, 0, 0, 1, 0, 0〉 is computed
and added into the tree. Remark that all the markings computed so far are
incomparable.

Step 2 – Figure 6.5(b) We fire t5 from 〈0, 0, 0, 1, 0, 0, 0〉 and obtain 〈0, 0, 0, 0, 0, 1, 1〉,
which is added to the tree. Since this marking is larger than the formerly com-
puted marking 〈0, 0, 0, 0, 0, 1, 0〉, the latter is removed from the tree (in the while
loop at line (d)).

Step 3 – Figure 6.5(c) Then, 〈0, 1, 0, 0, 0, 0, 0〉 is picked up from to treat and its suc-
cessors 〈0, 0, 1, 0, 0, 0, 0〉 and 〈0, 0, 0, 1, 0, 0, 1〉 are successively computed, added to
the tree and picked up from to treat . Hence, the subtree rooted at 〈0, 0, 0, 1, 0, 0, 0〉
is deleted from T , by the function removeSubtreeINA (in the while loop at line (d)
of the algorithm). But this implies the deletion of m1 and the function detects
that 〈0, 0, 0, 0, 0, 1, 0〉 (shaded on the figure) is not covered anymore. It is put
back into T .

Step 4 – Figure 6.6(a) Since 〈0, 0, 0, 0, 0, 1, 0〉 is in T and to treat again, it can be
selected for treatment. Its successor 〈0, 1, 0, 0, 0, 0, 1〉 is computed and added to
the tree. This marking is larger than 〈0, 1, 0, 0, 0, 0, 0〉. Hence, we remove the
subtree rooted at 〈0, 1, 0, 0, 0, 0, 0〉, again by calling removeSubtreeINA (in the
while loop at line (d)). The function detects that 〈0, 0, 0, 1, 0, 0, 0〉, successor
of the root node, is not covered anymore, because m2 has been deleted. Thus,
〈0, 0, 0, 1, 0, 0, 0〉 is added to the tree.

Step 5 – Figure 6.6(b) The scenario we had observed at the previous step repeats:
〈0, 0, 0, 1, 0, 0, 0〉 is selected from to treat , and its successor 〈0, 0, 0, 0, 0, 1, 1〉 is
computed, added to T and selected for treatment. Since this successor is larger
than 〈0, 0, 0, 0, 0, 1, 0〉, the latter is deleted with its whole subtree, including m3.
However, 〈0, 0, 0, 1, 0, 0, 0〉 (successor of the root) is not covered anymore and is
thus put back into T and to treat .

178 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

At that point, we obtain the same tree that we had at the beginning of step 3:
we can fire t2 and t3, suppress m1, and so forth. Thus, we can iterate steps 3–4–5
infinitely often.

6.3 An efficient algorithm to compute a coverabil-

ity set of Petri nets

The two previous sections have demonstrated that it is a difficult task to devise an
algorithm to compute the (minimal) coverability set of a Petri net by keeping 4–
maximal elements only during the computation. Whether such an algorithm exists
remains for us an open question.

Nevertheless, we present, in this section, a novel algorithm to compute the cover-
ability set of PN. That algorithm is, in practice, more efficient than the Karp&Miller

procedure.

We consider the problem from scratch, and define a simple procedure to compute
the coverability set of a Petri net. Unlike the Karp&Miller procedure that builds a tree,
this procedure builds sets of pairs of markings. This allows to keep the relationships
between the markings that have been computed. These relationships are important in
order to compute accelerations (similarly to the Karp&Miller procedure).

An acceleration can occur when we discover two markings m1 and m2 that enforce
the two following conditions:

1. A sequence σ s.t. m1
σ−→ m2 has to exist. This will be guaranteed by our

algorithm because, for every pair (m1,m2) built by it, we have the guarantee
that γ (m2) ⊆ γ (Post∗ (m1)).

2. We must have m1 ≺ m2, which means that there is at least one place p s.t. the
difference (in a precise sense that we make clear in the sequel) between m1(p)
and m2(p) has to be strictly positive. That point has to be taken into account
when pruning the sets of pairs during the computation, as we will see now.

The sets of pairs of markings are actually represented by means of their maximal
elements wrt to an ordering on pairs ⊑ (and not an ordering on individual markings,
as it is the case for the MCT algorithm). This point is the key optimisation of our
algorithm, because sets of maximal elements are typically smaller that the sets they
represent (see for instance Section 5.3).

The reason why we use an ordering relating pairs (rather than markings) is that
we can take into account the difference between the two coordinates of the pairs, and
ensure that larger pairs will produce larger accelerations. That is, (m1,m2) will be
regarded as larger than (m1,m2) iff m1 4 m1, m2 4 m2 and for any place p, the

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 179

difference between m2(p) and m1(p) is larger than or equal to the difference between
m1(p) and m2(p).

If these conditions are enforced, it is safe to remove the pair (m1,m2) from the set
of pairs that have to be considered, because:

• by monotonicity, all the potential successors of m1 and m2 will be covered by
some successors of m1 and m2 and

• any acceleration that can be created by the pair (m1,m2) will be covered by an
acceleration created by (m1,m2).

These are, intuitively, the arguments and results that we introduce in this section.
It is organised as follows. In section 6.3.1, we introduce a difference operator ⊖ on
markings, and use it to define the ⊑ ordering on pairs of markings (its definition
follows the intuition that we have sketched above). Then, we define for any PN N the
covering sequence (of N), a sequence of sets of pairs of markings, that are maximal
wrt to ⊑. Then, we show that the covering sequence of N eventually converges to (a
representation of) a coverability set of N . For that purpose, we first provide the reader
with several auxiliary lemmata in Section 6.3.2. We use them to prove that the covering
sequence is both sound and complete wrt to the coverability set of N , respectively in
Section 6.3.3 and Section 6.3.4. This allows us to conclude, in Section 6.3.5, that the
covering sequence eventually stabilises and allows to obtain a coverability set of N .
Finally, in section 6.3.6, we provide empirical results that prove the practical efficiency
of this method, by comparing it to the Karp&Miller procedure and to the construction
of the coverability graph.

6.3.1 The covering sequence

In this section we define a sequence of sets of pairs of markings that is computable and
from which we can obtain a coverability set of any Petri net.

Auxiliary functions In order to define the covering sequence, we rely on the func-
tions Flatten, AccelPair and TClosure defined as follows:

• For any R ⊆ (N ∪ {ω})|P | × (N ∪ {ω})|P |:

Flatten (R) = {m|∃m′ : (m,m′) ∈ R or (m′,m) ∈ R}

• For any m1,m2 ∈ (N ∪ {ω})|P | s.t. m1 4 m2, AccelPair (m1,m2) ∈ (N ∪ {ω})|P |

is s.t.:

∀p ∈ P : AccelPair (m1,m2) (p) =

{
m1(p) if m1(p) = m2(p)
ω otherwise

Remark that AccelPair (m1,m2) = m1 iff m1 = m2;

180 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

• For any R ⊆ (N ∪ {ω})|P | × (N ∪ {ω})|P |:

TClosure (R) =
{
(m,m′) | ∃m1,m2, . . . ,mk : m = m1,

mk = m′ ∧ ∀1 ≤ j < k : (mj ,mj+1) ∈ R
}

The ordering ⊑ In order to define ⊑, we first define ⊖, a difference operator on
ω-markings.

Definition 6.1 (The ⊖ Operator) Let m and m′ be two ω-markings. Then, m⊖
m′ is a function P 7→ Z ∪ {−ω, ω} s.t.:

∀p ∈ P : (m ⊖m′)(p) =






ω if m(p) = ω

−ω if m′(p) = ω and m(p) 6= ω

m(p)−m′(p) otherwise

�

Remark that, by this definition, for any pair of markings m and m′, for any place
p, we have (m ⊖m′)(p) = ω if and only if m(p) = ω. Remark also that m ⊖m′ is in
general not an ω-marking since (m⊖m′)(p) can be negative for some p ∈ P . We can
now define ⊑. In this definition, we extend the ≤ partial ordering on Z to Z∪{−ω, ω}
as follows: for any e ∈ Z: −ω < e < ω, e 6≤ −ω and ω 6≤ e (remark that the resulting
ordering is still antisymmetric).

Definition 6.2 (The ⊑ Order) Let (m1,m2) and (m1,m2) be two pairs of mark-
ings. Then (m1,m2) ⊑ (m1,m2) iff m1 4 m1, m2 4 m2 and for any place p:
(m2 ⊖m1)(p) ≤ (m2 ⊖m1)(p). �

It is easy to show that:

Proposition 6.1 ⊑ is a partial order.

Proof. The proposition stems from the fact that both 4 and ≤ are partial orders. �

This implies in particular that ⊑ is reflexive and transitive. These properties will
be important in some of the forthcoming proofs.

The covering sequence Let us now introduce the covering sequence, our new tool
to compute the coverability set of PN:

Definition 6.3 (The Covering Sequence) Given a PN N = 〈P, T,m0〉, the cov-
ering sequence CovSeq (N) is the sequence of sets of pairs of markings T0, T1, . . . , Ti, . . .

defined inductively as follows:

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 181

• T0 = Max⊑ ({(m0,m) |m ∈ Post (m0) ∪ {m0}}).

• For any i ≥ 1: Ai ={(m,m′) | ∃(m,m) ∈ Ti−1 : m ≺m∧m′ =AccelPair (m,m)}.

• For any i ≥ 1: Si = {(m,m′) |m′ ∈ Post (m) ∧m ∈ Flatten (Ti−1)}.

• For any i ≥ 1: Ti = Max⊑ (TClosure (Si ∪Ai ∪ Ti−1)). �

The intuition behind this definition is as follows. The set T0 contains the ⊑-maximal
elements from the set of all the pairs of the form (m0,m) s.t. m is a direct successor
of m0 (or m0, in order to ensure that T0 6= ∅ even when no transitions are firable from
m0). For any i ≥ 1, Ai consists in computing all the possible accelerations based on
the pairs that have been computed so far. Si consists in computing all the pairs of the
form (m1,m2) s.t. m1 has been computed at a former step, and m2 is in Post (m1).
The set Ti is obtained by taking the transitive closure of the union of Ai, Si and Ti−1,
which is the result of the previous steps of computations. The transitive closure allows
to ensure that no acceleration is missed when computing Ai+1. Finally, we keep in Ti

only the maximal elements with respect to ⊑.

Remark that, given the set Ti, one can compute in a finite amount of time the sets
Ai+1, Si+1 and Ti+1. Since, T0 is computable in a finite amount of time too, any finite
prefix of any covering sequence CovSeq (N) is computable. We will show in the sequel
that for any Petri net N with CovSeq (N) = T0, T1, . . . , Ti, . . ., there exists a finite
value k s.t.

γ (Flatten (Tk)) = γ (Flatten (Tk−1)) = γ (Post∗ (m0)) = Cover (N)

6.3.2 Auxiliary lemmata

Let us introduce two properties of the covering sequence that will be helpful to prove
its correctness. The first property relies on two auxiliary lemmata. The former lemma
is a characterisation of the function AccelPair:

Lemma 6.1 Let N be a PN and let m1 and m2 be two ω-markings of N that respect
m1 4 m2 and γ (m2) ⊆ γ (Post∗ (m1)). Then,

γ (AccelPair (m1,m2)) ⊆ γ (Post∗ (m2))

Proof. Let P ′ be the set of places {p | m1(p) < m2(p)}. Remark that, since m1 4 m2,
m1(p) = m2(p) for any p 6∈ P ′. Since γ (m2) ⊆ γ (Post∗ (m1)), and m1 4 m2 there
must exist a sequence of transitions σ that is firable from m1 and allows to increase
the number of tokens in the places of P ′. That is, there exists σ and a marking m s.t.

182 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

(i) m1
σ−→ m, (ii) m1 4 m and (iii) for any place p ∈ P ′, m(p) > m1(p). Indeed, let

m′ be defined as follows:

∀p ∈ P : m′ =






0 if p 6∈ P ′ and m1(p) = ω

m1(p) if p 6∈ P ′ and m1(p) 6= ω

m1(p) + 1 if p ∈ P ′

By Definition, we have m′ ∈ γ (m2) but m′ 6∈ γ (m1) (remark in particular that p ∈ P ′

implies that m1(p) 6= ω and m2(p) ≥m1(p) + 1). Since m′ ∈ γ (m2) ⊆ γ (Post∗ (m1)),
there exists a marking m and a sequence of transitions σ s.t. m1

σ−→ m and m′ 4 m.
Hence, m′(p) ≤m(p) for every place p. We consider three cases. (i) when m1(p) = ω,
we have necessarily m(p) = ω. Hence, m1(p) ≤m(p) for every place p s.t. m1(p) = ω.
(ii) when m1(p) 6= ω and p 6∈ P ′, we have m′(p) = m1(p), by definition of m′. Hence
m1(p) ≤ m(p). (iii) when p ∈ P ′ (hence m1(p) 6= ω), we have m1(p) < m′(p), by
definition of m′ again. Hence m1(p) < m(p). We conclude that m1 4 m and that
m1(p) < m(p) for every p ∈ P ′.

Let mi (i ≥ 1) be the marking s.t. m1
σi

−→ mi, i.e. the marking obtained after
having fired i times σ from m1. Thus, since PN transitions have constant effect,

∀i ≥ 1 : ∀p : mi(p) = m1(p) + i · (m(p)−m1(p)) (6.1)

Remark that, for any i ≥ 1 : mi ∈ Post∗ (m1), and that, by monotonicity, ∀i ≥ 1 :
mi 4 mi+1.

In the case where p ∈ P ′, the value m(p)−m1(p) is > 0. Hence, by (6.1), we have:

∀p ∈ P ′ : ∀n ∈ N : ∃k : mk(p) > n (6.2)

On the other hand, by definition of the acceleration function, and since mi < m1 for
any i ≥ 1:

∀p 6∈ P ′ : ∀i ≥ 1 : mi(p) ≥m1(p)=m2(p)=AccelPair (m1,m2)(p) (6.3)

Let m be in γ (AccelPair (m1,m2)). Thus, m 4 AccelPair (m1,m2) and for any
place p: m(p) 6= ω. Hence, by (6.3), for any p 6∈ P ′, for any i ≥ 1, m(p) ≤ mi(p).
Moreover, by (6.2), there exists, for any p ∈ P ′, a value k(p) s.t. mk(p)(p) > m(p).
Since the sequence m1,m2, . . . is 4-increasing, the marking mk, with k = max{k(p) |
p ∈ P ′} is s.t. for any p ∈ P ′ : mk(p) ≥ m(p). We conclude that there exists k ≥ 1 with
mk < m. Since mk ∈ Post∗ (m1), and since m2 < m1, there exists, by monotonicity,
a marking m′ s.t. m′ ∈ Post∗ (m2) and m′ < mk < m. Since this is true for any m ∈
γ (AccelPair (m1,m2)), we conclude that: γ (AccelPair (m1,m2)) ⊆ γ (Post∗ (m2)). �

The latter lemma is a direct consequence of the monotonicity of Petri nets:

Lemma 6.2 Let N be a Petri net and let A and B be two sets of ω-markings of N .
Then, γ (A) ⊆ γ (Post∗ (B)) implies that γ (Post∗ (A)) ⊆ γ (Post∗ (B)).

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 183

Proof. By monotonicity of Post, and since Post is well-defined on ω-markings (see
Proposition 3.2) we have:

∀X ⊆
(
N ∪ {ω}

)|P |
: γ (Post∗ (X)) = γ (Post∗ (γ (X))) (6.4)

Thus:

γ (A) ⊆ γ (Post∗ (B))
⇒ γ (Post∗ (γ (A))) ⊆ γ (Post∗ (γ (Post∗ (B)))) Monotonicity of Post and γ

⇒ γ (Post∗ (A)) ⊆ γ (Post∗ (Post∗ (B))) By (6.4)
⇒ γ (Post∗ (A)) ⊆ γ (Post∗ (B))

�

We can now prove an invariant of the covering sequence. It states that, whenever
a pair (m1,m2) is computed, the denotation of m2 is included into the denotation of
Post∗ (m1).

Lemma 6.3 For any PN N with CovSeq (N) = T0, T1, . . . , Tj , . . ., for any i ≥ 1, for
any (m1,m2) ∈ Ti: γ (m2) ⊆ γ (Post∗ (m1)).

Proof. The proof is by induction on i.

Base case i = 1. For any (m1,m2) ∈ T0, {m2} ⊆ Post∗ (m1). Hence, γ (m2) ⊆
γ (Post∗ (m1)), by ⊆-monotony of γ.

Inductive case: i = k + 1. By induction hypothesis, for any (m1,m2) ∈ Tk: γ (m2) ⊆
γ (Post∗ (m1)). Let us show that the same holds for any (m1,m2) in Tk+1. Let
us first show that, for any pair (m1,m2) ∈ Sk+1∪Ak+1, γ (m2) ⊆ γ (Post∗ (m1)):

1. If (m1,m2) ∈ Ak+1, then, there exists m3 s.t. (m3,m1) ∈ Tk, m3 ≺
m1 and m2 = AccelPair (m3,m1). By induction hypothesis, γ (m1) ⊆
γ (Post∗ (m3)). By Lemma 6.1, this implies that γ (m2) ⊆ γ (Post∗ (m1)).

2. If (m1,m2) ∈ Sk+1, then {m2} ⊆ Post∗ (m1). Thus, γ (m2) ⊆ γ (Post∗ (m1))
by monotonicity of γ.

By combining these two points with the induction hypothesis, we conclude that
any pair of markings in Tk ∪Sk+1 ∪Ak+1 respects the lemma. Let (m1,m2) be a
pair of TClosure (Tk ∪ Sk+1 ∪ Ak+1). This implies that there are m1,m2, . . . ,mn

s.t. the set

S = {(m1,m1), (mn,m2)} ∪ {(mi,mi+1 | 1 ≤ i ≤ n− 1}

is included in (Tk ∪ Sk+1 ∪ Ak+1), and any pair (m,m′) ∈ S respects γ (m′) ⊆
γ (Post∗ (m)).

184 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

Observe now that the following holds for any pairs (m,m′) and (m′,m′′):

γ (m′) ⊆ γ (Post∗ (m)) and γ (m′′) ⊆ γ (Post∗ (m′))
implies γ (m′′) ⊆ γ (Post∗ (m))

(6.5)

Indeed, by Lemma 6.2, γ (m′) ⊆ γ (Post∗ (m)) implies that γ (Post∗ (m′)) ⊆
γ (Post∗ (m)). By transitivity of ⊆, we obtain: γ (m′′) ⊆ γ (Post∗ (m)).

By applying (6.5) to (m1,m1) and (m1,m2), we obtain γ (m2) ⊆ γ (Post∗ (m1)).
We can iterate this reasoning and finally obtain γ (m2) ⊆ γ (Post∗ (m1)).

We conclude that, for any (m1,m2) in TClosure (Tk ∪ Sk+1 ∪ Ak+1): γ (m2) ⊆
γ (Post∗ (m1)). Since Tk+1 ⊆ TClosure (Tk ∪ Sk+1 ∪Ak+1), the same holds for
any pair (m1,m2) ∈ Tk+1. Hence the lemma.

�

We close the section by a second property of the covering sequence, stating that
the sequence γ (Flatten (Ti)) is increasing with respect to set inclusion.

Lemma 6.4 Let N be a PN s.t. CovSeq (N) = T0, T1, . . . , Ti, . . . Then, for any i ≥ 0:

γ (Flatten (Ti)) ⊆ γ (Flatten (Ti+1))

Proof. Clearly, we have Ti ⊆ Si+1 ∪ Ai+1 ∪ Ti ⊆ TClosure (Si+1 ∪ Ai+1 ∪ Ti). Hence,
Flatten (Ti) ⊆ Flatten (TClosure (Si+1 ∪Ai+1 ∪ Ti)). However, for any marking m in
Flatten (TClosure (Si+1 ∪ Ai+1 ∪ Ti)), there is

m ∈ Flatten
(
Max⊑ (TClosure (Si+1 ∪ Ai+1 ∪ Ti))

)
= Flatten (Ti+1)

such that m 4 m, by definition of Max⊑. We conclude that, for any m ∈ Flatten (Ti),
there is m ∈ Flatten (Ti+1) s.t. m 4 m. Hence, γ (Flatten (Ti)) ⊆ γ (Flatten (Ti+1)). �

We have now at our disposal all the necessary results to prove that the covering
sequence effectively computes the coverability set of any Petri net. The actual argu-
ments of correctness are presented along the following two sections that are devoted
respectively to proving that the covering sequence is both sound (any marking com-
puted by the covering sequence is covered by some marking of the coverability set)
and complete (any reachable marking of the Petri net will eventually be covered by a
marking computed in the covering sequence).

6.3.3 Soundness of the covering sequence

The soundness of the covering sequence is established by showing that, for any i ≥ 1, for
any m ∈ Flatten (Ti), the denotation of m is included in the denotation of Post∗ (m0):

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 185

Lemma 6.5 Let N = 〈P, T,m0〉 be a PN s.t. CovSeq (N) = T0, T1, . . . , Ti, . . . Then,
for any i ≥ 1, for any m ∈ Flatten (Ti), γ (m) ⊆ γ (Post∗ (m0)).

Proof. The proof is by induction on i.

Base case i = 0. Trivial.

Inductive case i = k + 1. Let us first show that for any m in Flatten (Si ∪ Ai):
γ (m) ⊆ γ (Post∗ (m0)). We consider the two sets Si and Ai separately:

1. In the case where m ∈ Flatten (Si), either there is a pair (m,m′) ∈ Si, or
there is a pair (m′,m) ∈ Si. In the first case, m ∈ Flatten (Ti−1), by con-
struction. Hence, γ (m) ⊆ γ (Post∗ (m0)) by induction hypothesis. In the latter
case, m′ ∈ Flatten (Ti−1), thus, γ (m′) ⊆ γ (Post∗ (m0)) by induction hypothe-
sis. By Lemma 6.2, this implies that γ (Post∗ (m′)) ⊆ γ (Post∗ (m0)). Moreover,
m ∈ Post (m′), by construction. Hence, γ (m) ⊆ γ (Post∗ (m′)). We conclude
that γ (m) ⊆ γ (Post∗ (m0)).

2. In the case where m ∈ Flatten (Ai), there is either a pair (m,m′) ∈ Ai, or
a pair (m′,m) ∈ Ai. In the first case, m ∈ Flatten (Ti−1), by construction.
Hence, γ (m) ⊆ γ (Post∗ (m0)) by induction hypothesis. In the latter case,
there exists a pair (m,m′) ∈ Ti−1 s.t. m ≺ m′ and m = AccelPair (m,m′),
by construction. Thus, γ (m) ⊆ γ (Post∗ (m′)), by Lemma 6.1. By induc-
tion hypothesis, and since m′ ∈ Flatten (Ti−1), γ (m′) ⊆ γ (Post∗ (m0)). Thus,
γ (Post∗ (m′)) ⊆ γ (Post∗ (m0)), according to Lemma 6.2. We conclude that
γ (m) ⊆ γ (Post∗ (m0)).

Since Ti−1 respects the lemma, for any m ∈ Flatten (Si ∪ Ai ∪ Ti−1), we have γ (m) ⊆
γ (Post∗ (m0)). Moreover, for any set S of pairs, Flatten (TClosure (S)) = Flatten (S).
Hence, for any m ∈ Flatten (TClosure (Si ∪Ai ∪ Ti−1)): γ (m) ⊆ γ (Post∗ (m0)). Fi-
nally, since Ti ⊆ TClosure (Si ∪ Ai ∪ Ti−1), we conclude that for any m ∈ Flatten (Ti):
γ (m) ⊆ γ (Post∗ (m0)). �

As a consequence, we directly obtain our soundness result:

Corollary 6.1 Let N = 〈P, T,m0〉 be a PN and let its covering sequence CovSeq (N)
be T0, T1, . . . , Ti, . . . Then, for any i ≥ 1, γ (Flatten (Ti)) ⊆ γ (Post∗ (m0)).

6.3.4 Completeness of the covering sequence

In order to show that the covering sequence is complete, we show that it simulates,
in some sense, the Karp&Miller algorithm. More precisely, for any node n of the
Karp&Miller tree of a given PN N , we show that there exists k ≥ 1 and m ∈
Flatten (Tk) s.t. Λ (n) 4 m. The actual value of k depends on the depth of n in

186 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

the Karp&Miller tree, and can be bounded. Remark that since the Karp&Miller tree
is guaranteed to be finite, and thanks to Lemma 6.5 this results also provides us with
the key argument to prove that our covering sequence will eventually converge to the
coverability set.

In order to draw the link between the covering sequence and the Karp&Miller
algorithm, we first state the following property that characterises (with respect to
AccelPair) the sequence ς (n) and the marking M(n) that are associated to any node n

of the Karp&Miller tree (see Section 3.2.4 and particularly Definition 3.10).

Lemma 6.6 Let N = 〈P, T,m0〉 be a Petri net and let T = 〈N, B, root , Λ〉 be its

Karp&Miller tree. Let n 6= root be a node of T . Let m′ be s.t. M(n)
ς(n)−−→ m′. Then,

Λ (n) 4 AccelPair (M(n) ,m′).

Proof. Let Pa = {p ∈ P | Λ (n) (p) = ω ∧M(n) (p) 6= ω}. By construction, we have:

Λ (n) (p) =

{
ω if p ∈ Pa

M(n) (p) otherwise

Moreover, by definition of AccelPair, we have:

AccelPair (M(n) ,m′) (p) =

{
ω if ς (n) (p) > 0
M(n) (p) otherwise

However, by definition of ς (n), p ∈ Pa implies that ς (n) (p) > 0. Hence the lemma. �

We are now ready to show that our covering sequence simulates the Karp&Miller
algorithm. In this lemma, we use the following notation, defined for any node n of any
labelled tree T = 〈N, B, root , Λ〉:

∀n ∈ N : Ancestors (T , n) = {n′ | B∗(n′, n)}
Hence, for any node n, Ancestors (T , n) is the set of ‘ancestors’ of n in T (n included).
Thus, Ancestors (T , n) 6= ∅ for any n. The Lemma is as follows:

Lemma 6.7 Let N = 〈P, T,m0〉 be a Petri net and let T = 〈N, B, root , Λ〉 be its
Karp&Miller tree. Let n be a node of N . Then, there is m̂ in Flatten (Tk) s.t. Λ (n) 4

m̂ for k ≤∑n′∈Ancestors(T ,n)(|ς (n′) |+ 2).

Proof. The proof is by induction on the length ℓ of the branch ending in n.

Base case ℓ = 0. In that case, n = root and Λ (root) = m0. By construction, there is
in Flatten (T0) a marking m̂ s.t. m0 4 m̂. Moreover 0 ≤∑n′∈Ancestors(T ,root)(|ς (n′) | +
2) = |ς (root) |+ 2 = 2.

Inductive case ℓ = i + 1. Let n1, n2, . . . , ni, ni+1 be a branch of T (hence, n1 =
root) of length ℓ. By induction hypothesis, there exists k ≤ ∑i

j=1(|ς (nj) | + 2) s.t.
γ (Λ (ni)) ⊆ γ (Flatten (Tk)). Let us us consider the sequence of transitions ς (ni+1).
We consider two cases:

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 187

1. In the case where ς (ni+1) is the empty sequence, there exists a transition t s.t.

Λ (ni)
t−→ Λ (ni+1). By induction hypothesis, there exists mi ∈ Flatten (Tk) s.t.

mi < Λ (ni). Hence t is firable from mi and mi
t−→ m implies that Λ (ni+1) 4

m. By construction, (mi,m) ∈ Sk+1, and thus, there is (m̂i, m̂) ∈ Tk+1 s.t.
(mi,m) ⊑ (m̂i, m̂). Hence,

Λ (ni+1) 4 m 4 m̂ ∈ Flatten (Tk+1)

with k + 1 ≤ k + 2 ≤∑i
j=1(|ς (nj) |+ 2) + 2 =

∑i+1
j=1(|ς (nj) |+ 2).

2. In the case where ς (ni+1) is not empty, then let m′ be s.t. M(ni+1)
ς(ni+1)−−−−→ m′.

By Lemma 6.6, we have AccelPair (M(ni+1) ,m′) < Λ (ni+1). Let us show, by
induction on the length of ς (ni+1), that there exists in Tk+|ς(ni+1)|+1 a pair (m,m′)
s.t. (M(ni+1) ,m′) ⊑ (m,m′).

First remark that there is, in Flatten (Tk+1), a marking m̂ s.t. M(ni+1) 4 m̂, be-

cause, by definition of M(ni+1), there exists a transition t s.t. Λ (ni)
t−→ M(ni+1).

Hence, we can invoke the arguments used in point 1 of the present proof. Thus,
ς (ni+1) is firable from m̂.

Base case |ς (ni+1) | = 1. In this case, ς (ni+1) = t ∈ T . By construction, and

since t is firable from m̂, the pair (m̂, m̂′) with m̂
t−→ m̂′ is in Sk+2. Remark

that (M(ni+1) ,m′) ⊑ (m̂, m̂′) because PN transitions have constant effects. By
construction, there is in Tk+2 a pair (m,m′) s.t. (m̂, m̂′) ⊑ (m,m′), hence
(M(ni+1) ,m′) ⊑ (m,m′).

Inductive case |ς (ni+1) | = m + 1. Let us assume that ς (ni+1) = σ′ · t, where

|σ′| = m. Let m′′ be the marking s.t. M(ni+1)
σ′

−→ m′′ t−→ m′. By induction
hypothesis, there exists a pair (m,m′′) ∈ Tk+m+1 s.t. (M(ni+1) ,m′′) ⊑ (m,m′′).

Hence, m′′ < m′′. Thus, t is firable from m′′. Let m′ be the marking s.t. m′′ t−→
m′. By monotonicity, m′ 4 m′. Since m′′ ∈ Flatten (Tk+m+1), the pair (m′′,m′)
is in Sk+m+2. Hence, the pair (m,m′) is in TClosure (Sk+m+2 ∪ Ak+m+2 ∪ Tk+m+1).
Remark that, since (M(ni+1) ,m′′) ⊑ (m,m′′), and since PN transitions have
constant effects, (M(ni+1) ,m′) ⊑ (m,m′). Finally, by construction, there is in
Tk+m+2 a pair (m̂, m̂′) s.t. (m,m′) ⊑ (m̂, m̂′), hence (M(ni+1) ,m′) ⊑ (m̂, m̂′).

Thus, there is, in Tk+|σ|+1 a pair (m,m′) s.t. (M(ni+1) ,m′) ⊑ (m,m′). Hence,
there is in Ak+|σ|+2 a pair (m′,m′′) s.t. m′′ = AccelPair (m,m′). By definition
of ⊑, AccelPair (m,m′) < AccelPair (M(ni+1) ,m′). Moreover, by Lemma 6.6,
AccelPair (M(ni+1) ,m′) < Λ (ni+1). By construction, there is, in Tk+|σ|+2, a pair
(m̂′, m̂′′) s.t. (m′,m′′) ⊑ (m̂′, m̂′′). Hence, we have:

Λ (ni+1) 4 AccelPair (M(ni+1) ,m′) 4 AccelPair (m,m′) = m′′ 4 m̂′′

188 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

with m̂′′ ∈ Flatten
(
Tk+|σ|+2

)
. Thus, there is in Flatten

(
Tk+|σ|+2

)
a marking m̂ s.t.

m̂ < Λ (ni+1). Moreover, using induction hypothesis, we obtain: k + |ς (ni+1) |+
2 ≤∑i+1

j=1(|ς (nj) |+ 2). Hence the lemma.

�

6.3.5 Stabilisation of the covering sequence

Thanks to the results introduced in the previous section, we show that for any Petri
net N , the sequence γ (Flatten (Ti)), eventually stabilises to the coverability set of N :

Theorem 6.1 For any PN N = 〈P, T,m0〉 with CovSeq (N) = T0, T1, . . . , Ti, . . ., there
exists k ∈ N s.t.:

• For any 0 ≤ i ≤ k − 1: γ (Flatten (Ti)) ⊂ γ (Flatten (Ti+1));

• For any i ≥ k: γ (Flatten (Tk)) = γ (Post∗ (m0)).

Proof. The proof works as follows. We first establish the existence of a value k ∈ N s.t.
for any i ≥ k: γ (Flatten (Ti)) = γ (Post∗ (m0)) and for any 0 ≤ i < k: γ (Flatten (Ti)) ⊂
γ (Post∗ (m0)). Then we show that Flatten (T0) ⊂ Flatten (T1) ⊂ · · · ⊂ Flatten (Tk−1).

Let T = 〈N, B, root , Λ〉 be the Karp&Miller tree for N . According to Theorem 3.5,
γ (Λ (N)) = γ (Post∗ (m0)), and N is finite. By Lemma 6.7, Λ (N) ⊆ γ (Flatten (Tj))
for some j s.t.

j ≤ max
n∈N

∑

n′∈Ancestors(T ,n)

(|ς (n′) |+ 2)

Remark that j is thus a finite value. Thus, γ (Post∗ (m0)) = γ (Λ (N)) ⊆ γ (Flatten (Tj))
for some j ≤ maxn∈N

∑
n′∈Ancestors(T ,n)(|ς (n′) |+ 2). In addition, we know that, for any

i ≥ 0, γ (Flatten (Ti)) ⊆ γ (Flatten (Ti+1)), by Lemma 6.4. We conclude that:

∃k ∈ N :




γ (Post∗ (m0)) ⊆ γ (Flatten (Tk))

and
∀0 ≤ i < k : γ (Post∗ (m0)) 6⊆ γ (Flatten (Ti))



 (6.6)

By corollary 6.1, γ (Flatten (Ti)) ⊆ γ (Post∗ (m0)), for any i ≥ 0. Hence, by (6.6),
there exists k ∈ N s.t. for any i ≥ k: γ (Flatten (Ti)) = γ (Post∗ (m0)) and for any
0 ≤ i < k: γ (Flatten (Ti)) ⊂ γ (Post∗ (m0)).

It remains to show that for any 0 ≤ i ≤ k − 1: γ (Flatten (Ti)) ⊂ γ (Flatten (Ti+1)).
We prove this by invoking Knaster–Tarski’s theorem. Let F be the function: F (X) =

6.3. AN EFFICIENT ALGORITHM TO COMPUTE THE CS 189

γ (Post (X))∪γ ({m0}). Remark that, for any X, F (X) is 4–downward–closed. More-
over F is monotonic w.r.t. to ⊆ and by Tarski’s theorem: µX.F (X) exists, is unique
and equal to γ (Post∗ (γ (m0))) = γ (Post∗ (m0)). Let us show that :

∀0 ≤ i ≤ k − 1 : γ (F (Flatten (Ti))) ⊆ γ (Flatten (Ti+1)) (6.7)

Indeed, γ (F (Flatten (Ti))) = γ (m0) ∪ γ (Post (Flatten (Ti))). By definition, γ (m0) ⊆
γ (Flatten (T0)). By Lemma 6.4, γ (Flatten (T0)) ⊆ γ (Flatten (Ti)) for any i ≥ 0.
Moerover, Post (Flatten (Ti)) ⊆ Flatten (Si+1), by construction. As a consequence,
γ (Post (Flatten (Ti))) ⊆ γ (Flatten (Si+1)). Finally, for any marking m in Flatten (Si+1),
there is a marking m ∈ Flatten (Ti+1) s.t. m 4 m, by definition of Ti+1. Hence,
γ (Post (Flatten (Ti))) ⊆ γ (Flatten (Si+1)) ⊆ γ (Flatten (Ti+1)). We conclude that for
any i ≥ 0, γ (F (Flatten (Ti))) = γ (m0) ∪ γ (Post (Flatten (Ti))) ⊆ γ (Flatten (Ti+1)),
which implies (6.7).

Then, we know that for any 0 ≤ i ≤ k − 1, γ (Flatten (Ti)) ⊂ γ (µX.F (X)). Hence,
the function F is increasing on {γ (Flatten (Ti)) | 1 ≤ i ≤ k − 1}, that is, for any
1 ≤ i ≤ k − 1:

γ (Flatten (Ti)) ⊂ F
(
γ (Flatten (Ti))

)

= γ
(
F
(
γ (Flatten (Ti))

))
F
(
γ (Flatten (Ti))

)

is 4 - down.-cl.
= γ

(
F
(
Flatten (Ti)

))
F is monotonic

(6.8)

The last point holds, because, for any X, we have γ (F (γ (X))) = γ (F (X)). Indeed,
γ (F (γ (X))) ⊇ γ (F (X)) by monotonicity of F and γ. Moreover, γ (F (γ (X))) ⊆
γ (F (X)) is equivalent to ∀m ∈ F (γ (X)) : ∃m′ ∈ F (X) : m 4 m′. This is true by
monotonicity of F .

By combining (6.7) and (6.8), we have: ∀0 ≤ i ≤ k − 1 : γ (Flatten (Ti)) ⊂
γ (Flatten (Ti+1)). �

Thus, Theorem 6.1 provides us with an algorithm to compute the coverability set
of any Petri net N : compute the covering sequence CovSeq (N) = T0, T1, . . . , Tj , . . .,
stop as soon as γ (Flatten (Tj)) = γ (Flatten (Tj+1)) and return Flatten (Tj).

6.3.6 Empirical results

This section demonstrates that the computation of the covering sequence is actually
an efficient procedure to compute the coverability set of Petri nets, when compared to
classical methods. We have implemented this approach and run it on several examples3

3These examples come from our test suite, available at http://www.ulb.ac.be/di/ssd/eec. Re-
mark that this set of examples has already been used as a benchmark for several other tools such as
Fast [BFLP03] or Vampire [RV02].

190 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

of Petri nets of various dimensions. We have also implemented the Karp and Miller
procedure and a standard version of the Coverability Graph as described in [Rei86].

Before we discuss the actual results, it is important to say a few words about the
prototype itself. This prototype is still in a very early stage of development. Indeed,
the definition of the covering sequence (Definition 6.3) is purely theoretical (in order
to keep the proofs simple), and leaves many open question regarding its (efficient)
implementation. For instance:

1. an algorithm implementing the computation of the covering sequence should
maintain a notion of frontier in order to avoid redeveloping successors of markings
that have already been computed.

2. the efficient computation of the transitive closure has to be investigated. For
instance, a setR of pairs of markings can be represented by a graph, whose nodes
are markings, and whose directed edges correspond to pairs in R. In that case,
the computation of TClosure (R) can be carried out on the graph either explicitly,
i.e., by actually adding edges between every m and m′ s.t. there is a path going
from m to m′; or implicitly, i.e., by considering that the pair (m,m′) is in R iff
there is a path (and not necessarily an edge) between m and m′ in the graph.
In the former case, the insertion of a new pair is costly because it potentially
involves the re-computation of the transitive closure. However, deletion of a pair
is easy: it is sufficient to remove the associated edge. In the latter case, insertion
of a pair amounts to inserting a single edge, but the deletion of a pair is more
difficult. It is presently unclear which solution is the most efficient in practice.

3. the efficient computation of the ⊑-maximal elements has to be investigated too.
An efficient datastructure to represent ⊑-downward-closed sets of pairs of mark-
ings by means of maximal elements only could be useful (based on the CST

datastructure, for instance [DRVB04]).

The prototype we present here has been realised with the (interpreted) Python
language [VRD03, Pyt]. This choice has been made because it allows a rapid develop-
ment of the prototype, and because many easy-to-use libraries are readily available to
manipulate complex datastructures, such as graphs for instance. In the present case,
we have relied on the Python version of the Boost graph library [SLL01, Boo], in or-
der to represent sets of pairs of markings. The implementations of the other algorithms
we compare to (Karp&Miller, Coverability graph) have been realised in Python too.

Our aim in the development of this new algorithm was to devise an algorithm that
computes the minimal coverability set of PN by maintaining intermediate structures
that are as small as possible (this was also the aim pursued by A. Finkel in his solution).
Thus, our first criterion to assess the efficiency of the covering sequence is the size of the
structures that are computed. Our simple implementations of the three algorithms are
sufficient for this comparison. However, these implementations have not been designed

6.4. DISCUSSION 191

to be efficient from the running time point of view: we have already pointed out
several issues regarding to covering sequence, that should be addressed for that purpose.
Moreover, a compiled programming language, such as C++ should be considered. We
have thus decided not to report the running times of the three algorithms.

Table 6.1 compares the practical efficiency of the covering sequence method against
the Karp&Miller tree and the coverability graph. We report on the sizes of the struc-
tures that are built by these algorithms, as well as the size of the minimal coverability
set. In the case of the covering sequence, we provide the maximal number of markings
and pairs computed along the whole computation, as well as the size of the set of pairs
when the fixed point is reached. Indeed, the size of the sets of pairs typically decreases
during the computation of the last iterations (before convergence of the sequence),
because we keep ⊑-maximal elements only. Remark that in the case of the other two
algorithms, the size of the structure at the end of the computation is also the maximal
size throughout the computation, because no cut are performed. It is interesting to
remark that, on all these examples, the set Flatten (Ti) obtained at the end is exactly
the minimal coverability set of the PN.

The performances of our algorithm are in worst cases comparable to the perfor-
mances of the Coverability graph computation. Remark however that the examples
that are less favourable to our method are rather trivial, and leave little room for opti-
misations. There is thus little hope, to compute the coverability set of these examples
in a more efficient way than the Karp&Miller procedure. On more complex exam-
ples, our algorithm performs much better: it is able to compute the coverability set of
Petri nets for which the other procedures suffer from the explosion of the number of
computed elements.

6.4 Discussion

In this chapter, we have presented a counter-example on which the Minimal Coverabil-
ity Tree algorithm of [Fin91] might compute an under-approximation of the coverability
set. We have also shown by means of a counter-example, that the variation of this al-
gorithm implemented in Pep, and supposed to correct the bug, might not terminate in
some cases.

We have not tried to present here a fix of the MCT algorithm. In the case of bounded
Petri nets, a quick fix of the MCT algorithm is quite easy to obtain. Indeed, suppose
that instead of deleting nodes from the tree when applying the reduction rule, we freeze
these node, that is, we remove them from the frontier (if necessary) and mark them
in order not to consider them in the further steps of the algorithm (the algorithm will
behave ‘as if’ these nodes were not present in the tree). At the end of the computation,
one can easily detect that the algorithm has not computed a coverability set. It is the
case iff γ (Post (Λ (N))) 6⊆ γ (Λ (N)), where N is the set of nodes of the computed tree

19
2

C
H

A
P

T
E

R
6
.

E
F
F
IC

IE
N

T
C

O
M

P
U

T
A

T
IO

N
O

F
A

C
S

F
O

R
P
N

Example MCS CovSeq (N) K&M Cov. Graph
Name P T #M max #Mmax #P #M #P #V #E #V #E

example1 3 3 1 4 6 1 1 6 5 5 5
basicME 5 4 3 3 9 3 9 5 4 3 4

manufacturing 13 6 1 3 2 1 1 32 32 11 22
csm 14 13 16 26 256 16 256 × × 55 178

kanban 16 16 1 5 5 1 1 × × 104 381
fms 22 20 24 216 1,450 24 576 × × × ×

Table 6.1: Empirical comparison of the covering sequence against other methods to compute the coverability set of PN.
Column Example details the PN used in the experiment (P = number of places. T = number of transitions). Column
MCS is the size of the minimal coverability set (number of markings). Column CovSeq (N) reports on the efficiency of
the covering sequence (#M (#P) = number of markings (pairs) at the end of the computation. max #M (max #P) =
maximal number of markings (pairs) along the whole computation. Column K&M reports on the size of the Karp&Miller
tree. Column Cov. Graph reports on the size of the coverability graph (#V = maximal number of vertices. #E
maximal number of edges). A × in the column means that the computed structure has more than 2000 nodes, and that
the corresponding algorithm has been stopped before termination.

6.4. DISCUSSION 193

(that is, without the frozen nodes). In this case, we can re-use the frozen nodes n s.t.
γ (n) 6⊆ γ (Λ (N)), insert them in the frontier and run the MCT algorithm once more,
starting from this frontier. That approach has been followed in [GRVB05]. We refer
the reader to this paper for more details.

Other ways to fix the MCT algorithm surely exist. For instance, one could maintain
in the tree the proofs that are assumed by the MCT algorithm when cutting a subtree
(see Section 6.1.3), and avoid cycles.

We have preferred to consider the problem from scratch, and devise a completely
new approach to the computation of the coverability set. From our point of view, this
approach offers several advantages. The proofs are neat and compact. The concepts at
work are simpler. Moreover, besides the implementation issues that we have already
mentioned in the previous section, these ideas pave the way for future research. It would
be interesting to see whether such an approach could be applied to other monotonic
systems (even those for which the coverability set is not computable: our approach
could lead to a practical improvement). The main difficulty relies in the definition of a
difference operator similar to ⊖ in the case of these systems. We leave these questions
open for future works.

194 CHAPTER 6. EFFICIENT COMPUTATION OF A CS FOR PN

Part II

Expressiveness properties

195

Chapter 7

ω-languages defined by WSTS

A
s we have seen in the first part of the thesis, decidability properties of WSTS have
been fairly well studied. Quite intriguingly, their expressiveness properties have
seldom been addressed in the literature, if we except the notable exception of

Petri nets (in [Pet81], for instance). This is rather remarkable, if we compare the study
of WSTS to that of other models of computation such as Turing Machines, two coun-
ters machines [Min67], pushdown and finite automata [HMU01, Sal73], whose defined
languages (in terms of finite or infinite words) have been fairly well characterised.

Thus, there are many open problems to be looked into, and the second part of
this thesis is devoted to the study of properties of languages and ω-languages that
are defined by (labelled) EWSTS and EPN 1. We begin our study of expressiveness
properties of WSTS by the languages of infinite words, or ω-languages. This might
seem unusual to the reader who is acquainted with the classical works of the literature
dealing, for instance, with the expressiveness of finite automata, and where languages
of finite words are usually covered before ω-languages. We have chosen to begin with
ω-languages because the results we are about to prove in the present chapter as well
as the proof techniques used here are somewhat similar to some of the results that
will appear in the next chapter (where we address finite words languages). However,
the proofs are, in the case of ω-languages, much shorter and easier, and the present
chapter will also serve as an introduction to the proof techniques that we exploit in
both chapters.

Our interest in the study of ω-languages of WSTS comes from the fact that these
systems can model non-terminating reactive systems that interact with an environment.
To formally reason about the correctness of such systems, we need formal models of
their behaviours. At some abstract level, the behaviour of a non-terminating reactive

1From these notions, it is easy to define the language of a strongly monotonic SMPN, which we
do not address in this thesis. All the general results obtained on EWSTS can be directly applied to
SMPN.

197

198 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

system within its environment can be seen as an infinite sequence of events (usually
taken within a finite set of events). The semantics of those systems is thus a (usually
infinite) set of those infinite behaviours, that is, an ω-language.

As we have seen already, several recent works [GS92, DRVB02, DEP99] have con-
sidered the modelling of infinite reactive systems (for instance, systems where the
number of processes cannot be bounded) by means of counting abstractions, where the
individual identities of the processes are hidden. Such systems are perfectly modelled
by Petri nets, possibly extended with non-blocking or transfer arcs to model various
communication procedures (see Section 2.3.3).

In the present chapter, we thus restrict our attention to subclasses of Lω(WSTS),
namely, the classes of ω-languages that are defined respectively by EPN (and their
subclasses). In Section 7.1, we prove that PN+T are strictly more expressive than
PN+NBA, and, by using similar techniques, we prove in Section 7.2 that PN+NBA are
strictly more expressive than PN. We obtain thus a strict hierarchy of expressiveness of
these three models. From our point of view, this result is interesting because, the strict
separation of expressive power indicates the meaningfulness of the special arcs of PN+T

and PN+NBA to model communication procedures found in distributed systems.

On the other hand, the proof techniques that we use in the present chapter seem
interesting per se, because they are a direct exploitation of the monotonicity properties
of these models, and of the properties of infinite sequences of markings.

The content of this chapter is essentially based on the two articles [FGRVB05] and
[FGRVB06]. Section 7.4 contains unpublished material.

7.1 PN+T are more expressive than PN+NBA

In this section, we prove that PN+T are strictly more expressive, on ω-languages, than
PN+NBA. Let us first give a rough sketch of the proof.

We prove this in two steps. First, we show that any ω-language accepted by a
PN+NBA can be accepted by a PN+T (this is the purpose of Lemma 7.3 and Theorem
7.1). Then, we prove the strictness of the inclusion thanks to the PN+T N1 of Fig. 7.1.
Namely, we show that Lω(N1) contains at least the words (akbk)ω, for any k ≥ 1
(Lemma 7.4). On the other hand we show that N1 rejects the words whose prefixes
belongs to (an3bn3)∗an3(bn1an1)+bn2 with n1 < n2 < n3 (Lemma 7.5). We finally show
that any PN+NBA accepting words of the form (akbk)ω also has to accept words whose
prefixes belong to (an3bn3)∗an3(bn1an1)+bn2 with n1 < n2 < n3. Since N1 rejects these
words, we conclude that no PN+NBA can accept Lω(N1).

7.1. PN+T ARE MORE EXPRESSIVE THAN PN+NBA 199

7.1.1 PN+NBA are not more expressive than PN+T.

In order to establish this result, we re–use the construction, introduced in Section
5.4.4, that turns a PN+NBA N into a corresponding PN+T N ′ (actually a PN+R,
but every PN+R is a PN+T, by definition). We handle the labels as follows: for any
transition t ∈ Tr, the corresponding t′ has the same label as t. For any t ∈ Te, the
corresponding t=0 and t6=0 have the same label as t. We also re–use the two functions
f and g defined there to establish the correspondence between the transitions of N
and N ′, as well as the notations 4P , =P , and so forth. This allows to establish the
two following lemmata:

Lemma 7.1 Let N = 〈P, T,m0〉 be a PN+NBA and let N ′ = 〈P ′, T ′,m′
0〉 be the

PN+T obtained from N . Let σ = τ1τ2 . . . τj . . . be an infinite (firable) sequence of
transitions of N . Let m1,m2, . . . ,mj, . . . be the markings s.t.

m0
τ1−→ m1

τ2−→ m2 . . .mj−1
τj−→mj . . .

Let σ′ = τ ′
1τ

′
2 . . . τ ′

j . . . be the corresponding sequence of transitions of N ′ s.t. for any
j ≥ 1: τ ′

j = f(τj ,mj−1).

Then σ′ is firable from m′
0 and for any j ≥ 1: m′

j =P mj, where m′
1,m

′
2, . . . ,m

′
j , . . .

are the markings s.t.

m′
0

τ ′
1−→m′

1

τ ′
2−→m′

2 . . .m′
j−1

τ ′
j−→m′

j , . . .

Proof. First remark that, by Lemma 5.8, σ′ is indeed firable from m′
0.

Then, for any k ≥ 1, let σk = τ1 . . . τk and σ′
k = τ ′

1 . . . τ ′
k. Remark that σk is

the unique prefix of length k of σ and that σ′
k is the unique prefix of length k of σ′.

Thus, m0
σk−→ mk and m′

0

σ′
k−→ m′

k. By Lemma 5.8, and by definition of σ′, we have
m′

k =P mk. �

Lemma 7.2 Let N = 〈P, T,m0〉 be a PN+NBA and let N ′ = 〈P ′, T ′,m′
0〉 be the

PN+T obtained from N . Let σ′ = τ ′
1τ

′
2 . . . τ ′

j . . . be a sequence of transitions of N ′. Let
m′

1,m
′
2, . . . ,m

′
j , . . . be the markings s.t.

m′
0

τ ′
1−→ m′

1

τ ′
2−→ m′

2 . . .m′
j−1

τ ′
j−→m′

j . . .

Let σ = g(τ ′
1)g(τ ′

2) . . . g(τ ′
j), . . . be the corresponding sequence of transitions of N .

Then, σ is firable from m0 and, for all j ≥ 1: mj 4P m′
j, where m1,m2, . . . ,mj , . . .

are the markings s.t.

m0
g(τ ′

1)−−−→ m1
g(τ ′

2)−−−→ m2 . . .mj−1

g(τ ′
j)−−→mj , . . .

200 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

Proof. The result can be established by the same argument as for Lemma 7.1, by
invoking Lemma 5.9. �

Thus, we have:

Lemma 7.3 For any PN+NBA N , it is possible to construct a PN+T N ′ such that
Lω(N) = Lω(N ′).

Proof. Let σ be a firable sequence of transitions of N , and let σ′ be its corresponding
sequence in N ′ (obtained thanks to function f). By construction, we have Λ(σ′) =
Λ(σ). By Lemma 7.1, σ′ is firable in N ′. Hence, Lω(N) ⊆ Lω(N ′). By a similar
reasoning and thanks to Lemma 7.2, we conclude that Lω(N) ⊇ Lω(N ′). Hence,
Lω(N) = Lω(N ′). �

And thus, we immediately obtain:

Theorem 7.1 For every ω-language L that is accepted by a PN+NBA, there exists a
PN+T that accepts L.

Proof. The Theorem stems directly from Lemma 7.3. �

7.1.2 PN+T are more expressive than PN+NBA

Let us now prove that Lω(PN+NBA) is strictly included in Lω(PN+T). We consider the
PN+T N1 presented in Figure 7.1 with the initial marking m0(p1) = 1 and m0(p) = 0
for p ∈ {p2, p3, p4}. The two following Lemmata allow us to better understand the
behaviour of N1.

Lemma 7.4 For any k ≥ 1, the word
(
akbk

)ω
is accepted by N1.

Proof. The following holds for any k ≥ 1. From the initial marking of N1, we can
fire tk1t2t

k−1
3 (which accepts akbk), and reach the marking m1 such that m1(p2) = 1

and ∀i ∈ {1, 3, 4} : m1(pi) = 0. Thus, t4 is firable from m1 and does not transfer any
token, but produces a token in p3 and moves the token from p2 to p1. The marking
that is obtained is m2 such that m2(p1) = m2(p3) = 1 and m2(p2) = m2(p4) = 0. It

is not difficult to see now that m2
tk−1
1 t2tk−1

3−−−−−−→ m1
t4−→ m2. We can thus fire the sequence

tk−1
1 t2t

k−1
3 t4 arbitrarily often from m2. Hence

(
akbk

)ω
is accepted by N1. �

7.1. PN+T ARE MORE EXPRESSIVE THAN PN+NBA 201

•
p1 p2

p3

p4

t1
a

t2

b

t3
b

t4 a

Figure 7.1: The PN+T N1.

Lemma 7.5 Let n1, n2, n3 and m be four natural numbers such that 0 < n1 < n2 < n3

and m > 0. Then, for any k ≥ 0 the words

(an3bn3)kan3(bn1an1)m(bn2an2)ω

are not accepted by N1.

Proof. The following holds for any n1, n2, n3 with 0 < n1 < n2 < n3 and for any m > 0
and k ∈ N. From the initial marking of N1, the only sequence of transitions labelled by
an3 is tn3

1 . Firing this sequence leads to the marking m1 such that m1(p1) = 1,m1(p3) =
n3 and m1(p) = 0 if p ∈ {p2, p4}. From m1 the only firable sequence of transitions
labelled by bn3 is t2t

n3−1
3 . This leads to the marking m2 such that m2(p2) = 1 and

m2(p) = 0 if p 6= p2. The only sequence of transitions firable from m2 and labelled by
an3 is t4t

n3−1
1 . Since m2(p3) = 0, the transfer of t4 has no effect when fired from m2.

Hence, we reach m1 again after firing t4t
n3−1
1 . By repeating the reasoning, we conclude

that the only sequence of transitions firable from the initial marking and labelled by
(an3bn3)kan3 (when k > 0) is tn3

1 t2t
n3−1
3 (t4t

n3−1
1 t2t

n3−1
3)k−1t4t

n3−1
1 and it leads to m1. In

the case where k = 0, the sequence tn3
1 is firable and leads to m1 too. From m1, the

only firable sequence of transitions labelled by bn1 is t2t
n1−1
3 . This leads to a marking

similar to m2, noted m′
2, except that p3 contains n3−n1 tokens. Then, the only firable

sequence of transitions labelled by an1 is t4t
n1−1
1 . In this case, the transfer of t4 moves

the n3 − n1 tokens from p3 to p4 and we reach a marking similar to m1, noted m′
1,

except that p4 contains n3 − n1 tokens and p3 contains n1 tokens. From m′
1, the only

firable sequence of transitions labelled by bn1an1 is t2t
n1−1
3 t4t

n1−1
1 . This sequence leads

to m′
1 and can thus be fired m times.

However, after firing t2t
n1−1
3 from m′

1, we reach a marking m′′
2 similar to m2 except

that p4 contains n3 − n1 tokens and from which no transition labelled by b is firable.
Since n2 > n1, we conclude that there is no sequence of transitions labelled by bn2 that
is firable from m′

1, hence (an3bn3)kan3(bn1an1)m(bn2an2)ω is not accepted by N1. �

202 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

Our proof that Lω(PN+NBA) is strictly included in Lω(PN+T) consists in showing
that no PN+NBA can accept the language accepted by N1. For that purpose, we
rely on the two previous lemmata, as well as the following result that characterises
sequences of transitions of PN+NBA:

Lemma 7.6 Let N = 〈P, T , Σ,m0〉 be a PN+NBA, and let σ be a finite sequence of
transitions of N that contains n occurrences of transitions in Te. Let m1, m′

1, m2 and
m′

2 be four makings such that (i) m1
σ−→m′

1, (ii) m2
σ−→ m′

2 and (iii) m2 < m1. Then,
for every place p ∈ P: m′

2(p)−m′
1(p) ≥m2(p)−m1(p)− n.

Proof. Let us consider a place p ∈ P. First, we remark that when we fire σ from
m2 instead of m1, its Petri net arcs will have the same effect on p. On the other
hand, since we want to find a lower bound on m′

2(p)−m′
1(p), we consider the situation

where no non-blocking arcs affect p when σ is fired from m1, but they all remove
one token from p when σ is fired from m2. In the latter case, the effect of σ on p is
m′

1(p)−m1(p)−n. We obtain thus: m′
2(p) ≥ max{m2(p)+m′

1(p)−m1(p)−n, 0}. Hence
m′

2(p) ≥ m′
1(p) + m2(p)−m1(p)− n, and thus: m′

2(p)−m′
1(p) ≥ m2(p)−m1(p)− n.

�

We can now show that no PN+NBA can accept Lω(N1). Remark that the proof
technique used hereafter relies on Lemmata 2.2 and 2.14, and is somewhat similar to
a pumping lemma (such as Lemma 2.16, for instance).

Lemma 7.7 No PN+NBA accepts Lω(N1).

Proof. Let N be a PN+NBA such that Lω(N1) ⊆ Lω(N). We will show that this
implies that Lω(N1) (Lω(N). As Lω(N1) ⊆ Lω(N), by Lemma 7.4 we know that,
for all k ≥ 1, the word (akbk)ω belongs to Lω(N). Suppose that minit is the initial
marking of N . Thus, for all k ≥ 1, there exists a marking m̂k, a finite sequence of
transitions σk, a natural number ℓk and nk ≥ 1 such that:

minit
(ak

b
k)ℓka

k

−−−−−−→ m̂k
Λ(σk)−−−→ m̂′

k, m̂
′
k < m̂k and Λ(σk) = (bkak)nk

Indeed, if this were not the case, we would have minit
a

k

−→ m1
b

k
a

k

−−→ m2 . . .
b

k
a

k

−−→
mi

b
k
a

k

−−→ . . . such that there does not exist 1 ≤ i < j with mi 4 mj . But from Lemma
2.2, this never occurs.

Let us consider the infinite sequence m̂1, m̂2, . . . , m̂i, . . . Following Lemma 2.2
again, we may extract from it a sub-sequence m̂ρ(1), m̂ρ(2), . . . , m̂ρ(n), . . . such that:
∀p ∈ P : either ∀i ≥ 1 : m̂ρ(i)(p) = m̂ρ(i+1)(p) or ∀i ≥ 1 : m̂ρ(i)(p) < m̂ρ(i+1)(p). Let us
denote by P ′ the set of places that strictly increase in that sequence.

7.1. PN+T ARE MORE EXPRESSIVE THAN PN+NBA 203

Let n be the number of occurrences of transitions of Te in σρ(1) and let us consider

m̂ρ(1), m̂ρ(2), m̂ρ(n+3), and m such that: m̂ρ(n+3)

σρ(1)−−→ m (from Lemma 2.14, the
sequence σρ(1) is firable from m̂ρ(n+3) since m̂ρ(1) 4 m̂ρ(n+3) and σρ(1) is firable from
m̂ρ(1)). We first prove that m < m̂ρ(2).

We know that:

m̂ρ(1)

σρ(1)−−→ m̂′
ρ(1) ∧ m̂′

ρ(1) < m̂ρ(1) (7.1)

∀p ∈ P ′ : m̂ρ(n+3)(p) ≥ m̂ρ(2)(p) + n + 1 (7.2)

∀p ∈ P \ P ′ : m̂ρ(1)(p) = m̂ρ(2)(p) = m̂ρ(n+3)(p) (7.3)

Thus:
(a) ∀p ∈ P ′ : m(p) ≥ m̂′

ρ(1)(p) +
(
m̂ρ(n+3)(p)− m̂ρ(1)(p)

)
− n by Lemma 7.6

⇒ ∀p ∈ P ′ : m(p) ≥ m̂ρ(1)(p) +
(
m̂ρ(n+3)(p)− m̂ρ(1)(p)

)
− n by (7.1)

⇒ ∀p ∈ P ′ : m(p) ≥ m̂ρ(n+3)(p)− n

⇒ ∀p ∈ P ′ : m(p) ≥ m̂ρ(2)(p) + 1 by (7.2)
⇒ ∀p ∈ P ′ : m(p) > m̂ρ(2)(p)

(b) By monotonicity of PN+NBA (Lemma 2.14), we have that m < m̂′
ρ(1). Moreover,

by (7.1), we have that m̂′
ρ(1) < m̂ρ(1). Hence, ∀p ∈ P : m(p) ≥ m̂ρ(1)(p). As a

consequence, ∀p ∈ P \ P ′ : m(p) ≥ m̂ρ(2)(p) from (7.3).

From (a) and (b), we obtain m < m̂ρ(2), hence σρ(2) is firable from m. And so:

minit

(
a

ρ(3+n)
b

ρ(3+n)
)ℓρ(3+n)

a
ρ(3+n)

−−−−−−−−−−−−−−−−−−→ m̂ρ(3+n)

(
b

ρ(1)
a

ρ(1)
)nρ(1)

−−−−−−−−−−→m

(
b

ρ(2)
a

ρ(2)
)nρ(2)

−−−−−−−−−−→m′

Finally, let us prove that we can fire σρ(2) infinitely often from m′. Since m < m̂ρ(2)

and m̂ρ(2)

σρ(2)−−→ m̂′
ρ(2), we have by Lemma 2.14 that m′ < m̂′

ρ(2) < m̂ρ(2), hence

m′
σρ(2)−−→ m′′ for some marking m′′ < m̂′

ρ(2) < m̂ρ(2). Since we can repeat the reasoning
infinitely often from m′′, we conclude that σρ(2) can be fired infinitely often from m′′

and
(aρ(n+3)bρ(n+3))ℓρ(n+3)aρ(n+3)

(
bρ(1)aρ(1)

)nρ(1)
(
bρ(2)aρ(2)

)ω

is a word of Lω(N) (with ρ(n + 3) > ρ(2) > ρ(1) > 0 and nρ(1) > 0). But, following
Lemma 7.5, this word is not in Lω(N1). We conclude that Lω(N1) (Lω(N). �

We can now state the main Theorem of this section.

Theorem 7.2 PN+T are more expressive, on infinite words, than PN+NBA, i.e.:
Lω(PN+NBA) (Lω(PN+T).

Proof. From Theorem 7.1, we have that Lω(PN+NBA) ⊆ Lω(PN+T). However,
there exist languages that can be recognised by a PN+T but not by PN+NBA, following
Lemma 7.7. Hence, we conclude that Lω(PN+NBA) (Lω(PN+T). �

204 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

•
p1

p2

p3

p4

p5

p6

t1 i

t2

s

t3
a

t4

c

t5
b

t6

d

Figure 7.2: The PN+NBA N2.

Remark that Theorem 7.1 still holds in the case where we disallow ε-transitions,
since the construction used in Lemma 7.3 does not require the use of ε-transitions.
Moreover, since N1 contains no ε-transitions and since we have made no assumptions
regarding the ε-transitions in the previous proofs, we obtain:

Corollary 7.1 PN+T without ε-transitions are more expressive on infinite words than
PN+NBA, i.e.: Lω

/ε (PN+NBA) (Lω
/ε (PN+T).

7.2 PN+NBA are more expressive than PN

In this section we prove that the class of ω-languages accepted by PN+NBA strictly
contains the class of ω-languages accepted by PN.

The strategy adopted in the proof is similar to the one we have used in Sec-
tion 7.1. We consider the PN+NBA N2 of Figure 7.2, and prove it accepts every
word of the form iks

(
akcbkd

)ω
, for k ≥ 1 (Lemma 7.8), but rejects words of the form

in3s
(
an3cbn3d

)m
an3c

(
bn1dan1c

)k(
bn2dan2c

)ω
, for k big enough, and 0 < n1 < n2 < n3

(Lemma 7.9). Then, we prove Lemma 7.10, stating that any PN accepting at least
the words of the first form must also accept the words of the latter form. We con-
clude that no PN can accept Lω(N2). Since any PN is also a PN+NBA, the inclusion
is immediate, and we obtain Theorem 7.3, that states the strictness of the inclusion
Lω(PN) (Lω(PN+NBA).

Let us consider the PN+NBA N2 in Figure 7.2, with the initial marking m0 such
that m0(p1) = 1 and m0(p) = 0 for p ∈ {p2, p3, p4, p5, p6}.

Lemma 7.8 For any k ≥ 0, the word iks
(
akcbkd

)ω
is accepted by N2.

7.2. PN+NBA ARE MORE EXPRESSIVE THAN PN 205

Proof. The following holds for any k ≥ 0. After firing the transitions tk1t2 from the
initial marking of N2, we reach the marking m1 such that m1(p2) = k , m1(p3) = 1,
and m1(pj) = 0 for j ∈ {1, 4, 5, 6}. Then, we can fire tk3t4 from m1. This leads to the
marking m2 such that m2(p4) = k, m2(p5) = 1, and m2(pj) = 0 for j ∈ {1, 2, 3, 6}.
From m2, tk5 can be fired. This sequence of transitions moves the k tokens from p4

to p2. Then, from the resulting marking, t6 can be fired. Since, p4 is now empty, the
effect of t6 only consists in moving the token from p5 to p3 (its non-blocking arc has no
effect) and we reach m1 again. Then, by applying the same reasoning, we fire infinitely
often tk3t4t

k
5t6. The word corresponding to such a sequence is iks

(
akcbkd

)ω
. �

Lemma 7.9 Let n1, n2 and n3 be three natural numbers such that 0 < n1 < n2 < n3.
Then, for all m > 0, for all k ≥ n3 − n1 − 1: the words

in3s
(
an3cbn3d

)m
an3c

(
bn1dan1c

)k(
bn2dan2c

)ω

are not accepted by N2.

Proof. In this proof, we will identify a sequence of transitions with the word it accepts
(all the transitions have different labels). Clearly (see the proof of Lemma 7.8), the
firing of in3s

(
an3cbn3d

)m
from m0 leads to a marking m1 such that m1(p2) = n3,

m1(p3) = 1, and ∀i ∈ {1, 4, 5, 6} : m1(pi) = 0 (the non-blocking arc of t6 hasn’t
consumed any token in p4). By firing an3cbn1d from m1, we now have n1 tokens in
p2, n3 − n1 − 1 tokens in p4 and one token in p6 (this time the non-blocking arc has
moved one token since n1 < n3). Clearly, at each subsequent firing of an1cbn1d, the
non-blocking arc of t6 will remove one token from p4 and its marking will strictly

decrease until it becomes empty. Let ℓ = n3−n1−1. It is easy to see that
(
an1cbn1d

)ℓ

leads to a marking m2 with m2(p2) = n1 m2(p3) = 1 and ∀j ∈ {1, 4, 5} : m2(pj) = 0.
This characterisation also implies that we can fire an1cbn1d an arbitrary number of

times from m2 because m2
a

n1cbn1d−−−−−→ m2. On the other hand, it is not possible to

fire an1cbn2d , with n2 > n1, from m2. Indeed m2
a

n1 cbn1−−−−→ m3, with m3(p5) = 1,
m3(p2) = n1 and ∀j ∈ {1, 3, 4} : m3(pj) = 0, which does not allow to fire the b-
labelled transition t5 anymore. We conclude that, ∀k ≥ ℓ = n3 − n1 − 1, a sequence

labelled by in3s
(
an3cbn3d

)m
an3c

(
bn1dan1c

)k
bn2dan2c, is not firable in N2. Thus, we

will not find in Lω(N2) any word with this prefix, hence the Lemma. �

We are now ready to prove that no PN accepts exactly the ω-language of the
PN+NBA N2.

Lemma 7.10 No PN accepts Lω(N2).

Proof. Let N be a PN such that Lω(N2) ⊆ Lω(N). We will show that this implies
that Lω(N2) (Lω(N).

206 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

Suppose that minit is the initial marking of N . Following Lemma 7.8, since
Lω(N2) ⊆ Lω(N), we have ∀k ≥ 1 : iks

(
akcbkd

)ω ∈ L(N). Thus, for all k ≥ 1,
there exists a marking m̂k, a sequence of transitions σk and ℓk ∈ N0 such that:

minit

i
k
s

(
a

k
cb

k
d

)ℓk
a

k
c

−−−−−−−−−−→ m̂k
Λ(σk)−−−→ m̂′

k with m̂k 4 m̂′
k and Λ(σk) ∈

(
bkdakc

)+

Indeed, if it is not the case, we would have minit
i

k
sa

k
c−−−−→m1

b
k
da

k
c−−−−→ . . .

b
k
da

k
c−−−−→mi

b
k
da

k
c−−−−→

. . . such that there do not exist 1 ≤ i < j with mi 4 mj . But, from Lemma 2.2, this
never occurs.

Let us consider the sequence m̂1, m̂2, m̂3, . . . Following Lemma 2.2, we may extract
an infinite sub-sequence m̂ρ(1), m̂ρ(2), m̂ρ(3), . . . such that ∀p ∈ P : either ∀i ≥ 1 :
m̂ρ(i)(p) = m̂ρ(i+1)(p) or ∀i ≥ 1 : m̂ρ(i)(p) < m̂ρ(i+1)(p).

Since m̂ρ(3) < m̂ρ(1) and σρ(1) has a non-negative and constant effect on each place
(its effect is characterised by its Parikh vector, which is a tuple of naturals), we can

fire σρ(1) any number of times from m̂ρ(3): for all k′ ≥ 0 we have m̂ρ(3)

(σρ(1))
k′

−−−−−→ mk′

with mk′
< m̂ρ(3). Since m̂ρ(3) < m̂ρ(2) and σρ(2) has a constant non-negative effect on

each place, σρ(2) can be fired infinitely often from mk′
for any k′ ≥ 1. Thus:

minit

i
ρ(3)

s

(
a

ρ(3)
cb

ρ(3)
d

)ℓρ(3)
a

ρ(3)
c

−−−−−−−−−−−−−−−−−→ m̂ρ(3)

(σρ(1))
k′

−−−−−→ mk′ (σρ(2))
ω

−−−−→

Following Lemma 7.9, if we choose k′ large enough (that is, k′ ≥ ρ(3)− ρ(1)− 1), the
word accepted by the previous sequence is not in Lω(N2). Hence, Lω(N2) (Lω(N).

�

Theorem 7.3 PN+NBA are more expressive, on infinite words, than PN. That is,
Lω(PN) (Lω(PN+NBA).

Proof. As the PN class is a syntactic subclass of the PN+NBA, each PN-language
is also a PN+NBA-language. On the other hand, some PN+NBA-languages are not
PN-languages, by Lemma 7.10. Hence the Theorem. �

Again, since PN is a syntactic subclass of PN+NBA and we have made no as-
sumptions about the ε-transitions in the previous proofs, and since N2 contains no
ε-transition, we obtain:

Corollary 7.2 PN+NBA are more expressive than PN, on infinite words and without
ε-transitions. That is, Lω

/ε (PN) (Lω
/ε (PN+NBA).

7.3. RESET NETS 207

s d

...
...

(a)

t

λ

s d

•
pb

pt
...

...

(b)

ts

λ

tc ε

te

ε

×
Figure 7.3: How to transform a PN+T (a) into a PN+R (b).

7.3 Reset nets

In this section we show how PN+R fit into our classification. We show that PN+R

are as expressive, on ω-languages, as PN+T. It is important to remark here that our
construction requires ε-transitions.

Remember that, by Definition 2.22, any PN+R is a PN+T. Thus, Lω(PN+R) ⊆
Lω(PN+T). Let us exhibit a construction to prove that any ω-language accepted by a
PN+T can also be accepted by a PN+R. We consider the PN+T Nt = 〈P, T, Σ,m0〉,
and build the PN+R Nr = 〈P ′, T ′, Σ,m′

0〉 as follows. Let P ′ = P ⊎ {pb, pTr} ⊎
{pt|t ∈ Te}. Then for each transition t = 〈I, O, s, d, +∞, λ〉 ∈ Te, we put three
transitions in T ′: ts = 〈I ⊎ {pb}, {pt},⊥,⊥, 0, λ〉; tc = 〈{pt, s}, {pt, d},⊥,⊥, 0, ε〉; and
te = 〈{pt}, O ⊎ {pb}, s, pTr, +∞, ε〉. For any t = 〈I, O,⊥,⊥, 0, λ〉 ∈ Tr, we add a tran-
sition t′ = 〈I ⊎ {pb}, O ⊎ {pb},⊥,⊥, 0, λ〉 in T ′. Finally, ∀p ∈ P : m′

0(p) = m0(p),
m′

0(pb) = 1, m′
0(pTr) = 0 and ∀t ∈ Te : m′

0(pt) = 0. Figure 7.3 illustrates the construc-
tion.

Let us now prove that the PN+R obtained thanks to this construction has the same
ω-language as the PN+T it corresponds to.

Lemma 7.11 Let Nt be a PN+T and let Nr be the PN+R obtained from Nt. Then,
Lω(Nr) = Lω(Nt).

Proof. Let us first show that Lω(Nt) ⊆ Lω(Nr). Let σ = t1t2 . . . be an infinite sequence
of transitions ofNt. Then, Nr accepts Λ(σ) thanks to σ′ built as follows. Let us assume
that m0 is the initial marking of Nt. For any i ≥ 1, let mi be the marking of Nt s.t.

m0
t1···ti−−−→ mi. Then, σ′ is equal to σ1 · σ2 · · · , where, for any i ≥ 1, σi is obtained as

follows:

1. If ti = t ∈ Tr, then σi = t′;

2. If ti = t ∈ Te, then σi = ts(tc)(mi−1(s)−I(s))te.

208 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

Clearly Λ(σi) = Λ(ti) for any i ≥ 1 and their respective effects are equal on the places
in P (remark that the reset arc has no effect and that the markings of pb and pt

respectively are the same before and after the firing of each σi).

Then, let us show that Lω(Nr) ⊆ Lω(Nt). Let σ′ = t′1t
′
2 . . . be an infinite sequence

of transitions of Nr We first extract from σ′ the subsequences ts(tc)nte(n ∈ N) that
correspond to a given extended transition t in Nt. Thus, σ′ = σ′

1 · σ′
2 · · · , where σ′

i is
either a single regular transition t′ corresponding to the single regular transition t ∈ Tr

or a sequence σt corresponding to the extended transition t ∈ Te. This is possible since
the firing of ts removes the token from pb and block the whole net (except tc and te).
Hence no transitions can interleave with ts(tc)∗te. Moreover, σ′ cannot have a suffix
of the form ts(tc)ω since tc decreases the marking of the source place of the transfer of
the corresponding transition t.

Then, we build the sequence σ = t1t2 . . . of Nt as follows. For any i ≥ 1:

1. If |σ′
i| = 1, then, it is the single transition t′ that corresponds to t ∈ Tr. In that

case, we let ti = t.

2. If |σ′
i| > 1, then, it is a sequence σt that corresponds to a single t ∈ Te. We let

ti = t.

Clearly, Λ(σ) = Λ(σ′). Let us now prove that σ is firable, i.e. m0
t1−→m1

t2−→m2
t3−→ . . .,

by showing that ∀i ≥ 0 : m′
ki

4P mi.

Base case: i = 0. The base case is trivially verified.

Induction Step: i = ℓ. By induction hypothesis, we have that ∀0 ≤ i ≤ ℓ − 1 :
m′

ki
4P mi. In the case where tℓ is a regular transition, it has the same effect on the

places in P as σℓ = t′kℓ
and it can occur since m′

kℓ−1
4P mℓ−1. Hence m′

kℓ
4P mℓ, by

monotonicity. Otherwise tℓ is an extended transition and its effect on P corresponds
to the effect of σℓ. Let us observe the effect of σℓ: some tokens will be taken from s

(the source place of the transfer) and put into d (the destination) by tcℓ. Finally, the
tokens remaining in s will be removed by the reset arc of teℓ . Hence, σℓ removes the
same number of tokens from s than tℓ, and cannot put more tokens in d than tℓ does.
Moreover, the effect of σℓ on the other places is the same than tℓ. Thus m′

kℓ
4P mℓ.

�

Theorem 7.4 PN+R are as expressive as PN+T on infinite words, i.e. Lω(PN+R) =
Lω(PN+T).

Proof. As any PN+R is a special case of PN+T, we have that Lω(PN+R) ⊆ Lω(PN+T).
The other direction stems from Lemma 7.11. �

In the case where we disallow ε-transitions, the previous construction doesn’t allow
to prove whether Lω

/ε (PN+T) ⊆ Lω
/ε (PN+R) or not. Indeed, this construction requests

7.4. DECIDABILITY OF LTLSATIS ON PN+T AND PN+R 209

the use of several ε-transitions (namely, the tc and te transitions used in the widget
that replaces any extended transition t. See Figure 7.3). However, we have that
Lω(PN+NBA) (Lω(PN+R) and Lω

/ε (PN+NBA) (Lω
/ε (PN+R), since the PN+T N1 we

have used in the proof of Lemma 7.7 satisfies our definition of PN+R (in this case, the
place p4 is the trashcan) and has no ε-transitions.

7.4 Decidability of LTLSatis on PN+T and PN+R

Another consequence of the results that we have obtained in the present chapter is that
LTLSatis is undecidable on PN+T and PN+R. Indeed, for any PN+NBA N , one can
build a PN+R N ′ that has the same ω-language. Since LTLSatis is undecidable on
PN+NBA, it has to be undecidable on PN+R. The undecidability on PN+T follows
from the fact that every PN+R is a PN+T.

Theorem 7.5 LTLSatis is undecidable on PN+T and PN+R.

Proof. Let ϕ be a formula of action-based ltl, and let N be a PN+NBA. By The-
orem 7.1, there exists an PN+R N ′ s.t. Lω(N) = Lω(N ′). Remark that there exists
an effective procedure to build such a N ′ (it is described in Section 5.4.4). Hence
Lω(N) |= ϕ iff Lω(N ′) |= ϕ. Thus, if there were an algorithm to decide LTLSatis on
PN+R, this construction would provide us with an algorithm to decide LTLSatis on
PN+NBA. By Theorem 3.20, this is not possible. Hence LTLSatis is undecidable on
PN+R. The undecidability on PN+T follows from the fact that N ′ is also a PN+T, by
Definition 2.22. �

7.5 Discussion

In the introduction of this chapter, we have recalled how important EPN are to study
the non-terminating behaviour of concurrent systems made up of an arbitrary num-
ber of communicating processes (once abstracted thanks to predicate- and counting-
abstraction techniques [BCR01]). Our aim was thus to study and classify the ex-
pressive powers of these models, as far as ω-languages are concerned. This goal has
been fulfilled, as shown in the summary of our results in Figure 7.4. Indeed, we have
proved in Section 7.1 that any ω-language accepted by a PN+NBA can be accepted
by a PN+T, but that there exist ω-languages that are recognised by a PN+T but
not by a PN+NBA. A similar result has been demonstrated for PN+NBA and PN in
Section 7.2. These results hold with or without ε-transitions. Finally, in Section 7.3
we have drawn a link between these results and the class PN+R. Remark that the
exact relationship between Lω

/ε (PN+T) and Lω
/ε (PN+R) still has to be investigated: it

is clear that Lω
/ε (PN+R) ⊆ Lω

/ε (PN+T), by definition. However, we are not aware of

210 CHAPTER 7. ω-LANGUAGES DEFINED BY WSTS

With ε-transitions:

Lω(PN) (Lω(PN+NBA) (






Lω(PN+T)

=

Lω(PN+R)

Without ε-transitions:

Lω
/ε (PN) (Lω

/ε (PN+NBA) (






Lω
/ε (PN+T)⊇

Lω
/ε (PN+R)

Figure 7.4: Summary of the results on ω-languages.

a proof showing that Lω
/ε (PN+R) ⊇ Lω

/ε (PN+T), nor of an example of PN+T without
ε-labelled transition whose language cannot be accepted by a PN+R without ε-labelled
transition.

A stated in the introduction, these results find a natural continuation in the next
chapter, where we study the expressiveness of PN, PN+NBA and PN+T, as well as
WSTS in general, in terms of finite words languages.

Chapter 8

Well-structured languages

T
he present chapter is dedicated to the study of finite words languages of WSTS.
As we have seen in Chapter 2, four main classes of languages of WSTS can
be defined, depending on the form of the accepting sets of configurations. As a

matter of fact, it is the class LG(WSTS) of well-structured languages (and its subclasses
LG(PN), LG(PN+NBA) and LG(PN+T)) that will retain our attention here. Section 8.1
motivates this choice, by showing that the class LG(WSTS) enjoys nice properties
that do not necessarily hold on the classes LL(WSTS) and LT (WSTS). For instance,
LG(WSTS) is closed under several operations (union, intersection, concatenation, and
so forth), and one can decide whether the language of a given EWSTS is empty, for a
given upward-closed set of accepting configurations. On the other hand, unfortunately,
we prove that universality is undecidable on this class. Nevertheless, the positive results
are strong enough to justify the study of LG(WSTS) in the first place.

This study begins in Section 8.2 with the statement of three pumping lemmata
for WSTS, PN and PN+NBA. These lemmata say, roughly speaking, that, when a
given language L is in LG(WSTS) (resp. LG(PN), LG(PN+NBA) and if this language
contains an infinite set of words of a given form {w1, w2, . . . , wj, . . .}, we can deduce
that infinitely many other words – built upon w1, w2, . . . – also belong to L. The
proofs of these lemmata seem to us interesting per se, because the arguments at work
are direct exploitations of the monotonicity property of WSTS, and of the peculiar
properties of WQO.

Then, Section 8.3 exploits these pumping lemmata to show several results about
well-structured languages, and languages of PN, PN+NBA and PN+T. For instance,
we prove that several well-studied languages, such as the language of all palindromes
on a given alphabet, is not a WSL. Thanks to our pumping lemma on WSL, that
proof is deceptively simple (particularly if we compare it to a similar proof in [Pet81]).
Moreover, as in the case of infinite words, we strictly separate, thanks to our pump-
ing lemmata, the expressive power of PN, PN+NBA and PN+T, when upward-closed

211

212 CHAPTER 8. WELL-STRUCTURED LANGUAGES

accepting conditions are considered. All these results show the interest of the three
pumping lemmata.

Finally, we close the chapter by proving several closure properties of WSL (and,
more particularly, of LG(PN+T)).

Remark that the results that concern the separation in the expressiveness of PN+T,
PN+NBA and PN in the present chapter are very similar to those we have presented
about ω-languages in the previous one. As a matter of fact, the proof techniques will
be similar too, and we will sometimes re-use results of Chapter 7. For instance, the two
EPN that we have used in the proofs of Chapter 7 to separate the expressive powers,
will be used in this chapter for the same purpose (as far as finite words are concerned).

The content of this chapter is mainly based on the (submitted) article [GRVB06c].
Section 8.3.6 constitutes unpublished material.

8.1 Well-structured languages

This section defines the notion of well-structured language or WSL for short, and mo-
tivates this choice. As stated before, we will concentrate on the study of LG(WSTS)
(sometimes more specifically on LG(EWSTS)), because this class enjoys interesting
properties that do not hold on LL(WSTS) nor on LT (WSTS). Moreover, the class
LP (WSTS) is a (strict) subclass of LG(WSTS).

8.1.1 Positive results on LG(WSTS)

Let us begin our argumentation in favour of the class LG(WSTS) with three positive
results.

LG(EWSTS) 6= R.E. = LL(EWSTS) = LT(EWSTS) The first motivation comes from
Proposition 3.6 that states that LL(EWSTS) and LT (EWSTS) are both equal to the
set of recursively enumerable languages. Since this class of languages corresponds
to the languages of Turing Machines, and since Rice’s theorem states that only trivial
properties of these languages can be decided, there is no hope that interesting properties
are decidable on LL(EWSTS) and LT (EWSTS). On the other hand, we will prove in
section 8.3.1 (see Proposition 8.4) that some CFL (context-free languages) are not in
LG(EWSTS). This implies that LG(EWSTS) 6= R.E., which is not surprising since the
emptiness problem is decidable (see hereunder).

Emptiness is decidable. The second motivation is to be found in the fact that the
emptiness problem is decidable on EWSTS. The fact that EmptyWsts is decidable

8.1. WELL-STRUCTURED LANGUAGES 213

for the class EWSTS, when C ′ is ≤-upward-closed, can easily be deduced from the fact
that CPWsts is decidable on EWSTS:

Theorem 8.1 The emptiness problem EmptyWsts is decidable for the class of EW-

STS, when we consider ≤–upward–closed accepting sets.

Proof. From the definition of CPWsts, it is not difficult to see that, given an EWSTS

S and an upward-closed set U of configurations of S, the language L(S, U) = ∅ iff
the answer to the coverability problem is negative on S and U . Since CPWsts is
decidable on the class EWSTS (see Theorem 3.4), this provides us with an effective
procedure to test the emptiness of the language of an EWSTS when an upward–closed
set of accepting configurations is considered. �

LG(WSTS) is a full AFL closed under intersection The third motivation is that
LG(WSTS) is a full AFL closed under intersection, which is a strong indication that it
is a class worth of attention. The proof consists in showing that, given two languages
L1 and L2 in LG(WSTS), there are WSTS that accept respectively L1 ∩ L2, L1 ∪ L2,
L1 · L2, L+

1 , L1 ∩ LR (where LR is any regular language), h(L1) and h−1(L1) (where
h is any arbitrary homomorphism). Remark that we only prove here the existence of
these WSTS, and these constructions are thus not effective in general, since we have
not fixed any formalism to describe WSTS. However, we will present in section 8.3.4
effective constructions for these operations when the WSTS considered are PN+T.

In order to show that LG(WSTS) is a full AFL closed under intersection, we first
introduce a construction that turns any labelled WSTS S into another labelled WSTS

Ss that accepts the same language as S does (for any set of accepting configurations)
and that is simply monotonic:

Definition 8.1 (Simply monotonic labelled WSTS) A labelled WSTS S =〈
C, c0,⇒,≤, Σ

〉
is simply monotonic iff for any c1, c2, c3 ∈ C, for any a ∈ Σ ∪ {ε}:

c1
a⇒ c2 and c1≤c3 implies that there exists c4 ∈ C s.t.t c3

a⇒ c4 and c2≤c4. �

The construction works as follows. First, given a WSTS S =
〈
C, c0,⇒,≤, Σ

〉
, and

a configuration c ∈ C, we let ε−closure⇒ (c) = {c′ | c ε⇒∗ c′}. Remark that, for any
c ∈ C: c ∈ ε−closure⇒ (c). Then, for any WSTS S =

〈
C, c0,⇒,≤, Σ

〉
, we build the

WSTS SS =
〈
C, c0,⇒s,≤, Σ

〉
s.t.:

⇒s=






c1 ∈ ε−closure⇒ (c) ∧
(c, a, c′) ∃c1, c2 ∈ C : c1

a⇒ c2 ∧
c′ ∈ ε−closure⇒ (c2)




 ∪ {(c, ε, c) | c ∈ C}

We can now show that this new transition relation enjoys the desired monotonicity
property:

214 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Lemma 8.1 Let S =
〈
C, c0,⇒,≤, Σ

〉
be a WSTS and let Ss =

〈
C, c0,⇒s,≤, Σ

〉
be

obtained from S by the above construction. Then, for any c1, c2, c3 ∈ C, for any
a ∈ Σ ∪ {ε}: c1≤c3 and c1

a⇒s c2 implies that there exists c4 s.t. c2≤c4 and c3
a⇒s c4.

Proof. Let c1, c2, c3 be three configurations of C and let a ∈ Σ ∪ {ε} be a letter s.t.
c1

a⇒s c2 and c1≤c3. Remark that, by definition, c1
a⇒s c2 implies that c1

a⇒∗ c2.
Hence, by monotonicity of ⇒, there exists c4 s.t. c3

a⇒∗ c4 and c2≤c4. By definition
of ⇒∗, and since a is a single character, this means either that c3

a⇒s c4, or that there
are two configurations c and c′ s.t. c3

ε⇒∗ c
a⇒ c′

ε⇒∗ c4. Hence, c ∈ ε−closure⇒ (c3),
c4 ∈ ε−closure⇒ (c′), and we conclude that c3

a⇒s c4. �

Thus, Ss is indeed a simply monotonic WSTS. Let us show that for any set of
accepting configurations C ′, both S and Ss accept the same language.

Proposition 8.1 Let S =
〈
C, c0,⇒,≤, Σ

〉
be a WSTS and let Ss =

〈
C, c0,⇒s,≤, Σ

〉

be the simply monotonic WSTS obtained from S. Then, for any C ′ ⊆ C: L(S, C ′) =
L(Ss, C

′).

Proof. First remark that ⇒s⊆⇒∗. Hence, L(S, C ′) ⊆ L(Ss, C
′). Let us show that

L(Ss, C
′) ⊆ L(S, C ′). Let us consider w ∈ L(Ss, C

′) and let us show that w ∈ L(S, C ′).

By definition of L, there is c ∈ C ′ s.t. c0
w⇒∗

s c. Hence, by definition of ⇒∗
s there is

k ≥ 1 s.t. there are c1, c2, . . . , ck ∈ C and b1, b2, . . . bk−1 ∈ Σ∪ {ε} with c1 = c0, ck = c,

b1 · b2 · · · bk−1 = w and c1
b1⇒s c2

b2⇒s · · ·
bk−1⇒ s ck. Without loss of generality, we assume

that there is no 1 ≤ i ≤ k − 1 s.t. ci = ci+1 and bi = ε. Indeed, if such transitions
appear in the sequence, they can be removed because they do not add any character
to the words, and are not necessary to reach C ′.

By definition of ⇒s, there are c1, c2, . . . ck−1 and ĉ1, ĉ2, . . . , ĉk−1 in C s.t.:

c1
ε⇒∗ c1

b1⇒ ĉ1
ε⇒∗ c2

ε⇒∗ c2
b2⇒ ĉ2

ε⇒∗ · · · ε⇒∗ ck−1
bk−1⇒ ĉk−1

ε⇒∗ ck

Since ck ∈ C ′, this implies that

ε · b1 · ε · ε · b2 · ε · · · ε · bk−1 · ε = b1 · b2 · · · bk−1 = w ∈ L(S, C ′)

�

Theorem 8.2 LG(WSTS) is a full AFL, closed under intersection.

Proof. According to Definition 2.36, one has to show seven closure properties (the
six properties that define an AFL, plus the closure under intersection) in order to
establish this result. In the sequel, we assume that S1 =

〈
C1, i1, Σ1,⇒1,≤1

〉
and

S2 =
〈
C2, i2, Σ2,⇒2,≤2

〉
are two WSTS (with C1 ∩ C2 = ∅), and that U1 and U2 are

8.1. WELL-STRUCTURED LANGUAGES 215

their associated upward-closed sets of accepting states. In order to make the proofs
easier, we further assume that both S1 and S2 are simply monotonic. According to
Proposition 8.1, this is not restrictive since, for any labelled WSTS S, there exists a
simply monotonic WSTS Ss that accepts the same language. We finally assume that
h : Σ1 7→ Σ∗

1 is a homomorphism s.t. h(ε) = ε, according to the definition from
[Gin75, Sal73]. We prove the closure of the seven operations by showing the existence
of a WSTS S =

〈
C, i, Σ,⇒,≤

〉
and a set of accepting states U , s.t. L(S, U) is the

result of the operation in question. We ensure that L(S, U) is a WSL by proving that
≤ is a WQO, ⇒ is ≤-monotonic and U is upward-closed.

Intersection Let us show that there are S and U s.t. L(S, U) = L(S1, U1)∩L(S2, U2).
S is built as follows: C = C1 × C2; i = (i1, i2); Σ = Σ1 ∩ Σ2; ≤ = {

(
(c1, c2), (c

′
1, c

′
2)
)
|

c1≤1c
′
1 ∧ c2≤2c

′
2}. The transition relation ⇒ is defined as:

⇒ = {
(
(c1, c2), a, (c′1, c

′
2)
)
| c1

a⇒1 c′1 ∧ c2
a⇒2 c′2 ∧ a ∈ Σ} ∪

{
(
(c1, c2), ε, (c

′
1, c

′
2)
)
|
(
c1

ε⇒1 c′1 ∧ c2 = c′2
)

or
(
c1 = c′1 ∧ c2

ε⇒2 c′2
)
}

Finally, U = {(c1, c2) | c1 ∈ U1 ∧ c2 ∈ U2}.
Clearly, L(S, U) = L(S1, U1) ∩ L(S2, U2). Let us prove that ≤, ⇒ and U have the

desired properties:

• ≤ is a WQO Let ς = (c1
1, c

2
1), (c

1
2, c

2
2), . . . , (c

1
n, c2

n), . . . be an infinite sequence of
elements of C. Since ≤1 is a WQO on C1, following Lemma 2.2, one can extract
from ς an infinite subsequence

ς ′ = (c1
ρ(1), c

2
ρ(1)), (c

1
ρ(2), c

2
ρ(2)), . . . , (c

1
ρ(n), c

2
ρ(n)), . . .

such that for any j ≥ 1: c1
ρ(j)≤1c

1
ρ(j+1). Since ≤2 is a WQO on the elements of

C2, there are, in ς ′, two positions k and ℓ s.t. k < ℓ and c2
ρ(k)≤2c

2
ρ(ℓ). Hence,

(c1
ρ(k), c

2
ρ(k))≤(c1

ρ(ℓ), c
2
ρ(ℓ)), which proves that ≤ is a WQO, according to Defini-

tion 2.4.

• ⇒ is ≤-monotonic Let (c1
1, c

2
1), (c1

2, c
2
2), and (c1

3, c
2
3) be three configurations of

C. We consider two cases. Either there is a ∈ Σ s.t. (c1
1, c

2
1)

a⇒ (c1
2, c

2
2) and

(c1
1, c

2
1)≤(c1

3, c
2
3). By definition of ⇒ and ≤, this implies that c1

1
a⇒1 c1

2, c2
1

a⇒2 c2
2,

c1
1≤1c

1
3 and c2

1≤2c
2
3. Since ⇒1 and ⇒2 are resp. ≤1- and ≤2- simply monotonic,

there are c ∈ C1 and c′ ∈ C2 s.t.: c1
3

a⇒1 c, c2
3

a⇒2 c′, c1
2≤1c and c2

2≤2c
′. The

first two point imply that (c1
3, c

2
3)

a⇒ (c, c′). The last two points imply that
(c1

2, c
2
2)≤(c, c′).

On the other hand, if (c1
1, c

2
1)

ε⇒ (c1
2, c

2
2) then either (i) c1

1
ε⇒1 c1

2 and c2
1 = c2

2

or (ii) c2
1

ε⇒1 c2
2 and c1

1 = c1
2. In the first case, since ⇒1 is simply monotonic,

and since c1
1≤1c

1
3, there exists c1

4 s.t. c1
3

ε⇒1 c1
4 and c1

2≤c1
4. Thus, (c1

4, c
2
1)≤(c1

3c
2
1)

by definition of ≤ and (c1
3, c

2
1)

ε⇒ (c1
4, c

2
1) by definition of ⇒. The second case is

similar.

216 CHAPTER 8. WELL-STRUCTURED LANGUAGES

• U is ≤-upward-closed Let (c1
1, c

2
1) and (c1

2, c
2
2), both in C, be s.t. (c1

1, c
2
1)≤(c1

2, c
2
2)

and (c1
1, c

2
1) ∈ U . Let us show that (c1

2, c
2
2) ∈ U too. Since (c1

1, c
2
1) ∈ U , we have

c1
1 ∈ U1 and c2

1 ∈ U2, by definition of U . Since (c1
1, c

2
1)≤(c1

2, c
2
2), c1

1≤1c
1
2 and c2

1≤2c
2
2,

by definition of ≤. But U1 and U2 are resp. ≤1- and ≤2-upward-closed, which
implies that c1

2 ∈ U1 and c2
2 ∈ U2. Hence (c1

2, c
2
2) ∈ U .

Union Let us show that there are S and U such that L(S, U) = L(S1, U1)∪L(S2, U2).
We let C = {i} ⊎ C1 ⊎ C2; Σ = Σ1 ∪ Σ2; ≤ = ≤1 ∪ ≤2 ∪ {(i, i)}; U = U1 ∪ U2 and
⇒= {(i, ε, i1), (i, ε, i2)}∪ ⇒1 ∪ ⇒2.

Clearly, L(S, U) = L(S1, U1) ∪ L(S2, U2). Let us show that S has the desired
properties. By definition, ⇒ is ≤-monotonic (remark that i is ≤-incomparable to any
other element of C). Thus, it remains to prove that:

• ≤ is a WQO Let ς = c0, c2, . . . , cn, . . . be an infinite sequence of elements of C.
Because it is infinite, one can extract, from that sequence, an infinite subsequence
ς ′ = cj1, cj2, cj3, . . ., s.t. either ∀k ≥ 1 : cjk

∈ C1 or ∀k ≥ 1 : cjk
∈ C2 or

∀k ≥ 1 : cjk
= i. In the case where ∀k ≥ 1 : cjk

= i, there are clearly two
positions k < ℓ s.t. cjk

≤cjℓ
, since i≤i. Otherwise, since ≤1 and ≤2 are both

WQO, there exist two positions k and ℓ s.t. k < ℓ and either cjk
≤1cjℓ

or cjk
≤2cjℓ

.
In either cases, this implies that cjk

≤cjℓ
, which proves that ≤ is a WQO following

Definition 2.4.

• U is ≤-upward-closed Let c1, c2 be two configurations in C s.t. c1 ∈ U and
c1≤c2. Let us show that c2 ∈ U . We consider two cases: either c1 ∈ U1 or c1 ∈ U2.
In the former case, since c1 and c2 are ≤-comparable, we deduce that c2 ∈ C1 and
thus, c1≤1c2, by definition of ≤. Hence, c2 ∈ U1, since U1 is ≤1-upward-closed.
This implies that c2 ∈ U . The same reasoning can be applied to the latter case.

Concatenation Let us show that there are S and U such that L(S, U) = L(S1, U1) ·
L(S2, U2). We let C = C1∪C2; i = i1; Σ = Σ1∪Σ2;⇒= {(c, ε, i2) | c ∈ U1}∪ ⇒2 ∪ ⇒1;
≤ = ≤1 ∪≤2 and U = U2.

Clearly, L(S, U) is the concatenation of L(S1, U1) and L(S2, U2). The transition
relation ⇒ is ≤-monotonic from its definition. Indeed, let c1, c2 and c3 be three
configurations from C and a ∈ Σ ∪ {ε} be a character s.t. c1

a⇒ c2 and c1≤c3. In the
case where {c1, c2, c3} ⊆ C1 or {c1, c2, c3} ⊆ C2, there exists c4≥c2 in C = C1 ∪ C2

s.t. c3
a⇒ c4, by monotonicity of ⇒1 and ⇒2. In the case where c1 ∈ C1 and c2 ∈ C2,

we have c1 ∈ U1, c2 = i2 and a = ε, by construction. Hence, c3 ∈ U and c3
ε⇒ i2 by

construction again. Remark that it is not possible that c1 ∈ C2 and c2 ∈ C1. Since
U2 = U is ≤2-upward-closed, ≤ = ≤1 ∪≤2 and C1 ∩C2 = ∅, we conclude that U is ≤-
upward-closed. Finally, one can show that ≤ is a WQO by reusing the same reasoning
as for the union.

8.1. WELL-STRUCTURED LANGUAGES 217

Iteration Let us show that there are S such that L(S, U) = L(S1, U1)
+. We consider

a new configuration i0 6∈ C1 and let C = C1 ∪ {i0}; i = i0; ≤ = ≤1 ∪ {(i0, i0)};
⇒= {(i0, ε, i1)} ∪ {(c, ε, i0) | c ∈ U1}∪ ⇒1 and U = U1.

From these definitions, it is trivial to see that L(S, U) = L(S1, U1)
+, ≤ is a WQO,

⇒ is ≤-monotonic, and U is ≤-upward-closed.

Intersection with regular languages It is not difficult to see that any deterministic
finite-state automaton is a WSTS, when we choose the equality between states as WQO.
Hence, any regular language is a WSL. Since WSL are closed under intersection (see
above), the closure with regular languages holds too.

Arbitrary homomorphism Let us show that there are S and U such that L(S, U) =
h
(
L(S1, U1)

)
. We extend the set of states C1 with elements from C1 × Σ × N in the

following way: C = C1 ⊎ {(c, a, j) | c ∈ C1 ∧ a ∈ Σ ∪ {ε} ∧ 0 ≤ j ≤ |h(a)| ∧ ∃c′ : c
a⇒1

c′}. Intuitively, these extra states are the intermediate states that have to appear
along the path from c to c′ when reading h(a). More precisely, (c, a, j) is the state
reached after having read the j first characters of h(a) from c. We also let i = i1
and ≤ = ≤1 ∪ {

(
(c1, a, j), (c2, a, j)

)
| (c1, a, j), (c2, a, j) ∈ C ∧ c1≤1c2}. The transition

relation is built according to the intuition we have sketched when introducing C:

⇒=






(
c, ε, (c, a, 0)

)
,(

(c, a, 0), w1, (c, a, 1)
)
, a ∈ Σ ∪ {ε} :

... c
a⇒1 c′ and(

(c, a, |h(a)| − 1), w|h(a)|, (c, a, |h(a)|)
)

h(a) = w1w2 . . . w|h(a)|(
(c, a, |h(a)|), ε, c′

)






Finally, U = U1.

By construction, L(S, U) = h
(
L(S1, U1)

)
, and U is a ≤-upward-closed set. It

remains to show that:

• ≤ is a WQO Let us suppose it is not the case. Then, there exists a sequence
of elements of C: ς = c1, c2, . . . , cn, . . . s.t. for any k ≥ 1, for any 1 ≤ n < k:
cn 6≤ck (each configuration is ≤-incomparable to all the previous ones). Remark
that, since ≤1 is a WQO on the elements of C1 and since c≤1c

′ implies c≤c′

(by definition of ≤), one cannot find in ς, infinitely many elements from C1.
Otherwise, the infinite subsequence of ς made of all the elements ci ∈ C1 would
be an infinite sequence of ≤1-incomparable elements from C1. But this cannot
exist since ≤1 is a WQO. Thus, there is, in ς, an infinite subsequence ς ′ =
cj1, cj2, . . . cjn

, . . . s.t. for any k ≥ 1: (i) cjk
6∈ C1 and (ii) for any 1≤n < k:

cjn
6≤cjk

.

By definition of a homomorphism, the value ℓ = maxa∈Σ∪{ε}{|h(a)|} is a finite
value. Hence, there exists 0 ≤ ℓ′ ≤ ℓ and a character a of Σ∪{ε} s.t. the sequence
(cj1, a, ℓ′), (cj2, a, ℓ′), . . . , (cjn

, a, ℓ′), . . . is an infinite subsequence of ς ′ and for any

218 CHAPTER 8. WELL-STRUCTURED LANGUAGES

n < k: (cjn
, a, ℓ′) 6≤(cjk

, a, ℓ′). However, this implies that for any n < k: cjn
6≤1cjk

,
which contradicts the fact that ≤1 is a WQO.

• ⇒ is ≤-monotonic Let us show that, for any c1, c2, c3 ∈ C, and for any a ∈ Σ
s.t. c1

a⇒ c2 and c1≤c3, there exists c4 s.t. c3
a⇒∗ c4 and c2≤c4. We consider two

cases.

1. Either c1 ∈ C1. In that case, by definition of ⇒, we have a = ε and

c2 = (c1, b, 0) for some b. By construction, there is thus c′1 ∈ C1 s.t. c1
b⇒1 c′1.

Moreover, c1≤c3 implies that c3 ∈ C1, and thus that, c1≤1c3. Since ⇒1 is

≤1-simply monotonic, there is c′3 s.t. c3
b⇒1 c′3. Hence, by construction, the

configuration c4 = (c3, b, 0)≥(c1, b, 0) is in C, and satisfies c3
ε⇒ c4.

2. Or, c1 6∈ C1. In that case c1 = (c′, b, i) and c3 = (c′′, b, i) with c′≤1c
′′, for

some b. Again, we have to consider two subcases.

(a) In the case where i < |h(b)|, c2 = (c′, b, i + 1), by construction. We can
choose c4 = (c′′, b, i + 1), which satisfies the conditions.

(b) In the case where i = |h(b)|, c2 is a configuration of C1 s.t. c′
b⇒1

c2. By definition of ⇒, we have: c1 = (c′, b, |h(b)|) ε⇒ c2. By ≤1-

simple monotonicity of ⇒1, there exists a configuration c4 s.t. c′′
b⇒1

c4 and c2≤1c4. Thus, c2≤c4, and, by definition of ⇒, we have c3 =
(c′′, b, |h(b)|) ε⇒ c4. Hence, c4 satisfies the conditions.

In any case, we conclude that ⇒ is ≤-monotonic.

Inverse homomorphism Let us build S and U s.t. L(S, U) = h−1
(
L(S1, U1)

)
. We let

C = C1; i = i1; ≤ = ≤1;⇒= {(c1, a, c2) | a ∈ Σ∪{ε}∧∃w ∈ Σ∗ : h(a) = w∧c1
w⇒∗

1 c2}
and U = U1.

Clearly, L(S, U) = h−1
(
L(S1, U1)

)
. By definition, U is ≤-upward-closed and ≤ is a

WQO. It remains to show that⇒ is ≤-monotonic. Let c1, c2, c3 be three configurations
in C s.t. c1

a⇒ c2 for some a, and c1≤c3. By definition of ⇒, there exists w ∈ Σ∗ s.t.
h(a) = w and c1

w⇒∗
1 c2. Moreover, c3 ∈ C1 and c1≤1c3, by definition. By using an

inductive reasoning on the length of w, one can show that there exists c4 ∈ C1 s.t.
c3

w⇒∗
1 c4 and c2≤1c4. Hence, c4 ∈ C and c3

a⇒ c4, by definition of ⇒. �

Remark 8.1 LP (WSTS) is not a full AFL. Indeed, let us consider the alphabet Σ =
{a, b}. Clearly, the language La = {a, ε} is in LP (WSTS). Let h : Σ 7→ Σ∗ be an
homomorphism s.t. h(a) = bb. Then, h (La) = {(bb), ε} is not in LP (WSTS) because
it is not prefix-closed (the word b is missing).

8.1. WELL-STRUCTURED LANGUAGES 219

8.1.2 Negative result: undecidability of universality

Unfortunately, the universality problem is undecidable on EWSTS, even when we con-
sider upward-closed sets of accepting configurations. The proof consists in showing
that the universality problem is undecidable on PN+NBA. In order to prove the unde-
cidability of universality for PN+NBA, we reduce PBEpn in the case where the EPN

is a PN+NBA, to this problem. Since PBEpn is undecidable on the class PN+NBA

(see Theorem 3.13), and since any PN+NBA defines an EWSTS, we obtain the result.

Given a PN+NBA N = 〈P, T, Σ,m0〉 and a place p ∈ P , the reduction consists
in building a new PN+NBA Np = 〈P ′, T ′, {a},m′

0〉 s.t. Np accepts (with N|P ′| as
accepting set) the universal language (i.e., a∗) if and only if the place p is unbounded
in N . The construction works as follows:

• P ′ = P ⊎ {run, stop};

• T ′ = {〈I ∪ {run}, O ∪ {run}, s, d, b, ε〉 | ∃λ : 〈I, O, s, d, b, λ〉 ∈ T} ∪ {ta, tf},
where: ta = 〈{stop, p}, {stop},⊥,⊥, 0, a〉 and tf = 〈{run}, {stop},⊥,⊥, 0, ε〉.

• m′
0(run) = 1, m′

0(stop) = 0 and ∀p′ ∈ P : m′
0(p

′) = m0(p
′).

In other words, Np is similar to N except that its transitions (but ta) are labelled
by ε and may fire only if the place run is marked. Besides this, the transitions of Np

that have been adapted from transitions of N have the same effect in Np than in N .
The transition tf moves the unique token from run to stop. This has the effect to
prevent the transitions in T ′ \ {ta} from firing further. Hence, ta only (labelled by a)
can be fired after tf has been fired. Since ta consumes one token from place p, that
transition can be fired at most k times where k is the number of tokens in p when
firing tf .

The following lemma states that the the construction we have just introduced is
correct:

Lemma 8.2 Let N = 〈P, T, Σ,m0〉 bet a PN+NBA and let p ∈ P be a place of N .
Let us assume that Np = 〈P ′, T ′, {a},m′

0〉 is the PN+NBA obtained from N and p

as described above. Then, the place boundedness problem for N and p has a negative
answer iff LG(Np, N|P ′|) = a∗.

Proof. If the place-boundedness problem has a negative answer for N and p, then,
for any k ∈ N, there is a sequence of transitions σ s.t. m0

σ−→ m with m(p) ≥ k.
Let σ′ be the sequence of transitions of Np obtained by replacing in σ each transition

by its corresponding transition in Np. Let m′ be the marking s.t. m′
0

σ′

−→ m′ in
Np. By construction, we have: m′(run) = 1 and for any p ∈ P : m′(p) = m(p). In
particular, this implies that m′(p) ≥ k. Hence, the sequence tf t

k
a is firable from m′.

Since the accepting upward-closed set is N|P ′|, the sequence σ′tf t
k
a is accepting, with

220 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Λ(σ′tf t
k
a) = ak. This holds for any k ∈ N, and we conclude that Np accepts a∗, and is

thus universal because the alphabet of Np is {a}.
On the other hand, if Np accepts a∗, then, for any k ∈ N, there exists a sequence of

transitions σ′ s.t. σ′tf t
k
a is firable from m′

0. This holds because ta is the only transition
of Np that is labelled by a, and because tf has to be fired before ta can fire. Moreover,
no ε-labelled transition can be fired once tf has fired because it removes the token

from place run. Let m′ be the marking s.t. m′
0

σ′

−→ m′. Clearly, m′(run) = 1 and
m′(p) ≥ k. Hence, the sequence σ′ contains transitions from T ′ \ {tf , ta} only. Thus,

by construction of Np, there exists a sequence of transitions σ of N s.t. m0
σ−→ m

with m(p) ≥ k (σ is obtained from σ′ by replacing each transition t′ of Np by its
corresponding transitions t in N). Since this is true for any k ∈ N, it implies that p is
unbounded in N . �

This allows us to obtain the following proposition:

Proposition 8.2 The universality problem for PN+NBA is undecidable, when we con-
sider upward-closed sets of accepting configurations.

Proof. From Theorem 3.13, we know that the place boundedness problem is unde-
cidable for PN+NBA. Lemma 8.2 reduces this problem to the universality problem.
Hence, the latter is undecidable. �

Since any PN+NBA defines an EWSTS, we immediately obtain:

Theorem 8.3 UnivEWsts is undecidable when we consider upward-closed sets of
accepting configurations.

8.1.3 Well-structured languages

It should now be clear that the class LG(WSTS) enjoys interesting properties: the
emptiness is decidable on this class, under reasonable effectiveness assumptions (The-
orem 8.1), and it forms a full AFL closed under intersection (Theorem 8.2). Moreover,
the transition relation of WSTS is, by definition, ≤-monotonic. Thus, ≤-upward-closed
sets are perfectly suited accepting conditions for these systems. The only drawback we
could identify on this class of languages is that universality is undecidable. Neverthe-
less, we believe that the positive results are sufficient to restrict ourselves to the study
of LG(WSTS). We call these languages the well-structured languages:

Definition 8.2 (Well-Structured Language) L is a well-structured language
(WSL for short) iff L ∈ LG(WSTS). �

8.2. PUMPING LEMMATA 221

In the rest of this chapter, we will show that WSL are indeed a class of languages
worth of interest by proving several non-trivial properties for them. In particular, we
will prove in Section 8.2 three pumping lemmata, that we will apply in Section 8.3 to
obtain many properties and results about WSL and their subclasses.

8.2 Pumping lemmata

This section presents three lemmata that show the limitations in the expressiveness of
WSTS (for the first one), PN (for the second one), and PN+NBA (for the third one). All
these lemmata have a similar statement: if a given WSTS (resp. PN, PN+NBA) accepts
an infinite set of words {w1, w2, . . .} with a given structure, then it must also accept
other words that are built upon the words w1, w2, . . . In some sense, these lemmata
allow to “inflate” the set of accepted words. For that reason, we have chosen to call
them pumping lemmata, owing to their similarities to the classical pumping lemmata
for regular and context-free languages (see for instance [HMU01]).

The proof techniques rely on properties of infinite sequences of configurations
(equipped with a WQO), and monotonicity properties. The usefulness of these pumping
lemmata will be demonstrated in Section 8.3, where we apply them to obtain several
results about WSL.

8.2.1 A pumping lemma for WSL

Our first pumping lemma deals with WSL, and is very easy to prove:

Lemma 8.3 Let L be a WSL, and let w1, w2, . . . be an infinite sequence of words s.t.
∀k ≥ 1: wk = Bk · Ek ∈ L. Then, there exist i < j s.t. Bj · Ei ∈ L.

Proof. Let S =
〈
C, c0, Σ,⇒,≤

〉
be a WSTS s.t. L(S,U) = L for some ≤-upward-closed

set U . For any k ≥ 1, let ck ∈ C be a configuration s.t. c0
Bk⇒∗ ck

Ek⇒∗ c′k, with c′k ∈ U .

Since ≤ is a WQO, there is i < j s.t. ci≤cj. Hence, c0
Bj⇒∗ cj

Ei⇒∗ c′, with c′i≤c′ by
monotonicity. Thus, c′ ∈ U and Bj · Ei ∈ L. �

8.2.2 A pumping lemma for PN

Our second pumping lemma states properties of languages of Petri nets (more precisely,
languages in the class LG(PN)). This lemma will be exploited mainly in section 8.3.2,
to strictly separate the expressive power of PN and PN+NBA. Other results of interest
that one can obtain thanks to this lemma are mentioned in section 8.3.5.

222 CHAPTER 8. WELL-STRUCTURED LANGUAGES

The proof of the pumping lemma on WSL (see Lemma 8.3 above) exploited the
properties of WQO and the monotonicity property in a rather straightforward fashion:
from a well-chosen infinite sequence of configurations, we had extracted two comparable
elements (property of 4). Thanks to these two comparable elements, and by the
monotonicity property, we have devised a new execution of the WSTS that allows to
prove the lemma.

We follow the same pattern in the proof of the present pumping lemma for PN.
Thus, starting from some well-chosen executions of the PN, we build infinite sequences
of comparable markings that are reached along these sequences. This construction
exploits the properties of 4. However, it is much more intricate in the present case
than in the case of Lemma 8.3 and deserves some attention. This is the purpose of
lemma 8.4, that we introduce now.

Intuitively, Lemma 8.4 shows that, given a matrix M with infinitely many lines
and columns that contains tuples of natural numbers, and given a natural number n,
it is possible to build n infinite increasing sequences of elements ofM that enjoy some
properties which are necessary to prove the pumping lemma. These n sequences are
obtained by the means of n functions f1, f2, . . . , fn which take their values in N0×N0,
and are thus meant to select elements from M. Thus the first infinite sequence to
consider will be M(f1(1)),M(f1(2)), . . .; the second M(f2(1)),M(f2(2)), . . . and so
forth. The lemma is as follows:

Lemma 8.4 Let M be a matrix with an infinite number of lines and columns, and
whose elements are numbered by pairs in N0 × N0 and take their values in Nk (for
k ≥ 1).

For any n ≥ 1, there are n functions N0 7→ N0 ×N0, denoted by f1, f2, . . . , fn such
that the following holds (where f l

i (x) and f c
i (x) denote respectively the first and second

coordinate of fi(x)):

1. For any 1 ≤ i ≤ n, for any x ≥ 1: f c
i (x) ≤ i · f l

i (x);

2. For any 1 ≤ i ≤ n and 1 ≤ j ≤ n, for any x ≥ 1: f l
i (x) = f l

j (x);

3. For any 1 ≤ i ≤ n, for any 1 ≤ p ≤ k: either for any x ≥ 1, M(fi(x))(p) <

M(fi(x + 1))(p) or, for any x ≥ 1, M(fi(x))(p) =M(fi(x + 1))(p);

4. For any 1 ≤ i < j ≤ n, for any x ≥ 1: 0 < f c
j (x) − f c

i (x) < f c
j (x + 1) −

f c
i (x + 1);

5. For any 1 ≤ i ≤ n, for any x ≥ 1: f l
i (x) < f l

i (x + 1).

Proof. The proof is constructive and by induction on n.

Base case: n = 1. Let us consider the sequence:

S =M(1, 1),M(2, 1),M(3, 1), . . .

8.2. PUMPING LEMMATA 223

By lemma 2.2, there exists a strictly increasing function ρ : N0 7→ N0 s.t. the following
is a subsequence of S:

M(ρ(1), 1),M(ρ(2), 1),M(ρ(3), 1), . . .

with the following property: for any 1 ≤ p ≤ k: either for any i ≥ 1: M(ρ(i), 1)(p) <

M(ρ(i + 1), 1)(p) or, for any i ≥ 1: M(ρ(i), 1)(p) = M(ρ(i + 1), 1)(p). We define f1

as follows:

for any x ≥ 1 : f1(x) = (ρ(x), 1) (8.1)

Let us check that the lemma holds on this function:

1. We have to show that for any x ≥ 1: f c
1 (x) ≤ 1·f l

1 (x). By (8.1), this is equivalent
to ∀x ≥ 1 : 1 ≤ ρ(x), which is true by definition of ρ.

2. Trivial for n = 1.

3. This holds by (8.1) and definition of ρ.

4. Trivial for n = 1.

5. We have to show that for any x ≥ 1: f l
1 (x) < f l

1 (x + 1). By (8.1), this is
equivalent to ∀x ≥ 1 : ρ(x) < ρ(x + 1), which is true by definition of ρ.

Inductive case: n > 1. Let us assume there are n− 1 functions g1, g2, . . . , gn−1 that
respect the lemma and let us show how to build n functions f1, f2, . . . , fn that respect
the lemma.

We first define a function gn as follows:

for any x ≥ 1 : gn(x) = (gl
n−1 (x) , gc

n−1 (x) + x) (8.2)

Let us now consider the sequence:

M(gn(1)),M(gn(2)),M(gn(3)), . . .

By Lemma 2.2, there exists a strictly increasing function ρ : N0 7→ N0 s.t.:

M(gn(ρ(1))),M(gn(ρ(2))),M(gn(ρ(3))), . . .

has the following property:

∀1 ≤ p ≤ k :

{
either ∀i ≥ 1 :M(gn(ρ(i)))(p) <M(gn(ρ(i + 1)))(p)

or ∀i ≥ 1 :M(gn(ρ(i)))(p) =M(gn(ρ(i + 1)))(p)
(8.3)

We can now define f1, f2, . . . , fn as follows:

For any 1 ≤ i ≤ n : for any x ≥ 1 : fi(x) = gi(ρ(x)) (8.4)

Let us show that they satisfy the lemma. We prove each point of the lemma by
considering several subcases:

224 CHAPTER 8. WELL-STRUCTURED LANGUAGES

1. (a) In the case where 1 ≤ i ≤ n− 1:
∀x ≥ 1 : f c

i (x) ≤ i · f l
i (x)

⇐⇒ ∀x ≥ 1 : gc
i (ρ(x)) ≤ i · gl

i (ρ(x)) by (8.4)
and the latter is true by induction hypothesis (point 1).

(b) In the case where i = n:
∀x ≥ 1 : f c

n (x) ≤ n · f l
n (x)

⇐⇒ ∀x ≥ 1 : gc
n (ρ(x)) ≤ n · gl

n (ρ(x)) by (8.4)
⇐⇒ ∀x ≥ 1 : gc

n−1 (ρ(x)) + ρ(x) ≤ n · gl
n−1 (ρ(x)) by (8.2)

⇐⇒ ∀x ≥ 1 : gc
n−1 (ρ(x))− (n− 1) · gl

n−1 (ρ(x))
≤ gl

n−1 (ρ(x))− ρ(x)
We show that the last point is valid by establishing that, for any x ≥ 1, (i)
the left-hand side of the inequation gc

n−1 (ρ(x))−(n−1) ·gl
n−1 (ρ(x)) ≤ 0 and

(ii) the right-hand side of the inequation gl
n−1 (ρ(x)) − ρ(x) ≥ 0. The first

point stems from the induction hypothesis, point 1. The latter, holds since,
by induction hypothesis (point 5): 0 < gl

n−1 (1) < gl
n−1 (2) < gl

n−1 (3) , . . .

Hence, for any x ≥ 1 : gl
n−1 (x) ≥ x, and thus for any x ≥ 1 : gl

n−1 (x)− x ≥
0.

2. Without loss of generality, we assume that j ≤ i.

(a) In the case where 1 ≤ j < i ≤ n− 1:
∀x ≥ 1 : f l

i (x) = f l
j (x)

⇐⇒ ∀x ≥ 1 : gl
i (ρ(x)) = gl

j (ρ(x)) by (8.4)
The last point is true by induction hypothesis (point 2).

(b) In the case where i = n and 1 ≤ j ≤ n− 1:
∀x ≥ 1 : f l

n (x) = f l
j (x)

⇐⇒ ∀x ≥ 1 : gl
n (ρ(x)) = gl

j (ρ(x)) by (8.4)
⇐⇒ ∀x ≥ 1 : gl

n−1 (ρ(x)) = gl
j (ρ(x)) by (8.2)

The last point is true by induction hypothesis (point 2).

(c) In the case where i = j: the point is trivially true.

3. First remark that:
∀1 ≤ i ≤ n : ∀1 ≤ p ≤ k :{

either ∀x ≥ 1 :M(fi(x))(p) <M(fi(x + 1))(p)
or ∀x ≥ 1 :M(fi(x))(p) =M(fi(x + 1))(p)

iff ∀1 ≤ i ≤ n : ∀1 ≤ p ≤ k : by (8.4){
either ∀x ≥ 1 :M(gi(ρ(x)))(p) <M(gi(ρ(x + 1)))(p)

or ∀x ≥ 1 :M(gi(ρ(x)))(p) =M(gi(ρ(x + 1)))(p)

(a) In the case where 1 ≤ i ≤ n − 1, this last point is true by induction
hypothesis (point 3) and the fact that ρ(x) < ρ(x + 1).

(b) In the case where i = n, this last point is true by (8.3).

8.2. PUMPING LEMMATA 225

4. (a) In the case where 1 ≤ i < j ≤ n− 1:
∀x ≥ 1 : 0 < f c

j (x)− f c
i (x) < f c

j (x + 1)− f c
i (x + 1)

⇐⇒ ∀x ≥ 1 : 0 < gc
j (ρ(x))− gc

i (ρ(x))
< gc

j (ρ(x + 1))− gc
i (ρ(x + 1)) by (8.4)

This last point is true by induction hypothesis (point 4) and the fact that
ρ(x) < ρ(x + 1).

(b) In the case where 1 ≤ i ≤ n− 1 and j = n:
∀x ≥ 1 : 0 < f c

n (x)− f c
i (x) < f c

n (x + 1)− f c
i (x + 1)

⇐⇒ ∀x ≥ 1 : 0 < gc
n (ρ(x))− gc

i (ρ(x))
< gc

n (ρ(x + 1))− gc
i (ρ(x + 1)) by (8.4)

⇐⇒ ∀x ≥ 1 : 0 < gc
n−1 (ρ(x)) + ρ(x)− gc

i (ρ(x))
< gc

n−1 (ρ(x + 1)) + ρ(x + 1)− gc
i (ρ(x + 1)) by (8.2)

This can be proved by showing two points.

First: ∀x ≥ 1 : 0 < gc
n−1 (ρ(x)) + ρ(x) − gc

i (ρ(x)). This holds because
(i) ∀x ≥ 1 : ρ(x) > 0 (by definition of ρ) and (ii) ∀x ≥ 1 : gc

n−1 (ρ(x)) −
gc

i (ρ(x)) ≥ 0 (in the case where i 6= n−1, we have gc
n−1 (ρ(x))−gc

i (ρ(x)) > 0
by induction hypothesis, point 4. In the case where i = n − 1, we have
gc

n−1 (ρ(x))− gc
i (ρ(x)) = 0).

Second:
∀x ≥ 1 : gc

n−1 (ρ(x)) + ρ(x)− gc
i (ρ(x))

< gc
n−1 (ρ(x + 1)) + ρ(x + 1)− gc

i (ρ(x + 1))
⇐⇒ ∀x ≥ 1 : gc

n−1 (ρ(x))− gc
i (ρ(x))−

(
gc

n−1 (ρ(x + 1))− gc
i (ρ(x + 1))

)

< ρ(x + 1)− ρ(x)
This last point is valid, because (i), the left-hand side gc

n−1 (ρ(x))−gc
i (ρ(x))−

(gc
n−1 (ρ(x + 1))− gc

i (ρ(x + 1)) of the inequation is ≤ 0 (when i 6= n− 1, it
is < 0 by induction hypothesis (point 4), and when i = n− 1, it is = 0) and
(ii), the right-hand side ρ(x + 1)− ρ(x) is > 0, by definition of ρ.

5. (a) In the case where 1 ≤ i ≤ n− 1:
∀x ≥ 1 : f l

i (x) < f l
i (x + 1)

⇐⇒ ∀x ≥ 1 : gl
i (ρ(x)) < gl

i (ρ(x + 1)) by (8.4)
This last point is true by induction hypothesis (point 5) and the fact that
ρ(x) < ρ(x + 1).

(b) In the case where i = n:
∀x ≥ 1 : f l

n (x) < f l
n (x + 1)

⇐⇒ ∀x ≥ 1 : gl
n (ρ(x)) < gl

n (ρ(x + 1)) by (8.4)
⇐⇒ ∀x ≥ 1 : gl

n−1 (ρ(x)) < gl
n−1 (ρ(x + 1)) by (8.2)

This last point is true by induction hypothesis (point 5) and the fact that
ρ(x) < ρ(x + 1).

�

Equipped with this lemma, we can state and prove our pumping lemma for PN.

226 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Lemma 8.5 Let N be a PN and U be an 4-upward-closed set of markings of N . If
there exists an infinite sequence of words w1, w2, . . . such that for any i ≥ 1, there
exist two words Bi, Ei with Biw

∗
i Ei ⊆ L(N , U), then there exist 0 < n1 < n2 < n3

such that for any K ≥ 0, there exists K ′ ≥ K and i1 ≥ 0, i2 ≥ 0 such that the word
Bn3w

i1
n3

wK ′

n1
wi2

n2
En2 is in L(N , U).

The proof of the lemma relies greatly on the fact that PN transitions have a constant
effect. Before giving the proof, we provide the reader with a sketch that presents the
main arguments in order to make the task of reading the proof easier. Throughout this
explanation, we refer to peculiar markings using the same notations as in the proof.
The reader is advised to refer to Figure 8.1, 8.2 and 8.3 to get the intuition of the
meaning of these notations.

The proof is constructive. From the fact that the PN accepts the words Biw
∗
i Ei for

any i ≥ 1, we build, by applying Lemma 8.4, infinite sequences of markings that are
ordered (this is the purpose of the first two steps of the proof). Then, at the third step,
we exploit these ordering properties, as well as the monotonicity of the PN and the
fact that their transitions have constant effect, to show that a sequence of transitions
with the desirable form is firable, and leads to the accepting 4-upward-closed set of
markings.

Step 1 Let N denote the value 2|P |+1. For all i ≥ 1, we consider the infinite sequence
of words Biw

N
i Ei, Biw

2N
i Ei, Biw

3N
i Ei,. . . , Biw

jN
i Ei,. . . For each of these words,

we select an accepting sequence of transitions and consider the markings that are
reached along this sequence. For instance, when considering the sequence that
accepts Biw

jN
i Ei, we select jN + 1 markings mk

j (1 ≤ k ≤ jN + 1) s.t.:

minit
Bi−→ m1

j
wi−→ m2

j
wi−→ · · · wi−→mjN+1

j
Ei−→

For any i ≥ 1, we build an infinite matrix Mi. The jth line of Mi contains all
the markings that have been selected along the run accepting Biw

jN
i Ei (in the

same order as in the run). Hence, we obtain a matrix with infinitely many lines.
In order to obtain infinitely many elements on each line, we pad the matrix with
0|P | = 〈0, 0, . . . , 0〉 markings. Figure 8.1 presents an example of such a matrix.

Then, we apply lemma 8.4 on Mi and build N functions f(i,1), f(i,2), . . . , f(i,N).
These functions allow us to select elements in the matrix Mi. The selected
elements are arranged into a new matrix M4

i with N columns and infinitely
many lines (see Figure 8.2 for an informal illustration of the construction). M4

i

is built column by column: the j-th column contains the elements selected by
f(i,j), i.e., the first element of the j-th columns is the element of Mi whose
coordinates are given by f(i,j)(1), the second element is the element f(i,j)(2) in
Mi, and so on.

8.2. PUMPING LEMMATA 227





m1
1 m2

1 · · · mN+1
1 0|P | · · · 0|P | 0|P | · · · 0|P | 0|P | · · ·

m1
2 m2

2 · · · mN+1
2 mN+2

2 · · · m2N+1
2 0|P | · · · 0|P | 0|P | · · ·

...
...

...
...

...

m1
j m2

j · · · mN+1
j mN+2

j · · · m2N+1
j m2N+2

j · · · mjN+1
j 0|P | · · ·

...
...

...
...

...
...

...





Figure 8.1: An illustration of the construction ofMi.

The new matrixM4

i has interesting properties upon which we rely in the rest of
the proof. All these properties are direct consequences of Lemma 8.4. The most
important ones are:

1. Each column of M4

i forms an infinitely increasing sequence of markings
(according to point 3 of Lemma 8.4).

2. Each line of M4

i is actually a subsequence of one of the lines of Mi (by
point 2 of Lemma 8.4). Thus, if m and m′ are two markings taken from
the same line ofM4

i (with m appearing before m′), we are sure that there
exists a sequence of transitions that is firable from m and produces m′. For
that reason, we will sometimes refer to lines ofM4

i as runs.

3. Let us consider two lines ℓ1 and ℓ2 of M4

i s.t. ℓ1 < ℓ2. Let m1, m2

be two markings of line ℓ1 that appear respectively in columns number k1

and k2 with k1 < k2. Let m′
1 and m′

2 be two markings of line ℓ2 that
appear respectively in columns k1 and k2. Let σ and σ′ be the sequences

s.t. m1
σ−→ m2 and m′

1
σ′

−→ m′
2. Then, the number of wi’s that labels σ′ is

strictly larger that the number of wi’s that labels σ (this stems from point
4 of Lemma 8.4). This property is important since we want to be able to
construct sequences of the form Bn3w

i1
n3

wK ′

n1
wi2

n2
En2 with K ′ arbitrarily large.

Step 2 The second step consists in selecting an infinite subset S of {M4

i | i ≥ 1}. We
do this by building a sequence of runs such that the jth run in the sequence is the
first run appearing inM4

j . Again, we extract the sub-sequence S where markings
appearing in different runs are 4-ordered by applying successively Lemma 2.2.
In this case, only markings appearing along the 2|P | + 1 first “columns” are 4-
ordered.

Step 3 Finally, we show how to split and combine parts of runs appearing in theMi’s
and S to obtain a run that allows the PN to accept a word of the desired form.
This is shown in Figure 8.3.

In order to build this sequence, we rely on several variables, namely: c1, c2, n and
x. At the present step of the proof, we introduce some constraints that relate

22
8

C
H

A
P

T
E

R
8
.

W
E

L
L
-S

T
R

U
C

T
U

R
E

D
L
A

N
G

U
A

G
E

S

Mi =





Mi(f(i,1)(1)) Mi(f(i,2)(1)) Mi(f(i,3)(1)) 0|P | · · ·

× × × × × × 0|P | · · ·

Mi(f(i,1)(2)) × Mi(f(i,2)(2)) × Mi(f(i,3)(2)) × × × × 0|P | · · ·

× × Mi(f(i,1)(3)) × × × Mi(f(i,2)(3)) × × Mi(f(i,3)(3)) × × 0|P | · · ·

× × × × × × × × × × × × × × × 0|P | · · ·
.
..

.

..
.
..

.

..
.
..

.

..





M4

i =





Mi(f(i,1)(1)) Mi(f(i,2)(1)) Mi(f(i,3)(1))

Mi(f(i,1)(2)) Mi(f(i,2)(2)) Mi(f(i,3)(2))

Mi(f(i,1)(3)) Mi(f(i,2)(3)) Mi(f(i,3)(3))

...
...

...





Figure 8.2: An illustration of the construction of M4

i for N = 3, i.e., |P | = 1. Each × represents a marking reached in
the PN. Lemma 8.4 has been applied in order to obtain three functions f(i,1), f(i,2) and f(i,3).

8
.2

.
P

U
M

P
IN

G
L
E

M
M

A
T
A

229

M4

ρ(1)(K) = minit

Bρ(1) //M4

ρ(1)(K, 1)
wρ(1) //M4

ρ(1)(K, c1)
wρ(1) +3

wρ(1) +3M4

ρ(1)(K, c2)

��

wρ(1) //
Eρ(1) // nρ(1),K

M4

ρ(n)(x) = minit

Bρ(n) +3M4

ρ(n)(x, 1)
wρ(n) +3

wρ(n) +3M4

ρ(n)(x, c1)

KS

Eρ(n) // nρ(n),x

M4

ρ(2)(1) = minit

Bρ(2) //M4

ρ(2)(1, 1)
wρ(2) //M4

ρ(2)(1, c2)
wρ(2) +3

Eρ(2) +3 nρ(2),1

Figure 8.3: The firable sequence (along the ⇒’s) that accepts a word of the form Bn3w
i1
n3

wK ′

n1
wi2

n2
En2 .

230 CHAPTER 8. WELL-STRUCTURED LANGUAGES

x and n to c1, c2 and K. These constraints are meant to produce a sequence
of transitions that accepts a word of the desired form. The main (and most
technical) part of step 3 consists in showing that these constraints are satisfiable.

The first part of the sequence is the prefix of M4

ρ(n)(x), up to the “column” c1

(see Figure 8.3). At that point, we are guaranteed that the marking we obtain
is larger than M4

ρ(1)(K, c1). This allows us to continue the sequence with a

part of M4

ρ(1)(K), starting at “column” c1 and ending at “column” c2. Again,
by exploiting the properties of the sequences built at steps 1 and 2, as well as
the constant effect of PN transitions, we are ensured that the marking we have
reached is larger thanM4

ρ(2)(1, c2). This allows us to finish the sequence with the

suffix of M4

ρ(2)(1). The word accepted by this sequence is of the desired form,

since we have correctly chosen the values of x and n (in particular, the central
part of the word is longer than K times |wn1|).

We are now ready to present the proof of Lemma 8.5.

Proof. Let N be a PN with set of places P and initial marking minit, such that
{Biw

∗
i Ei} ⊆ L(N , U) for all i ≥ 1. Let N denote the value 2|P | + 1.

Step 1 For any i ≥ 1, let Si be an infinite sequence of runs accepting the words of

the form Biw
j·N
i Ei, with j ≥ 1. That is, Si is a sequence of runs:

minit
υ1−→m1

1

ς11−→m2
1

ς21−→ · · · ςN
1−→mN+1

1

υ′
1−→ ni,1

minit
υ2−→m1

2

ς12−→m2
2

ς22−→ · · · · · · ς2·N2−−→m2·N+1
2

υ′
2−→ ni,2

...

minit
υj−→m1

j

ς1j−→m2
j

ς2j−→ · · · · · · · · ·
ςj·N
j−−→mj·N+1

j

υ′
j−→ ni,j

where for any ℓ ≥ 1: ni,ℓ ∈ U , Λ(υℓ) = Bi and Λ(υ′
ℓ) = Ei. Moreover, ∀ℓ ≥ 1 : ∀1 ≤

k ≤ ℓ ·N : Λ(ςk
ℓ) = wi.

Let 0|P | denote the marking that ranges over |P | places and assigns 0 token to each
place. For any i ≥ 1, we build, an infinite matrixMi, whose values are either markings
met along the runs of Si or 0|P |. More precisely, for any j ≥ 1, k ≥ 1 we have:

Mi(j, k) =

{
mk

j if 1 ≤ k ≤ j ·N + 1
0|P | otherwise

(8.5)

For any i ≥ 1, we can apply Lemma 8.4 toMi, and obtain N functions that respect
the five points of the lemma. We denote these functions by f(i,1), f(i,2), . . . f(i,N). Thanks
to these functions, we build infinitely many sequences of N markings. We represent
these sequences under the form of a new matrix M4

i , with N columns and infinitely

8.2. PUMPING LEMMATA 231

many lines (each line corresponds to a sequence). M4

i is defined as follows (where
f l

(i,k) (j) and f c
(i,k) (j) denote respectively the first and second coordinate of f(i,k)(j)):

∀i ≥ 1 : ∀j ≥ 1 : ∀1 ≤ k ≤ N :M4

i (j, k) =Mi(f
l
(i,k) (j) , f c

(i,k) (j)) (8.6)

For any i, j ≥ 1, letM4

i (j) denoteM4

i (j, 1),M4

i (j, 2), . . .M4

i (j, N), i.e. the sequence
of markings that appears on the j-th line of M4

i . Let us expose several properties of
these sequences that will be useful in the sequel of the proof:

1. For any i ≥ 1, j ≥ 1, the sequence M4

i (j) corresponds to a run of Si. More
precisely, M4

i (j) is a subsequence of the markings in the f l
(i,1) (j)−th run of Si.

According to the definitions of Mi and M4

i (see (8.5) and (8.6)), this can be
proved by establishing three points:

(a) The markings of M4

i (j) have all been taken in the same run of Si since
f l

(i,1) (j) = f l
(i,2) (j) = · · · = f l

(i,N) (j), by point 2 of Lemma 8.4.

(b) The ordering of the markings along the run has been preserved since the
sequence f c

(i,1) (j) , f c
(i,2) (j) , . . . , f c

(i,N) (j) is strictly increasing, from point 4
of Lemma 8.4.

(c) All the selected markings in M4

i (j) exist in the f l
(i,1) (j)-th run of Si, i.e.,

they are all different from the 0|P | markings we have added when building
Mi. Since the ordering of the markings has been preserved, it is sufficient
to show that the last marking of M4

i (j) corresponds to a marking of the
f l

(i,1) (j)-th run of Si, i.e., that f c
(i,N) (j) ≤ N · f l

(i,1) (j) + 1. By point (a)

above, this is equivalent to f c
(i,N) (j) ≤ N · f l

(i,N) (j) + 1, which is true by
point 1 of Lemma 8.4.

2. Since M4

i (j) is a subsequence of markings that appear in a run of Si, there
exists, for any i ≥ 1, j ≥ 1 and 1 ≤ k1 < k2 ≤ N a sequence of transitions
σ

j
i (k1, k2) s.t.:

M4

i (j, k1)
σ

j
i (k1, k2)−−−−−−−→M4

i (j, k2)

Moreover, for any i ≥ 1, j ≥ 1 and 1 ≤ k ≤ N , there are two sequences of
transitions σ

j
i (·, k) and σ

j
i (k, ·) s.t.:

minit

σ
j
i (·, k)−−−−−→M4

i (j, k)
σ

j
i (k, ·)−−−−−→ n (n ∈ U)

By (8.5) and (8.6), these sequences are labelled as follows (for any i, j ≥ 1):

∀1 ≤ k1 < k2 ≤ N : Λ(σj
i (k1, k2)) = w

(fc
(i,k2)(j)−fc

(i,k1)(j))

i (8.7)

∀1 ≤ k ≤ N : Λ(σj
i (·, k)) = Biw

(fc
(i,k)

(j)−1)

i (8.8)

∀1 ≤ k ≤ N : Λ(σj
i (k, ·)) = w

(j·N+1−fc
(i,k)

(j))

i Ei (8.9)

232 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Finally, let us introduce the following notation. Let w be a (possibly empty)
word and υ be a non-empty word. Then, we let ‖w‖υ = i iff w = υi. By (8.7)
and point 4 of Lemma 8.4, the following holds:

∀i, j ≥ 1 : ∀1 ≤ k1 < k2 ≤ N :

wi 6= ε implies ‖Λ(σj
i (k1, k2))‖wi

< ‖Λ(σj+1
i (k1, k2))‖wi

That is, when wi 6= ε, the word that labels the sequence leading from the k1-
th marking of the j-th run of M4

i to its k2-th marking is strictly shorter than
the word labelling the corresponding sequence in the (j + 1)-th run of M4

i . In
particular, since wi 6= ε implies that ‖Λ(σ1

i (k1, k2))‖wi
≥ 1, we have:

∀i ≥ 1 : ∀1 ≤ k1 < k2 ≤ N :

wi 6= ε implies ‖Λ(σj
i (k1, k2))‖wi

≥ j
(8.10)

3. Let us first introduce the following notation. Let S be an infinite sequence of
runs S(1),S(2), . . ., s.t. each run S(i) is made up of N markings S(i, 1), S(i, 2),
. . . , S(i, N). Then, for any 1 ≤ k ≤ N , we denote by Places(S, k) the set of
places s.t.

Places(S, k) =
{
p ∈ P | ∀i ≥ 1 : S(i, k)(p) < S(i + 1, k)(p)

}

By (8.5) and (8.6), and by Lemma 8.4, point 3, for any 1 ≤ k ≤ N and i ≥ 1,
the set P laces(M4

i , k) is s.t.:

∀i ≥ 1 : ∀1 ≤ k ≤ N : ∀p ∈ P :

p ∈ P laces(M4

i , k) iff ∀j ≥ 1 :M4

i (j, k)(p) <M4

i (j + 1, k)(p)

p 6∈ P laces(M4

i , k) iff ∀j ≥ 1 :M4

i (j, k)(p) =M4

i (j + 1, k)(p)

(8.11)

In particular, this implies that M4

i (1, k),M4

i (2, k), . . . ,M4

i (j, k), . . . is an in-
creasing sequence (w.r.t. 4):

∀i ≥ 1 : ∀1 ≤ k ≤ N : ∀j ≥ 1 :M4

i (j, k) 4M4

i (j + 1, k) (8.12)

Step 2 To finish with the construction, we consider the infinite sequence of runs

M4

1 (1),M4

2 (1), . . . made up of the first runs (lines) of allM4

i . From this sequence, we
extract the infinite subsequence S = M4

ρ(1)(1),M4

ρ(2)(1), . . . by successively applying
Lemma 2.2. We construct S such that:

1. For any 1 ≤ j ≤ N the sequence M4

ρ(1)(1, j),M
4

ρ(2)(1, j), . . . is increasing:

∀k ≥ 1 :M4

ρ(k)(1, j) 4M4

ρ(k+1)(1, j) (8.13)

8.2. PUMPING LEMMATA 233

2. For any 1 ≤ j ≤ N , the places in the set Places(S, j) ⊆ P strictly increase along
the sequence M4

ρ(1)(1, j),M
4

ρ(2)(1, j), . . . and all the other places stay constant
along the sequence. Thus, we let:

Places(S, j) ={
p ∈ P | ∀k ≥ 1 :M4

ρ(k)(1, j)(p) <M4

ρ(k+1)(1, j)(p)
} (8.14)

Let c1 and c2 be such that 1 ≤ c1 < c2 ≤ N and P laces(S, c1) = P laces(S, c2).
Remark that c1 and c2 always exist because there are 2|P | = N − 1 subsets of P .

3. The sets of strictly increasing places of the selected M4

i are equal:

∀1 ≤ j ≤ N : ∀k ≥ 1 : P laces(M4

ρ(k), j) = P laces(M4

ρ(k+1), j) (8.15)

This is possible because there are 2|P | subsets of P .

Step 3 The rest of the proof consists in showing that there are 0 < n1 < n2 < n3

s.t. for any K ∈ N there are i1 ≥ 0, i2 ≥ 0 and K ′ ≥ K s.t. the word w =
Bn3w

i1
n3

wK ′

n1
wi2

n2
En2 is accepted by N .

We first choose the values of n1 and n2 as follows: n1 = ρ(1) and n2 = ρ(2) (where
ρ is the function defined at the beginning of step 2). Then, we show how to compute
n3. Actually, we let n3 = ρ(n) for a well-chosen value of n. We provide a constraint
(see equation (8.16) in the sequel) on n that we prove satisfiable and that we exploit
at the end of the proof. Equipped with the values n1, n2 and n3, we show that,
for any K ∈ N, it is possible to compute a value x s.t. the sequence of transitions
σ = σx

ρ(n)(·, c1) · σK
ρ(1)(c1, c2) · σ1

ρ(2)(c2, ·) accepts a word of the desired form.

Choice of n Let mn be the marking such that M4

ρ(n)(1, c1)
σ1

ρ(1)(c1, c2)
−−−−−−−−→ mn (with

c1 and c2 as defined at then of point 2, step 2). Remark that, since we are dealing with
Petri nets, the sequence σ1

ρ(1)(c1, c2) has a constant effect (i.e., characterised by a vector

of natural constants) equal to M4

ρ(1)(1, c2) −M4

ρ(1)(1, c1). Thus mn =M4

ρ(n)(1, c1) +

M4

ρ(1)(1, c2)−M4

ρ(1)(1, c1). We choose n > 2 such that:

mn =M4

ρ(n)(1, c1) +M4

ρ(1)(1, c2)−M4

ρ(1)(1, c1) <M4

ρ(2)(1, c2) (8.16)

Let us show that such a n exists. First notice that σ1
ρ(1)(c1, c2) is firable fromM4

ρ(n)(1, c1)

for all n > 2, because M4

ρ(n)(1, c1) < M4

ρ(1)(1, c1) following (8.13), and the fact that

ρ(n) > ρ(1). Then, recall that P laces(S, c1) = P laces(S, c2), i.e. the places that
strictly increase along S are the same in columns c1 and c2. Let us show that, for any
place p, mn(p) ≥M4

ρ(2)(1, c2)(p). For that purpose, we consider two cases:

234 CHAPTER 8. WELL-STRUCTURED LANGUAGES

1. If p ∈ P laces(S, c1), then, the sequence M4

ρ(1)(1, c1)(p),M4

ρ(2)(1, c1)(p), . . . is

strictly growing by (8.14) and, for any n ≥ 1, M4

ρ(n)(1, c1)(p) ≥ n − 1. Thus

there exists n ≥ 1 s.t. ∀p ∈ P laces(S, c1) : M4

ρ(n)(1, c1)(p) ≥ M4

ρ(2)(1, c2)(p) −
M4

ρ(1)(1, c2)(p) + M4

ρ(1)(1, c1)(p). This is equivalent to ∀p ∈ P laces(S, c1) :

mn(p) ≥M4

ρ(2)(1, c2)(p), by definition of mn.

2. On the other hand, for any p ∈ P \ P laces(S, c1), we have: M4

ρ(n)(1, c1)(p) =

M4

ρ(1)(1, c1)(p) and M4

ρ(2)(1, c2)(p) = M4

ρ(1)(1, c2)(p), by (8.14) again. Hence,

∀p ∈ P \ P laces(S, c1): M4

ρ(n)(1, c1)(p) − M4

ρ(2)(1, c2)(p) = M4

ρ(1)(1, c1)(p) −
M4

ρ(1)(1, c2)(p), and thus, we have that, for any place p ∈ P \ P laces(S, c1):

M4

ρ(n)(1, c1)(p) +M4

ρ(1)(1, c2)(p) −M4

ρ(1)(1, c1)(p) =M4

ρ(2)(1, c2)(p). Hence, for

any place p ∈ P \ P laces(S, c1), mn(p) =M4

ρ(2)(1, c2)(p).

From these two points, we conclude that there exists n s.t. mn <M4

ρ(2)(1, c2).

Choice of x We choose x > K such that:

M4

ρ(n)(x, c1) <M4

ρ(n)(1, c1) +M4

ρ(1)(K, c1)−M4

ρ(1)(1, c1) (8.17)

One can prove that such an x always exists by the same reasoning as in the choice
of n, and by the fact that P laces(M4

ρ(n), c1) = P laces(M4

ρ(1), c1) (see (8.15) above).

Indeed, ∀p ∈ P laces(M4

ρ(1), c1), the sequence M4

ρ(n)(1, c1)(p),M4

ρ(n)(2, c1)(p), . . . is

strictly increasing by (8.11) and (8.15), and we can thus choose x large enough to have
M4

ρ(n)(x, c1)(p) ≥ M4

ρ(n)(1, c1)(p) +M4

ρ(1)(K, c1)(p) −M4

ρ(1)(1, c1)(p), for any place p

in the set P laces(M4

ρ(1), c1). On the other hand, for any p ∈ P \ P laces(M4

ρ(1), c1):

M4

ρ(1)(K, c1)(p) = M4

ρ(1)(1, c1)(p), by (8.11) and (8.15). Thus, M4

ρ(n)(x, c1)(p) ≥
M4

ρ(n)(1, c1)(p) +M4

ρ(1)(K, c1)(p) − M4

ρ(1)(1, c1)(p) if and only if M4

ρ(n)(x, c1)(p) ≥
M4

ρ(n)(1, c1)(p). This last point is true by (8.11). We conclude that for any p ∈ P :

M4

ρ(n)(x, c1)(p) ≥M4

ρ(n)(1, c1)(p) +M4

ρ(1)(K, c1)(p)−M4

ρ(1)(1, c1)(p).

The next step amounts to showing that the sequence σ is firable. From minit,
we fire σx

ρ(n)(·, c1) and reach M4

ρ(n)(x, c1). From that marking, we can fire the se-

quence σK
ρ(1)(c1, c2). This is possible because M4

ρ(n)(x, c1) < M4

ρ(1)(K, c1). Indeed,

by (8.17): M4

ρ(n)(x, c1) < M4

ρ(1)(K, c1) +
(
M4

ρ(n)(1, c1) − M4

ρ(1)(1, c1)
)
. However,

we know that
(
M4

ρ(n)(1, c1) − M4

ρ(1)(1, c1)
)

< 0|P |, by (8.13). This implies that

M4

ρ(n)(x, c1) <M4

ρ(1)(K, c1) and we have:

minit

σx
ρ(n)(0, c1)
−−−−−−−−→M4

ρ(n)(x, c1)
σK

ρ(1)(c1, c2)
−−−−−−−−→ m

8.2. PUMPING LEMMATA 235

To finish the sequence, we have to show that m <M4

ρ(2)(1, c2). Since the effect of

σK
ρ(1)(c1, c2) is constant and equal toM4

ρ(1)(K, c2)−M4

ρ(1)(K, c1), we have:

m = M4

ρ(n)(x, c1) +M4

ρ(1)(K, c2)−M4

ρ(1)(K, c1)

⇒m < M4

ρ(n)(1, c1) +M4

ρ(1)(K, c1)−M4

ρ(1)(1, c1)

+M4

ρ(1)(K, c2)−M4

ρ(1)(K, c1) by (8.17)

⇒m < M4

ρ(n)(1, c1)−M4

ρ(1)(1, c1) +M4

ρ(1)(K, c2)

⇒m < M4

ρ(n)(1, c1)−M4

ρ(1)(1, c1) +M4

ρ(1)(1, c2) by (8.12)

⇒m < M4

ρ(2)(1, c2) by (8.16)

We can thus fire σ1
ρ(2)(c2, ·) from m and obtain m′ such that m′ < nρ(2),1 (by

monotonicity), which implies that m′ ∈ U . Thus, N accepts Λ(σ), which is of the
form Bn3w

i1
n3

wK ′

n1
wi2

n2
En2 with n1 = ρ(1), n2 = ρ(2) and n3 = ρ(n), i1 ≥ 0, and i2 ≥ 0.

The former implies that 0 < n1 < n2 < n3, by definition of ρ. We finish the proof by
considering two cases:

1. If wn1 = ε, then clearly, for any j ≥ 0: wj
n1

= ε. In particular wK
n1

= ε = wK ′

n1
.

Thus, for any j ≥ 0, the word Bn3w
i1
n3

wj
n1

wi2
n2

En2 satisfies the lemma.

2. If wn1 6= ε, it remains to show that the central part of the accepted word is
long enough, i.e., that K ′ ≥ K. This stems from the fact that, by construction,
K ′ = ‖Λ(σK

ρ(1)(c1, c2))‖wi
and that ‖Λ(σK

ρ(1)(c1, c2))‖wi
≥ K by (8.10).

In both cases, we conclude that the word we have built, and that is accepted by the
PN, satisfies the lemma. �

8.2.3 A pumping lemma for PN+NBA

Let us now turn our attention to our third pumping lemma (for PN+NBA):

Lemma 8.6 Let N be a PN+NBA and U be an 4-upward-closed set of markings of
N . If there exists an infinite sequence of words w1, w2, . . . such that for any i ≥ 1,
there exist two words Bi, Ei with Biw

∗
i Ei ⊆ L(N , U), then there exist i1 ≥ 0, i2 > 0,

i3 ≥ 0 and 0 < n1 < n2 < n3 such that the word Bn3w
i1
n3

wi2
n1

wi3
n2

En2 is in L(N , U).

Once again, since the proof of Lemma 8.6 is rather technical, we first sketch it
informally. The proof may be decomposed into two steps:

Step 1 We build an infinite sequence of runs whose i−th element is a run that accepts
the word Biw

2|P |

i Ei (where P is the set of places of the PN+NBA considered).

236 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Then, we build a sub-sequence of these runs by applying successively Lemma
2.2. Those sub-sequences have the property that markings appearing in different
runs are 4-ordered. The increasing sequences appear along the 2|P | + 1 first
“columns”.

Step 2 Finally, we show how to split and combine parts of runs appearing in the runs
in order to obtain a new run that allows the PN+NBA to accept a word of the
desired form.

In order to build this sequence, we rely on several variables, namely: c1, c2 and n.
At the present step of the proof, we present several constraints on c1, c2 and n.
These constraints are meant to produce a sequence of transitions that accepts a
word of the desired form. The main (and most technical) part of step 2 consists
to show that these constraints are satisfiable.

Proof. Let N be a PN+NBA with set of places P and initial marking minit such
that Biw

∗
i Ei ⊆ L(N , U).

Step 1 Since Biw
∗
i Ei ⊆ L(N , U) for all i ≥ 1, the word Biw

2|P|

i Ei is accepted by

N . Let us consider an infinite sequence of runs that accept the words: B1w
2|P |

1 E1,

B2w
2|P |

2 E2,. . . , Bjw
2|P |

j Ej ,. . . , i.e.,

minit
υ1−→m1

1

ς11−→m2
1

ς21−→ · · · ς2
|P|

1−−−→ m2|P|+1
1

υ′
1−→ n1

minit
υ2−→m1

2

ς12−→m2
2

ς22−→ · · · ς2
|P|

2−−−→ m2|P|+1
2

υ′
2−→ n2

...
...

...

minit
υi−→m1

i

ς1i−→m2
i

ς2i−→ · · · ς2
|P|

i−−−→ m2|P|+1
i

υ′
i−→ ni

...
...

...

where for any i ≥ 1: Λ(υi) = Bi, Λ(υ′
i) = Ei, ni ∈ U and for any 1 ≤ j ≤ 2|P|:

Λ(ςj
i) = wi.

By applying Lemma 2.2 successively, we can construct an infinite subsequence of
that sequence:

minit

υρ(1)−−→m1
ρ(1)

ς1
ρ(1)−−→ m2

ρ(1)

ς2
ρ(1)−−→ · · ·

ς2
|P|

ρ(1)−−−→m2|P|+1
ρ(1)

υ′
ρ(1)−−→ nρ(1)

minit

υρ(2)−−→m1
ρ(2)

ς1
ρ(2)−−→ m2

ρ(2)

ς2
ρ(2)−−→ · · ·

ς2
|P|

ρ(2)−−−→m2|P|+1
ρ(2)

υ′
ρ(2)−−→ nρ(2)

. . .

such that, for any 1 ≤ j ≤ 2|P| + 1, the sequence mj
ρ(1)m

j
ρ(2) . . . is increasing:

∀1 ≤ j ≤ 2|P| + 1 : ∀k ≥ 1 : mj
ρ(k) 4 mj

ρ(k+1) (8.18)

8.2. PUMPING LEMMATA 237

and, for any 1 ≤ j ≤ 2|P| + 1, there exists a set of places, noted P laces(j), whose
marking strictly increases along the sequence mj

ρ(1)m
j
ρ(2) . . . while the other places stay

constant:

∀1 ≤ j ≤ 2|P| + 1 : ∀k ≥ 1 : mj
ρ(k)(p) < mj

ρ(k+1)(p) iff p ∈ P laces(j) (8.19)

Since, there are 2|P | subsets of P , there exist 1 ≤ c1 < c2 ≤ 2|P | + 1 such that
P laces(c1) = P laces(c2).

In the following, we denote by σρ(j)(k1, k2) with k1 < k2 the sequence ςk1

ρ(j) · . . .·ςk2−1
ρ(j) .

We also denote by σρ(j)(·, k), the sequence υρ(j) · ς1
ρ(j) · . . . · ςk−1

ρ(j) ; and by σρ(j)(k, ·) the

sequence ςk
ρ(j) · . . . · ς2|P |

ρ(j) · υ′
ρ(j).

Step 2 The rest of the proof consists in devising a word of L(N , U) that is of the

form Bn3w
i1
n3

wi2
n1

wi3
n2

En2, with i1 ≥ 0, i2 > 0, i3 ≥ 0 and 0 < n1 < n2 < n3. The
sequence of transitions that accepts this word (called σ) is built as follows:

σ = σρ(n)(·, c1) · σρ(1)(c1, c2) · σρ(2)(c2, ·)
for a well-chosen value of n. We next explain how to compute this value.

We choose n > 2 such that, when firing σρ(1)(c1, c2) from mc1
ρ(n), we reach a marking

m < mc2
ρ(2). Let us show that such a n always exists. First, remark that for any n > 2:

σρ(1)(c1, c2) is firable from mc1
ρ(n) since, by (8.18), mc1

ρ(n) < mc1
ρ(1). Let k be the number

of non-blocking arcs in σρ(1)(c1, c2). By Lemma 7.6, we have that

∀p ∈ P : m(p) ≥mc1
ρ(n)(p) + mc2

ρ(1)(p)−mc1
ρ(1)(p)− k (8.20)

But, since P laces(c1) = P laces(c2), we can state the following. For any place p ∈
P laces(c1) and for any n ≥ 1: mc1

ρ(n)(p) ≥ n − 1, since by (8.19) the sequence

mc2
ρ(1)(p),mc2

ρ(2)(p), . . . is strictly increasing. In particular, if we choose n such that

n > max
p∈P laces(c1)

(
mc2

ρ(2)(p)−mc2
ρ(1)(p) + mc1

ρ(1)(p)
)

+ k

we have ∀p ∈ P laces(c1) : mc1
ρ(n)(p) ≥mc2

ρ(2)(p)−mc2
ρ(1)(p) + mc1

ρ(1)(p) + k and thus:

∀p ∈ P laces(c1) : mc1
ρ(n)(p) + mc2

ρ(1)(p)−mc1
ρ(1)(p)− k ≥mc2

ρ(2)(p) (8.21)

By (8.20) and (8.21), we obtain:

∀p ∈ P laces(c1) : m(p) ≥mc2
ρ(2)(p) (8.22)

On the other hand, for any place p, the monotonicity property of PN+NBA implies
that m(p) ≥mc2

ρ(1)(p). And since, by (8.19): ∀p ∈ P \P laces(c1) : mc2
ρ(1)(p) = mc2

ρ(2)(p),
we obtain:

∀p ∈ P \ P laces(c1) : m(p) ≥mc2
ρ(2)(p) (8.23)

238 CHAPTER 8. WELL-STRUCTURED LANGUAGES

By (8.22) and (8.23), we conclude that m < mc2
ρ(2).

Thus, the sequence of transitions σ = σρ(n)(·, c1) · σρ(1)(c1, c2) · σρ(2)(c2, ·) is firable

from minit (with n computed as explained above) and leads to a marking m′, i.e
minit

σ−→ m′. Since m < mc2
ρ(2), we also have that m′ < nρ(2), by monotonicity. Hence

m′ ∈ U , and the word Λ(σ) ∈ L(N , U). It is not difficult to see that by the previous
construction this word is of the form: Bn3w

i1
n3

wi2
n1

wi3
n2

En2 with (i) n3 = ρ(n), n1 = ρ(1)
and n2 = ρ(2), hence 0 < n1 < n2 < n3, and (ii) i1 ≥ 0, i2 = c2 − c1 > 0, i3 ≥ 0. �

8.3 Properties of WSL

In this section, we apply the pumping lemmata of the previous section to obtain several
results about WSL and languages of EPN. Section 8.3.1 presents properties of WSL that
can be proved thanks to Lemma 8.3. Then, the pumping lemmata on PN and PN+NBA

are exploited in sections 8.3.2 and 8.3.3 to prove a strict hierarchy among the languages
of PN, PN+NBA and PN+T; as well as in section 8.3.4, to obtain closure properties of
languages of EPN. Finally, section 8.3.5 shows that some of the results that have been
obtained thanks to the pumping lemma on WSL can also be obtained thanks to the
pumping lemmata on PN and PN+NBA.

8.3.1 Consequences of Lemma 8.3

We first study several classical languages and show that they are not well-structured.
These languages are: the set of all words of the form anbn, the set of all words of the
form anbm with m ≥ n, and the set of all palindromes (of even length).

• L = {anbn|n ≥ 1} 6∈ LG(WSTS). Suppose that L ∈ LG(WSTS). Since, ∀k ≥
1 : akbk ∈ L, we can apply Lemma 8.3 (letting Bk = ak and Ek = bk, for any
k ≥ 1). We conclude that there is i < j s.t. ajbi ∈ L, which is a contradiction.
Notice that this results is also a consequence of Theorem 8.2 and Theorem 8.1,
following the reasoning given in [Pet81, pages 175–176].

• L≥ = {anbm|m ≥ n} 6∈ LG(WSTS). The proof is similar to the previous one.

• LR = {w · wR} 6∈ LG(WSTS). Let Σ be an alphabet and w = a1 · . . . · an ∈ Σ∗,
we define the mirror of w, as the word wR = an · . . . · a1. Let us suppose
LR ∈ LG(WSTS). Since {anbban | n ≥ 0} ⊆ LR, we can apply Lemma 8.3
(letting Bk = akb and Ek = bak, for any k ≥ 1). We conclude that there exist
i < j such that ajbbai ∈ LR, which is a contradiction. Hence LR 6∈ LG(WSTS).

These results allow us to show that neither the class of WSL, nor LG(PN), nor
LG(PN+NBA), nor LG(PN+T) are closed under complement.

8.3. PROPERTIES OF WSL 239

•

p

a

a

b

Figure 8.4: The PN N3 that accepts (i) {anbm | m < n} when {m | m(p) ≥ 1} is the
set of accepting markings and (ii) {anbm | m ≤ n} when N3 is the set of accepting
markings.

Proposition 8.3 LG(WSTS), LG(PN), LG(PN+NBA), LG(PN+R) and LG(PN+T)
are not closed under complement.

Proof. Let us consider the PN N3 of Figure 8.4. It should be clear that L(N3, U) =
{anbm | m < n} for U = {m | m(p) ≥ 1}. It is well-known [Pet81] that LG(PN) is
closed under union and that the regular languages are all in LG(PN). Hence, {anbm |
m < n} ∪

(
(a + b)∗ \ a∗b∗

)
is in LG(PN), but also in LG(PN+NBA), LG(PN+R) and

in LG(PN+T), since PN is a syntactic subclass of theirs. However, its complement is
L≥ = {anbm | m ≥ n}, which is not a WSL (see above). �

Finally, we can also exploit the previous results to show that the class of WSL is
incomparable to the class of context-free languages.

Proposition 8.4 The class LG(WSTS) is incomparable to the class of context-free
languages.

Proof. CFL 6⊆ LG(WSTS) stems from the fact that L, which is well-known to be a
CFL, is not in LG(WSTS). We prove that LG(WSTS) 6⊆ CFL thanks to L1 = {aibjck |
i ≥ j ≥ k ≥ 0}. First, consider the PN N4 of Figure 8.5. It should be clear that
L(N4, N5) = L1. Hence, L1 ∈ LG(WSTS). On the other hand, we prove that L1 is not
a CFL thanks to Lemma 2.16 (the pumping lemma for CFL)

For that purpose, we have to devise, for any constant n ∈ N, a word ωn ∈ L1 such
that |ωn| ≥ n and, for any words u, v, w, x and y respecting (i) ωn = u · v · w · x · y,
(ii) |v · w · x| ≤ n and (iii) |v · x| > 0, we can find i ≥ 0 s.t. u · vi · w · xi · y 6∈ L1.

For any n ≥ 0, we let ωn = anbncn. Clearly ωn ∈ L1 and |ωn| ≥ n, for any n.
Let us consider all the possible values of u, v,. . . , y that respect the three conditions
above, and let us show that, for all these values, there exists an i ≥ 0 such that
u · vi · w · xi · y 6∈ L1.

240 CHAPTER 8. WELL-STRUCTURED LANGUAGES

•

a

a

b

b

c

Figure 8.5: The PN N4 that accepts L1 = {aibjck | i ≥ j ≥ k ≥ 0} when U = N5 is
the set of accepting markings.

• If either v or x contain at least two different characters, the word u · v2 ·w ·x2 · y
is clearly not a word of L1.

• Otherwise, if v ∈ a∗, then, since |v · w · x| ≤ n, it is not possible that x contains
a c. Hence, since x does not contain two different characters, there are two
possibilities. Either x ∈ a∗. In that case, we choose i = 0 and the word u · v0 ·
w · x0 · y is of the form an−|v·x|bncn, and is clearly not in L1, since |v · x| > 0.
Otherwise, x ∈ b∗. In that case, we choose i = 0 again and we obtain a word of
the form an−|v|bn−|x|cn, which is not in L1 because |v · x| > 0.

• Otherwise, i.e., v ∈ b∗ or v ∈ c∗, we choose i = 2, and the word u · v2 · w · x2 · y
contains either more b’s or more c’s than a’s. Hence, it does not belong to L1.

�

8.3.2 PN+NBA are more expressive than PN

In this section we prove that the class of languages accepted by PN+NBA strictly
contains the class of languages accepted by PN (when the acceptance condition is an
4-upward-closed set). Since the class PN forms a syntactic subclass of PN+NBA, we
obtain this result by showing that there is a language accepted by a PN+NBA that
cannot be accepted by any PN.

Separation of PN+NBA and PN The strategy adopted in the proof is as follows. We
look into the PN+NBA N2 of Figure 7.2, with initial marking m0 such that m0(p1) = 1
and m0(p) = 0 for p ∈ {p2, p3, p4, p5, p6} and set of accepting markings U = N6. We

prove that it accepts every word of the form iks
(
akcbkd

)j
, for k ≥ 0 and j ≥ 0 (Lemma

8.7), but not those of the form in3san3c(bn3dan3c)i1
(
bn1dan1c

)k(
bn2dan2c

)i2
bn2d, for k

big enough, and 0 < n1 < n2 < n3 (Lemma 8.8). Then we invoke Lemma 8.5 (pumping

8.3. PROPERTIES OF WSL 241

lemma on PN) to prove that every PN accepting the words of the first form also accepts
words of the latter, which implies that no PN accepts L(N2, N6).

Let us first state Lemma 8.7 and Lemma 8.8. Remark that the first one is a direct
consequence of Lemma 7.8. Hence, we omit its proof.

Lemma 8.7 For any k ≥ 0, for any j ≥ 0, the word iks
(
akcbkd

)j
is in L(N2, N6).

Lemma 8.8 Let n1, n2 and n3 be three natural numbers such that 0 < n1 < n2 < n3.
The words

in3san3c(bn3dan3c)i1
(
bn1dan1c

)k(
bn2dan2c

)i2
bn2d

are not in L(N2, N6), for all i1 ≥ 0, k ≥ n3 − n1 and i2 ≥ 0.

Proof. In this proof, we will identify a sequence of transitions with the word it accepts
(all the transitions have different labels and there are no silent transitions). Clearly
(see the proof of Lemma 7.8), for any n3 ≥ 0, m ≥ 0, the firing of in3s

(
an3cbn3d

)m

from m0 leads to a marking m1 such that m1(p2) = n3, m1(p3) = 1, and ∀i ∈
{1, 4, 5, 6} : m1(pi) = 0 (the non-blocking arc of t6 hasn’t consumed any token in p4).
By firing an3cbn1d from m1, we now have n1 tokens in p2, n3− n1− 1 tokens in p4 and
one token in p6 (this time the non-blocking arc has moved one token since n1 < n3).
Clearly, at each subsequent firing of an1cbn1d, the non-blocking arc of t6 will remove
one token from p4 and the marking of this place will strictly decrease until p4 becomes

empty. Let ℓ = n3 − n1 − 1. It is easy to see that that firing an3cbn1d
(
an1cbn1d

)ℓ

from m1 leads to a marking m2 with m2(p2) = n1, m2(p3) = 1, m2(p6) = n3 − n1 and
∀j ∈ {1, 4, 5} : m2(pj) = 0. This characterisation also implies that we can fire an1cbn1d

an arbitrary number of times from m2 because m2
a

n1cbn1d−−−−−→ m2. On the other hand,

it is not possible to fire an1cbn2d , with n2 > n1, from m2. Indeed m2
a

n1 cbn1−−−−→ m3,
with m3(p5) = 1, m3(p2) = n1, m3(p6) = n3 − n1 and ∀j ∈ {1, 3, 4} : m3(pj) = 0,
which does not allow to fire the b-labelled transition t5 anymore. We conclude that,

∀k ≥ n3 − n1, a sequence labelled by in3s
(
an3cbn3d

)m
an3c

(
bn1dan1c

)k
bn2dan2c, is not

firable in N2. Thus, we will not find in L(N2, N6) any word with this prefix, hence the
Lemma. �

Thanks to these lemmata, we can prove Proposition 8.5.

Proposition 8.5 There is no PN N and no 4-upward-closed set U s.t. L(N , U) =
L(N2, N6).

Proof. By Lemma 8.7, any PN N s.t. L(N ,U) = L(N2, N6) for some 4-upward-

closed set of accepting markings U , must accept iks
(
akcbkd

)j
, for any k ≥ 1 and

j ≥ 0. Hence, we can apply Lemma 8.5, by letting Bk = iksakc, Ek = bkd and
wk = bkdakc, for any k ≥ 1. We conclude that N also accepts a word of the form:

242 CHAPTER 8. WELL-STRUCTURED LANGUAGES

in3san3c
(
bn3dan3c

)i1(
bn1dan1c

)L′(
bn2dan2c

)i2
bn2d such that 0 < n1 < n2 < n3 and

L′ ≥ n3 − n1. Since it is not in L(N2, U), by Lemma 8.8, there is no PN N with an
4-upward-closed set U s.t. L(N ,U) = L(N2, N6). �

Thus, we conclude that:

Theorem 8.4 LG(PN) ⊂ LG(PN+NBA).

Proof. LG(PN) ⊆ LG(PN+NBA) is trivial since PN is a syntactic subclass of PN+NBA.
The strictness of the inclusion is given by Proposition 8.5. �

8.3.3 PN+T are more expressive than PN+NBA

Let us now prove a similar result about the classes PN+NBA and PN+T: the class of
languages that can be accepted by some PN+T strictly contains the class of languages
accepted by any given PN+NBA. For this purpose, we first show that a PN+T can
always simulate a PN+NBA, hence LG(PN+NBA) ⊆ LG(PN+T). Then, we prove,
thanks to Lemma 8.6, that there is a language that can be recognised by a PN+T, but
not by a PN+NBA, which implies the strictness of the inclusion.

Simulation of a PN+NBA by a PN+T As we did in the case of ω-languages, we
re–use the construction of Section 5.4.4 to associate to any PN+NBA N with upward–
closed set of accepting markings U , a PN+T N ′ and a set U ′ that define the same
language as N and U .

More precisely, given a PN+NBA N , we consider the PN+T N ′ as defined in Sec-
tion 5.4.4 (it is actually a PN+R. However, remember that every PN+R is a PN+T).
We handle the labels as follows: for any transition t ∈ Tr, the corresponding t′ has the
same label as t. For any t ∈ Te, the corresponding t=0 and t6=0 have the same label as
t. Given an upward–closed set U of markings of N , we consider the upward–closed set
U ′ of N ′ as defined in the same section. We also re–use the notations 4P , =P , and so
forth, as well as the two functions f and g defined there to establish a correspondence
between the sequences of N and those of N ′.

This allows us to show that:

Lemma 8.9 Let N = 〈P, T,m0〉 be an PN+NBA and let U be a 4–upward–closed set
of markings of N . Let N ′ = 〈P ′, T ′,m′

0〉 and U ′ be the PN+T and the upward–closed
set of markings of N ′ obtained from N and U (see Section 5.4.4). Then, L(N , U) =
L(N ′, U ′).

Proof. Let σ = τ1τ2 . . . τn be a sequence of transitions of N , and, for any 1 ≤ i ≤
n, let mi be the marking s.t. mi−1

τi−→ mi. Let us assume that mn ∈ U , hence

8.3. PROPERTIES OF WSL 243

Λ(σ) ∈ L(N , U). Let σ′ = τ ′
1τ

′
2 · · · τ ′

n be the sequence of N ′ s.t. for any 1 ≤ i ≤ n:
τ ′
i = f(τi,mi). By construction, Λ(σ′) = Λ(σ). By Lemma 5.8, σ′ is firable in N ′

and mn =P m′
n, hence, m′

n ∈ U ′, by definition of U ′, and since mn ∈ U . Hence,
Λ(σ′) ∈ L(N ′, U ′). We conclude that L(N , U) ⊆ L(N ′, U ′).

By a similar reasoning on a sequence of transitions σ′ of N ′ that reaches U ′, and
thanks to Lemma 5.9, we conclude that there exists a firable sequence of transitions σ

of N that reaches U and s.t. Λ(σ) = Λ(σ′). Hence, L(N , U) ⊇ L(N ′, U ′).

We conclude that L(N , U) = L(N ′, U ′). �

Separation of PN+T and PN+NBA Let us now prove that LG(PN+NBA) is strictly
included in LG(PN+T). We consider the PN+T N1 presented in Figure 7.1 with the
initial marking m0(p1) = 1 and m0(p) = 0 for p ∈ {p2, p3, p4}. The two following
Lemmata allow us to better understand the behaviour of N1. Remark that the first
one is a direct consequence of Lemma 7.4. Hence we omit its proof too.

Lemma 8.10 For any k ≥ 1, for any j ≥ 0, the word
(
akbk

)j
is in L(N1, N4).

Lemma 8.11 Let n1, n2, n3 be three natural numbers such that 0 < n1 < n2 < n3. For
any i1 ≥ 0, i2 > 0 and i3 ≥ 0, the words of the form:

an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2

are not in L(N1, N4).

Proof. The following holds for any n1, n2, n3 with 0 < n1 < n2 < n3. From the initial
marking of N1, the only sequence of transitions labelled by an3 is tn3

1 . Firing this
sequence leads to the marking m1 such that m1(p1) = 1,m1(p3) = n3 and m1(p) = 0
if p ∈ {p2, p4}. From m1 the only firable sequence of transitions labelled by bn3 is
t2t

n3−1
3 . This leads to the marking m2 such that m2(p2) = 1 and m2(p) = 0 if p 6= p2.

The only sequence of transitions firable from m2 and labelled by an3 is t4t
n3−1
1 . Since

m2(p3) = 0, the transfer of t4 has no effect when fired from m2. Hence, we reach
m1 again after firing t4t

n3−1
1 . By repeating the reasoning, we conclude that the only

sequence of transitions firable from the initial marking and labelled by (an3bn3)i1an3

(when i1 > 0) is tn3
1 t2t

n3−1
3 (t4t

n3−1
1 t2t

n3−1
3)i1−1t4t

n3−1
1 and leads to m1. In the case where

i1 = 0, the sequence tn3
1 is firable and leads to m1 too. From m1, the only firable

sequence of transitions labelled by bn1 is t2t
n1−1
3 . This leads to a marking similar to

m2, noted m′
2, except that p3 contains n3−n1 tokens. Then, the only firable sequence

of transitions labelled by an1 is t4t
n1−1
1 . In this case, the transfer of t4 moves the n3−n1

tokens from p3 to p4 and we reach a marking similar to m1, noted m′
1, except that p4

contains n3−n1 tokens and p3 contains n1 tokens. From m′
1, the only firable sequence

244 CHAPTER 8. WELL-STRUCTURED LANGUAGES

of transitions labelled by bn1an1 is t2t
n1−1
3 t4t

n1−1
1 and leads to m′

1. Hence, the sequence
(t2t

n1−1
3 t4t

n1−1
1)i2 is firable from m′

1.

However, after firing t2t
n1−1
3 from m′

1, we reach a marking m′′
2 similar to m2 except

that p4 contains n3 − n1 tokens and from which no transition labelled by b is firable.
Since n2 > n1, we conclude that there is no sequence of transitions labelled by bn2 that
is firable from m′

1, hence an3(bn3an3)i1(bn1an1)i2(bn2an2)i3an2 with i1 ≥ 0, i2 > 0, i3 ≥ 0
is not in L(N1, N4). �

Thanks to these two lemmata, and thanks to Lemma 8.6, we can now prove Propo-
sition 8.6, that states that no PN+NBA can accept the language of N1.

Proposition 8.6 There is no PN+NBA and no 4-upward-closed set U s.t. L(N , U) =
L(N1, N4).

Proof. By Lemma 8.10, any PN+NBA N s.t. L(N , U) = L(N1, N4) for some 4-

upward-closed set U , accepts
(
ajbj

)k
, for any j ≥ 1, k ≥ 1. Thus, we can apply

Lemma 8.6, by letting Bi = ai, Ei = bi and wi = biai, for all i ≥ 1, and obtain that N
accepts a word of the form: an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2 with 0 < n1 < n2 < n3

and i2 > 0. Since, by Lemma 8.11, this word is not in L(N1, N4), there can be no
PN+NBA N with an 4-upward-closed-set U s.t.: L(N ,U) = L(N1, N4). �

The last two propositions allow us to conclude that:

Theorem 8.5 LG(PN+NBA) ⊂ LG(PN+T)

Proof. LG(PN+NBA) ⊆ LG(PN+T) is given by Lemma 8.9. The strictness of the
inclusion is given by Proposition 8.6. �

8.3.4 Closure Properties of EPN

The pumping lemmata on PN and PN+NBA can also be used to show that neither
LG(PN) nor LG(PN+NBA) are closed under iteration.

Theorem 8.6 LG(PN) and LG(PN+NBA) are not closed under iteration.

Proof. Let us consider the PN N3 of Figure 8.4. Clearly, L = {anbm|n ≥ m} =
L(N3, N3). Hence, L ∈ LG(PN) and L ∈ LG(PN+NBA)).

Let us show, per absurdum, that L+ 6∈ LG(PN). Suppose that there is a PN N and
an upward-closed set U s.t. L(N , U) = L+. Let Bi = ai, wi = biai and Ei = bi for all
i ≥ 1. Thanks to Lemma 8.5, we obtain that L(N , U) contains a word of the form:

an3(bn3an3)i1(bn1an1)K(bn2an2)i2bn2

8.3. PROPERTIES OF WSL 245

with n1 < n2 < n3, K ≥ 1, which is not in L+. Contradiction.

Let us show, per absurdum that L+ 6∈ LG(PN+NBA). Suppose that there is a
PN+NBA N ′ and an upward-closed set U ′ s.t. L(N ′, U ′) = L+. Again, let Bi = ai,
wi = biai and Ei = bi for all i ≥ 1. Thanks to Lemma 8.6, we obtain that L(N ′, U ′)
contains a word of the form:

an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2

with i1 ≥ 0, i2 > 0, i3 ≥ 0 and 0 < n1 < n2 < n3, which is not in L+. Contradiction.
�

In [Pet81], Peterson proves that LL(PN) is not closed under iteration, but does not
address the case of LG(PN) (which we have solved here) and mentions the case of
LP (PN) as an open problem (see page 186 of [Pet81]). We can now solve it easily:

Theorem 8.7 LP (PN) and LP (PN+NBA) are not closed under iteration.

Proof. We consider again the PNN3 of Figure 8.4 and the language L = {anbm|n ≥ m}.
By definition of prefix languages, L = L(N3, N3) ∈ LP (PN) ⊆ LP (PN+NBA). By
Theorem 8.6, and the facts that LP (PN) ⊆ LG(PN) LP (PN+NBA) ⊆ LG(PN+NBA),
we conclude that L+ 6∈ LP (PN) and L+ 6∈ LP (PN+NBA). Hence the Theorem. �

Following Definition 2.36, Theorem 8.6 allows us to deduce that:

Corollary 8.1 LG(PN) and LG(PN+NBA) are not full AFL.

On the other hand, it is easy to show that:

Theorem 8.8 LG(PN+T) is a full AFL, closed under intersection.

Proof. We consider two PN+T N1 = 〈P1, T1, Σ1,m
1
0〉 and N2 = 〈P2, T2, Σ2,m

2
0〉 and

two upward-closed sets U1 and U2, and we assume that the set of places and transitions
of this two nets are disjoint. For each property to prove we show how to build an
upward-closed set U and a PN+T N = 〈P, T, Σ,m0〉 s.t. L(N , U) is the desired
language. Since the proofs that N accepts the right language are quite immediate, we
do not provide them here. We rather report the main ideas of the construction which
should be clear enough to convince the reader.

Union: L(N1, U1) ∪ L(N2, U2) ∈ LG(PN+T). We build N as follows. P = P1 ⊎ P2 ⊎
{pinit, p1, p2}. For each transition t = 〈I, O, s, d, b, λ〉 ∈ T1, we put in T a transition t′ =
〈I ∪ {p1}, O ∪ {p1}, s, d, b, λ〉. Symmetrically, for each transition t = 〈I, O, s, d, b, λ〉 ∈
T2, we put in T a transition t′ = 〈I ∪ {p2}, O ∪ {p2}, s, d, b, λ〉. We also add to T two
transitions t1 = 〈{pinit}, O1,⊥,⊥, 0, ε〉 and t2 = 〈{pinit}, O2,⊥,⊥, 0, ε〉 where O1(p) =
m1

0(p) for all p ∈ P1, O1(p1) = 1 and O1(p) = 0 for all p ∈ P2∪{p2}; and O2(p) = m2
0(p)

246 CHAPTER 8. WELL-STRUCTURED LANGUAGES

for all p ∈ P2, O2(p2) = 1 and O2(p) = 0 for all p ∈ P1 ∪ {p1}. We let Σ = Σ1 ∪ Σ2.
The accepting upward-closed set is:

U =
{
m |m ∈P1 U1

}
∪
{
m |m ∈P2 U2

}

where m ∈P U means that the projection of the marking m on the set of places P is in
U . More precisely, let m′ : P 7→ N be the marking s.t. for any p ∈ P : m′(p) = m(p).
Then, m ∈P U iff m′ is in U . Remark that {m |m ∈P1 U1} is upward-closed because
U1 is upward-closed. Similarly, {m | m ∈P2 U2} is upward-closed too. We conclude
that U is upward-closed because the union of two upward-closed sets is an upward-
closed set. Finally, we let m0 be s.t. m0(pinit) = 1 and m0(p) = 0 for any p 6= pinit.

It is not difficult to see that N accepts exactly L(N1, U1)∪L(N2,U2). Indeed, any
transition of N that corresponds to a transition of N1 (resp. N2) can be fired only if
there is a token in p1 (p2). In the initial marking, only t1 and t2 are enabled. Firing
t1 puts a token in p1 which enables the sub-net that corresponds to N1 (and accepts
words from L(N1, U1) only). Symmetrically, t2 enables the subnet that corresponds to
N2.

Concatenation: L(N1, U1) · L(N2, U2) ∈ LG(PN+T). We build N as follows. P =
P1⊎P2⊎{p1, p2}. For any transition t = 〈I, O, s, d, b, λ〉 in T1, we put in T a transition
t′ = 〈I ∪ {p1}, O ∪ {p1}, s, d, b, λ〉. For each transition t = 〈I, O, s, d, b, λ〉 in T2, we
put in T a transition t′ = 〈I ∪ {p2}, O ∪ {p2}, s, d, b, λ〉. We also add to T a transition
tm for any m ∈ UGen (U1), where tm = 〈I, O,⊥,⊥, 0, ε〉 s.t.:

∀p ∈ P : I(p) =






1 if p = p1

m(p) if p ∈ P1

0 otherwise
O(p) =






1 if p = p2

m2
0(p) if p ∈ P2

0 otherwise

Notice that following Lemma 2.8 and since 4 is a WQO, UGen (U1) is finite. Hence,
we only add a finite number of transitions tm .

We also let Σ = Σ1 ∪ Σ2. The initial marking m0 is s.t.

∀p ∈ P : m0(p) =






1 if p = p1

m1
0(p) if p ∈ P1

0 otherwise

Finally, the accepting upward-closed set U is: U =
{
m |m ∈P2 U2

}

It is rather straightforward to see that L(N , U) = L(N1, U1) · L(N2, U2). Indeed,
in the initial marking, a token is present in p1, which enables the transitions that
corresponds to those of N1 but no token is present in p2, which inhibits all the tran-
sitions that correspond to transitions of N2. Moreover, m0 corresponds to m1

0 as far
as the places of N1 are concerned. Hence, a sequence of transitions that accepts a
word from L(N1, U1) can be fired from m0. When a marking that corresponds to an
accepting marking of N1 is reached, one of the tm transitions can fire (and they can

8.3. PROPERTIES OF WSL 247

fire in this case only). This is due to Lemma 2.8 and 4 is a WQO that ensure that
all the accepting markings of N1 are greater to at least one m ∈ UGen (U1) (and only
those markings are). This firing moves the token from p1 to p2 and creates a marking
that corresponds to m2

0 on the places of N2. This inhibits the subnet that corresponds
to N1 and enables the subnet that corresponds to N2. That subnet is then ready to
accept a word from L(N2, U2).

Intersection: L(N1, U1) ∩ L(N2, U2) ∈ LG(PN+T). We build N as follows. For any
transition t, let λt be the label of t. We let

P = P1 ⊎ P2 ⊎ {plock} ⊎ {pt1,t2 | t1 ∈ T1 ∧ t2 ∈ T2 ∧ λt1 = λt2 6= ε}

That is, P contains all the places of N1 and N2, a special place plock that we will use
to inhibit transitions of N , and a place pt1,t2 per pair of transitions from N1 and N2

that have the same label (different from ε).

For each ε-labelled transition t = 〈I, O, s, d, b, ε〉 of T1 ∪ T2, we add to T the
transition t′ = 〈I ∪ {plock}, O ∪ {plock}, s, d, b, ε〉. Thus, t′ can fire if and only if a token
is present in place plock. Beside this, its effect is the same as in N1 or N2.

For every transition t1 = 〈I1, O1, s1, d1, b1, λ1〉 of T1 and every transition t2 =
〈I2, O2, s2, d2, b2, λ2〉 of T2 s.t. λ1 = λ2 6= ε, we add to T two transitions t =
〈I1 ∪ {plock}, O1 ∪ {pt1,t2}, s1, d1, b1, λ1〉 and t′ = 〈I2 ∪ {pt1,t2}, O2 ∪ {plock}, s2, d2, b2, ε〉.
Remark that these two transitions t and t′ are meant to fire sequentially, and that,
once t has fired, no other transition can fire before the corresponding t′ fires (because
t consumes the token in plock).

The initial markings is m0 defined as follows:

∀p ∈ P : m0(p) =






m1
0(p) if p ∈ P1

m2
0(p) if p ∈ P2

1 if p = plock

0 otherwise

The accepting upward-closed set is defined as:

U = {m |m ∈P1 U1 and m ∈P2 U2 and m(plock) ≥ 1}

U is indeed upward-closed. Let m1 and m2 be two markings s.t. m1 ∈ U and m1 4

m2, and let us show that m2 ∈ U . Since m1 4 m2, we have (i) for any p ∈ P1:
m1(p) ≤ m2(p); (ii) for any p ∈ P2: m1(p) ≤ m2(p); and (iii) m1(plock) ≤ m2(plock).
Since U1 is upward-closed and since m1 ∈P1 U1, point (i) implies that m2 ∈P1 U1.
Similarly, we deduce that m2 ∈P2 U2 from point (ii). Finally, since 1 ≤ m1(plock), we
have 1 ≤ m2(plock). Hence m2 ∈ U .

It is not difficult to see that L(N , U) = L(N1, U1)∩L(N2, U2). Indeed, for any pair
of transitions t1 and t2 respectively from N1 and N2 that have the same label, there
are two transitions in N that, when fired sequentially, have the same effect than t1 and

248 CHAPTER 8. WELL-STRUCTURED LANGUAGES

t2 on their respective input and output places. The place plock ensures that the two
transitions of N that correspond to t1 and t2 will fire sequentially. The transitions of
N1 and N2 that are labelled by ε do not require any synchronisation and can thus fire
independently. Hence, any pair of executions of N1 and N2 that have the same label
can be simulated by an execution of N , and any execution of N (ending in a marking
m s.t. m(plock) = 1) corresponds to a pair of executions of N1 and N2 with the same
label.

Iteration: L+(N1, U1) ∈ LG(PN+T). The idea is similar to the construction for the
concatenation. Let us assume that P1 = {p1, p2, . . . pn}. We build N as follows. The
set of places P = P1 ⊎ {plock, pTr, p

′
1, p

′
2, . . . p

′
n}. The set of transitions is:

T = {〈I ∪ {plock}, O ∪ {plock}, s, d, b, λ〉 | 〈I, O, s, d, b, λ〉 ∈ T1}
⊎ {tm | m ∈ Min4 (U1)}
⊎ {t′1, t′2, . . . , t′n}

where the transitions t′i and tm are defined as follows. For any 1 ≤ i < n, t′i =
〈{p′i}, Oi, pi, pTr, +∞, ε〉 with:

∀p ∈ P : Oi(p) =






m1
0(p) if p = pi

1 if p = p′i+1

0 otherwise

The transition t′n is 〈{p′n}, On, pn, pTr, +∞, ε〉 with:

∀p ∈ P : On(p) =






m1
0(p) if p = pn

1 if p = plock

0 otherwise

Finally, for every m ∈ Min4 (U), tm = 〈Im , {p′1},⊥,⊥, 0, ε〉, with:

∀p ∈ P : Im(p) =






m(p) if p ∈ P1

1 if p = plock

0 otherwise

The initial marking m0 is s.t. m0(plock) = 1, for every p ∈ P1, m0(p) = m1
0(p) and

for every p ∈ P \ (P1 ∪ {plock}), m0(p) = 0. Finally, the accepting upward-closed set is
U = {m | ∃m′ ∈ U1 : ∀p ∈ P1 : m′(p) ≤m(p)}.

Let us show why the construction is correct. N contains all the transitions of N1

(with the same labels), that have been adapted in order to fire only if there is at least
one token in plock, which is true initially. Hence, N can start its execution by firing a
sequence of transitions that is labelled by a word in L(N1, U1) and put into the places of
P1 a marking that is in U1. At that point, the global marking of N is thus in U . Thus,
the word read so far (which is indeed in L(N1, U1)

∗) is accepted. Nevertheless, the
net can continue its execution, because, once a marking of U has been reached, one of

8.3. PROPERTIES OF WSL 249

the tm transitions can fire, by monotonicity. This removes the token from plock, which
inhibits all the (adapted) transitions from N1. At that point, the only firable sequence
of transitions is t′1t

′
2t

′
3 . . . t′n (labelled by ε). Each t′i transition has the effect to restore

the initial marking of pi, by first transferring all the tokens from pi to pTr (a trash
can place), and then, produce into pi exactly m1

0(pi) tokens. The last transition t′n of
the sequence also produces a token into plock, which allows the (adapted) transitions
from N1 to fire anew. Since the initial marking has been restored, a new word from
L(N1, U1) can be read. This allows to reach again a marking in U , and so on. Thus,
every word in L(N1, U1)

+ is in L(N , U).

On the other hand, in the case where the sequence of (adapted) transitions from
N1 does not produce a marking m that corresponds to a marking of U1, then, (i) the
marking m is not in U and is thus not accepting, and (ii) no transition of the form
tm can fire. Hence, the net is blocked until a marking corresponding to an accepting
marking ofN1 is reached. We conclude that L(N , U) ⊆ L(N1, U1)

+. Hence, L(N , U) =
L(N1, U1)

+.

Arbitrary homomorphism: h(L(N1,U1)) ∈ LG(PN+T). Let h be a homomorphism
that maps each character a of Σ1 to a sequence of characters h(a) of an alphabet Σ′

(and ε to itself). Again, we denote the label of any transition t by λt. We build N as
follows. We let Σ = Σ′. We define the set of places P as:

P = P1 ⊎ {plock} ⊎
⋃

t∈T1

{pt,i|1 ≤ i < |h(λt)|}

As usual, the place plock is meant to lock the net, i.e., prevent undesired transitions to
fire, when necessary. The places pt,i act as intermediary states when reading the word
h(λt) for any t ∈ T1 with |h(λt)| ≥ 1. More precisely, a token in pt,i means that the
net has accepted the prefix of length i of h(λt) so far.

T is built according to these ideas. For any transition t = 〈I, O, s, d, b, λ〉 of T1,
we consider two cases. If h(λ) = ε or h(λ) ∈ Σ1, we add to T a single transition
t′ = 〈I ∪ {plock}, O ∪ {plock}, s, d, b, h(λ)〉. Otherwise |h(λ)| > 1, and we assume that
h(λ) = w1w2 · · ·wn. We add to T the n transitions t1, t2, . . . tn defined as follows. t1 =
{I ∪ {plock}, O ∪ {pt,1}, s, d, b, w1}. For any 1 < i < n, ti = 〈{pt,i−1}, {pt,i},⊥,⊥, 0, wi〉.
Finally, tn = 〈{pt,n−1}, {plock},⊥,⊥, 0, wn}〉.

The initial marking m0 is s.t.:

∀p ∈ P : m0(p) =






m1
0(p) if p ∈ P1

1 if p = plock

0 otherwise

The accepting upward-closed set U is {m|m ∈P1 U1 and m(plock) ≥ 1}. For the
justification that U is upward-closed, we refer the reader to the arguments used in the
case of the intersection.

250 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Clearly, L(N , U) = h
(
L(N1, U1)

)
. Indeed, each transition t of N1 with label λ and

s.t. h(λ) ≤ 1, is replaced by a transition t′ with label h(λ), that has the same effect on
the places of P1 but which can be fired only if the token is present in plock. Moreover,
each transition t of N1 with label λ and s.t. h(λ) > 1 is replaced by a set of transitions
that, when fired sequentially, accept h(λ) and have the same effect as t on the places
of P1. Thanks to the places of the form pt,i and thanks to plock, we ensure that these
transitions are indeed fired sequentially.

Inverse homomorphism: h−1(L(N1, U1)) ∈ LG(PN+T). Let Σ′ be an alphabet and
let h be a homomorphism that maps any word on Σ′ to a word on Σ1. The PN+T

N is built as follows. First of all, we build a PN No = 〈Po, To, Σ1 ⊎ {αa | a ∈ Σ′},mo
0〉

that will act as an observer and repeatedly accepts all the words of the form h(a) for
any a ∈ Σ′.

More precisely, No is defined as follows. Its set of places is:

Po = {pinit} ⊎ {pa,i | a ∈ Σ′ ∧ 1 ≤ i ≤ |h(a)|}

The set of transitions is:

To = {ta,i | a ∈ Σ′ ∧ 1 ≤ i ≤ |h(a)|} ∪ {tha | a ∈ Σ′}

where, for any a ∈ Σ′ s.t. h(a) = w1w2 · · ·wn: (i) tha = 〈{pa,n}, {pinit},⊥,⊥, 0, αa〉;
(ii) ta,1 = 〈{pinit}, {pa,1},⊥,⊥, 0, w1〉; and (iii) for any 1 < i ≤ n, we let: ta,i =
〈{pa,i−1}, {pa,i},⊥,⊥, 0, wi〉. Moreover, for any a ∈ Σ′ s.t. h(a) = ε, we have tha =
〈{pinit}, {pinit},⊥,⊥, 0, αa〉. The initial marking mo

0 puts a token in pinit only. The
accepting set is Uo = {m |m(pinit) ≥ 1}. Thus, any accepting sequence of transitions
of No is labelled by a word of the form h(a1) · αa1 · h(a2) · αa2 · · ·h(an) · αan

, where all
the ai’s belong to Σ′ (remark that it holds when h(a) = ε too).

The next step amounts to computing a new PN+T N ′ and a new upward-closed
set U ′ from N1, No, U1 and Uo by applying the same procedure as in the case of the
intersection, except that we treat all the transitions labelled by αa for some a ∈ Σ′

as if they were labelled by ε (in other words, we replace all the αa labels in No by
ε, compute the intersection, then restore the labels. Remember that the ε-labelled
transitions are unaffected by the construction we have presented for the intersection.
Thus, all the transitions of the form tha appear as is in the resulting net). What we
obtain is a net that accepts all the words of the form h(a1) ·αa1 ·h(a2) ·αa2 · · ·h(an) ·αan

such that h(a1) · h(a2) · · ·h(an) = h(a1 · a2 · · ·an) is in L(N1, U1). We obtain N by
replacing the label λt of any transition t in N ′ as follows: if λt = αa for a ∈ Σ′, we let
λt = a, otherwise, we let λt = ε. We also let U = U ′. Hence, L(N , U) is the set of
all the words of the form a1 · a2 · · ·an s.t. h(a1 · a2 · · ·an) ∈ L(N1, U1). This is exactly
h−1
(
L(N1, U1)

)
. �

Remark that the constructions at work in the previous proof involve regular Petri
transitions only, except for the case of the iteration. Thus, the above constructions can

8.3. PROPERTIES OF WSL 251

Operation Full
Model Compl. ∪ Concat. ∩ Iter. Hom. Inv. Hom. AFL

LG(PN) × √ √ √ × √ √ ×
LG(PN+NBA) × √ √ √ × √ √ ×
LG(PN+T) × √ √ √ √ √ √ √

LG(PN+R) × √ √ √ √ √ √ √

Table 8.1: Closure properties of LG(PN), LG(PN+NBA), LG(PN+R) and LG(PN+T).

be re-used to show that LG(PN), LG(PN+NBA) and LG(PN+R) are all closed under
union, concatenation, intersection, homomorphism and inverse homomorphism:

Theorem 8.9 LG(PN), LG(PN+NBA) and LG(PN+R) are closed under union, con-
catenation, intersection, homomorphism and inverse homomorphism.

Proof. The proof can be established thanks to the constructions used in the proof of
Theorem 8.8. �

In the case of the iteration, one needs to add the t′i transitions, that bear a transfer arc.
However, these transitions behave as resets, since they transfer the tokens to the pTr

place, from which the tokens can never escape. Thus, in the case where the original
net N1 is a PN+R, the N obtained through the construction for the iteration will be
a PN+R too. As a consequence, we obtain:

Theorem 8.10 LG(PN+R) is a full AFL, closed under intersection.

Proof. The proof is the same as for Theorem 8.8 (simply replace PN+T by PN+R).
Remark in particular that the construction used in the case of the iteration involves
PN+R transitions only. �

Table 8.1 reports on the closure properties obtained along the present section.

Remark 8.2 LP (PN+T) is not a full AFL. The justification is the same as in the
case of LP (WSTS). That is, let us consider the language L = {ε, a} on the alphabet
Σ = {a, b}, and the homomorphism h s.t. h(a) = bb. Then, L ∈ LP (PN+T), but
h(L) = {ε, bb} 6∈ LP (PN+T) because it is not prefix-closed (it does not contain the
prefix b of bb).

8.3.5 Some remarks about the pumping lemmata

It is interesting to compare, on the one hand, Lemma 8.3, and, on the other hand,
Lemma 8.5 and Lemma 8.6. Indeed, Lemma 8.3 provides us with a property that

252 CHAPTER 8. WELL-STRUCTURED LANGUAGES

holds on any WSL, where Lemma 8.5 and Lemma 8.6 deal with restricted subclasses of
WSTS (namely, PN and PN+NBA). Because they focus on these two peculiar classes,
these two lemmata allow us to state more precise properties than the one that is given
by Lemma 8.3.

In particular, when we restrict ourselves to the class PN, Lemma 8.5 is more gen-
eral than Lemma 8.3: by letting wi = ε for any i ≥ 1 in Lemma 8.5, we re-obtain
Lemma 8.3. Hence, we can obtain thanks to Lemma 8.5 several results1 that we had
previously proved with Lemma 8.3 in section 8.3.1. From our point of view, this is
another argument in favour of the interest of Lemma 8.5. A similar conclusion can be
drawn when comparing Lemma 8.3 to Lemma 8.6 for the class PN+NBA.

8.3.6 PN+R and Ciardo’s conjecture

As in the case of ω-languages of EPN, we have no result to strictly separate LG
/ε (PN+T)

and LG
/ε (PN+R). The only result that stems from the definition is that LG

/ε (PN+R) ⊆
LG

/ε (PN+T).

A tentative proof that LG
/ε (PN+T) ⊃ LG

/ε (PN+R) could work as follows: devise a
PN+T Nt and an upward–closed set U of markings, and show that there is no PN+R

Nr and no upward–closed set U ′ s.t. L(Nt, U) = L(Nr, U
′).

For that purpose, it seems interesting to consider a conjecture stated by Ciardo
in [Cia94], that we recall now. In this paper, Ciardo discusses Petri nets with reset
arcs2, instead of PN+R.

As stated before, these two formalisms are equivalent from the point of view of
coverability. They are also equivalent from the point of view of G–type language, i.e.,
for any Petri net with reset arc N and any upward–closed set of accepting markings
U , there is a PN+R N ′ and an upward–closed set U ′ s.t. L(N , U) = L(N ′, U ′), and
vice–versa. It is sufficient to transform the reset arc of the Petri net with reset arcs
into a reset arc of the PN+R, actually a transfer arc from the place that must be reset,
to pTr. The upward–closed set U is then adapted to take into account pTr, which can
contain any number of tokens.

In [Cia94], however, Ciardo does not consider upward–closed sets of accepting mark-
ings, but finite sets of accepting markings, and states the following conjecture regarding
the PN+T of Figure 8.6 (whose accepting marking is ma = 〈0, 0, 0, 1, 0〉):

Conjecture 8.1 [Cia94] There is no Petri net with reset arcs N without ε-transitions
and no finite set of markings S s.t. L(N , S) = L(N5, {ma}).

1The results we allude to are: L 6∈ LG(PN), L≥ 6∈ LG(PN), LR 6∈ LG(PN) and LG(PN) is not
closed under complement.

2see Remark 3.3, at the end of Section 3.3.1 for a reminder of the definition of that class.

8.3. PROPERTIES OF WSL 253

p4

•
p1 p2

p5 p3

t1
a

t2

c

t3
b

t4

d

t5

e

t6
f

Figure 8.6: The PN+T N5 used in Ciardo’s conjecture stating that there is no Petri net
with reset arc N (without ε-transitions) and no finite accepting set S s.t. L(N , S) =
L(N5, {ma}).

Remark that the proof of this conjecture would imply that Petri nets with reset arcs are
strictly less expressive that PN+T, for L–type languages, when ε–labelled transitions
are disallowed. By definition of Petri nets with reset arcs, this conjecture would also
imply that there is no PN+R Nr (without ε-transitions) and no finite set of accepting
markings Sr s.t. L(Nr, Sr) = L(N5, {ma}).

Two natural questions about this conjecture are: ‘Is it correct ?’ and ‘Can we
adapt it to prove or conjecture that LG

/ε (PN+R) ⊂ LG
/ε (PN+T) ?’

The language of N5 To answer either of these questions, we consider N5 more
carefully. Remark that the language L(N5, {ma}) is actually [Cia94]:






am1cbn1dam2cbn2d · · ·amkcbnkdefℓ

s.t.

k ∈ N ∧ ∀1 ≤ i ≤ k : mi ≥ ni ∧ ℓ =
∑k

i=1(mi − ni)






Indeed, any accepting execution of N5 can be split into two parts. In a first part, a
token is initially present in p1, p3 is empty, and subsequences of the form σi = tmi

1 t2t
ni

3 t4
(labelled by amicbnid) may be fired successively (with mi ≥ ni). Each time t1 fires, a
token is added to p3. Hence, p3 counts the number of a’s in the current σi. That is,
when t2 fires, the markings of p3 is exactly mi. The firing of t2 moves the token to p2

and t3 (labelled by b) can fire at most mi times, which removes one token at a time
from p3. Thus, when t4 fires, p3 contains mi−ni. That amount of tokens is transferred
to p5. At that point, the token is back in p1, p3 is empty, and the next subsequence
σi+1 can be fired. After the firing of σ1 · σ2 · · ·σk, the token is in p1, places p2, p3 and
p4 are empty, and p5 contains exactly

∑k
i=1(mi − ni) tokens.

The net can then enter the second part of its execution by firing t5 (labelled by e)
which moves the token to p4. At that point, the only possible execution to reach ma

is to fire t6 (labelled by f) exactly ℓ =
∑k

i=1(mi − ni) times, because ℓ is the amount
of tokens in p5, and t6 removes exactly one token at a time from p5.

254 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Counter–example to the conjecture Unfortunately, the conjecture is wrong: the
Petri net with reset arcs (and without ε-transitions) N6 of Figure 8.7 is such that
L
(
N6, {ma}

)
= L

(
N5, {ma}

)
, as shown by Proposition 8.7 hereunder. Remark that,

in this figure, we have adopted the same graphical convention as in the case of PN+R.
That is, we represent reset arcs by an edge bearing a cross. It is also important to bear
in mind that there is no trashcan place in this net.

Proposition 8.7 L(N6, {ma}) = L(N5, {ma}).

Proof. First, remark that N5 and N6 have a very similar structure. Let pi be a place
of N5. We say that the place pi is its corresponding place in N6 (and vice-versa: there
is thus a one-to-one correspondence between the places of N5 and N6). Similarly,
to each transition ti of N5, corresponds one and only one transition ti of N6. Thus,
to any sequence of transitions σ of N5 corresponds one and only one sequence of
transitions σ of N6, with Λ(σ) = Λ(σ). We prove that L(N6, {ma}) ⊇ L(N5, {ma})
and L(N6, {ma}) ⊆ L(N5, {ma}) independently:

L(N6, {ma}) ⊇ L(N5, {ma}) Let us consider the generic accepting sequence of transi-

tions σ = tm1
1 t2t

n1
3 t4t

m2
1 t2t

n2
3 t4 · · · tmk

1 t2t
nk

3 t4t5t
ℓ
6 of N5, with ℓ =

∑k
i=1(mi−ni), and let σ

be its corresponding sequence in N6. Let us show that σ is firable and leads to ma. For
any 1 ≤ i ≤ k, let σi = tmi

1 t2t
ni

3 t4, and let σi be its corresponding sequence. Moreover,

for any 1 ≤ i ≤ k, let mi be s.t. m0
σ1···σi−−−→ mi (where m0 is the initial marking of N5),

and let mi be s.t. m0
σ1···σi−−−→ mi (where mi is the initial marking of N6). According

to [Cia94], we know that for any 1 ≤ i ≤ k: mi

(
{p2, p3, p4}

)
= 0, mi(p1) = 1 and

mi(p5) =
∑i

j=1(mj − nj). It is easy to show by induction on i that for any 1 ≤ i ≤ k:
mi = mi. Hence σ1 · · ·σk is firable in N6 and leads to mk = mk = 〈1, 0, 0, 0, ℓ〉 with
ℓ =

∑k
i=1(mi − ni). From that point, it is easy to see that the sequence t5t

ℓ
6 is firable

and leads to ma. Hence, for any sequence of σ of N5 that lead to ma, the sequence σ

of N6 leads to ma with Λ(σ) = Λ(σ). Thus, L(N6, {ma}) ⊇ L(N5, {ma}).

L(N6, {ma}) ⊆ L(N5, {ma}) The other direction can be proved by similar arguments

and is thus omitted.

We conclude that L(N6, {ma}) = L(N5, {ma}). �

Thus, Ciardo’s proposal is not suitable to strictly separate Petri nets with reset
arcs (nor PN+R) from PN+T, when considering finite sets of accepting markings and
disallowing ε–labelled transitions. Still, can we use it to prove that LG

/ε (PN+R) ⊂
LG

/ε (PN+T) ? For that purpose, one should devise an upward–closed set U s.t. there is

no PN+R N ′ and no upward–closed set U ′ with L(N ′, U ′) = L(N5, U). At that point,
it is not clear to us whether such an upward–closed set exists (for instance, neither N5

nor ↑({ma}) are suitable).

8.4. DISCUSSION 255

p4

•
p1 p2

p5

p3

t1 a

t2
c

t3
b

t4

d

t5
e

t6
f

×

Figure 8.7: The Petri net with reset arcs N6 used in the proof that Ciardo’s conjecture
does not hold.

t1

a

t3

b

t2

c

p1 p2

Figure 8.8: The PN+T N7: a new conjecture to separate PN+T and PN+R.

A new conjecture Nevertheless, we suggest N7 (see Figure 8.8) with accepting set
of markings {〈0, 0〉} as a new candidate of PN+T whose language cannot be accepted
by a PN+R without ε-transitions:

Conjecture 8.2 There is no PN+R N without ε-transitions and no finite set of mark-
ings S s.t. L(N , S) = L(N7, {〈0, 0〉}).

From our point of view, this net can also be useful in order to strictly separate
the expressive powers of PN+R and PN+T, when we consider 4–upward–closed sets
of accepting markings and disallow ε–labelled transitions:

Conjecture 8.3 There is no PN+R N without ε-transitions and no upward–closed
set of markings U s.t. L(N , U) = L(N7, ↑({〈0, 0〉})).

8.4 Discussion

In this chapter, we have addressed the expressiveness of WSTS (and various subclasses
thereof, such as the different kinds of EPN), in terms of finite words languages, when
the set of accepting configurations is upward-closed. These languages have been coined
as Well-structured languages. We believe that the choice of upward-closed sets of
accepting markings is consistent with the monotonicity property of WSTS, one of their
main characteristics.

256 CHAPTER 8. WELL-STRUCTURED LANGUAGES

Indeed, that approach has turned to be fruitful. As a remainder, these are the most
important results that we have obtained in this chapter:

• As far as the class LG(WSTS) of well-structured languages is concerned, we shown
that it forms a full AFL closed under intersection. We have also proved a pumping
lemma (Lemma 8.3), that allows to prove classical results of the literature, and
to obtain new ones, very easily in both cases (see Section 8.3.1).

• As far as the class LG(PN) is concerned, we have proved another pumping lemma
(Lemma 8.5), that allows to obtain interesting results about this class. The
most notable is surely the strict separation of LG(PN) and LG(PN+NBA) (see
Section 8.3.2).

• A third pumping lemma (Lemma 8.6), specific to PN+NBA, has been proved.
Here again, we have been able to obtain several results regarding LG(PN+NBA)
thanks to this pumping lemma. In particular, we have been able to strictly
separate the classes LG(PN+NBA) and LG(PN+T) (Section 8.3.3).

In the proofs of all our pumping lemmata, we have heavily relied on properties that
are specific to WSTS: the monotonicity, and the possibility to extract an increasing
sequence of configurations from any infinite sequence of configurations (Lemma 2.2).
To the best of our knowledge, theses approach had never been exploited when dealing
with expressiveness properties of these models.

Several problems remain open, however, such as the separation of PN+T and PN+R

(see Section 8.3.6), whether we consider upward-closed or finite sets of accepting mark-
ings.

Chapter 9

Conclusion

I
n the introduction of this thesis, we have thoroughly explained why the development
of formal methods to verify computer systems is nowadays a critical issue. To
achieve this goal, it is extremely important to identify classes of models that are

suitable to formally describe the (often complex) semantics of computer systems such
as distributed, communicating and embedded systems. A thorough command of the
properties of these models, as well as efficient algorithms to analyse them are necessary.

In this thesis, we have considered a broad class of models, known as the Well-
Structured Transition Systems. That choice has been motivated along Chapter 2 and
Chapter 3:

1. WSTS subsume several well-known classes of models that have been often studied
in the literature, and that are known to be useful in practice for modelling various
kinds of computer systems. These models are mainly the Lossy channel systems
and the Petri nets (and their monotonic extensions, such as EPN, or monotonic
SMPN).

2. Several non-trivial properties are decidable on WSTS. The most notable one is
the coverability, which amounts to decide the reachability of a set of states that
has a special form (it is upward-closed). Hence, the verification of many realistic
safety properties can be reduced to deciding the coverability problem.

Moreover, as we have seen in Chapter 8, it is quite natural, owing to the monotonicity
property of WSTS, to study the class of finite-words languages that are defined by
WSTS, and upward-closed sets of accepting states.

At the end of Section 3.5, after our short survey of the literature regarding WSTS,
we had identified several open problems regarding that class of systems. Let us briefly
review them and recall which new results we have obtained about them. These new

257

258 CHAPTER 9. CONCLUSION

results often raise new questions. We thus seize the opportunity of this concluding
chapter to suggest open problems and possible directions for future research.

The lack of a forward algorithm for the coverability problem

As we have seen in Chapter 3, the only general algorithm to answer coverability on
WSTS was hitherto the backward algorithm of [ACJT96]. The main drawback of a
backward algorithm, compared to a forward traversal, is its poor efficiency.

In Chapter 4 and Chapter 5 we have described, from a theoretical and a practical
point of view, Expand, Enlarge and Check, an efficient forward algorithm to decide
coverability on any WSTS (under some reasonable effectiveness requirements).

The practical efficiency of this solution has been made possible partly because of
the efficient algorithm to decide coverability on finite WSTS, introduced in Section 5.3.
That algorithm has allowed us to speed up the Expand phase of EEC. In some cases,
when the And-Or graph is degenerated, the Enlarge phase can be improved too by this
method. In the general case however, the whole portion of the And-Or graph that is
reachable from its initial node has to be built in order to check for the avoidability
of the upward-closed set. That graph can in some cases be huge and intractable in
practice. It would thus be interesting to devise a more efficient method to decide
whether a given upward-closed set is avoidable in an And-Or graph. Such a method
should work without building the whole graph. For that purpose, it could exploit the
monotonicity property of WSTS in order to prune branches of the And-Or graph that
do not have to be explored (and hence, do not have to be built). Remark that it is
the same monotonicity property that has allowed us to obtain an efficient algorithm
for finite WSTS in Section 5.3. The algorithms presented in [LS98] (that have already
been exploited in a similar context, see [CDF+05]) could be relevant for that problem.

The efficient computation of the minimal coverability set for

Petri nets

Although this is not true for the general case of WSTS, the covering set is computable
in the case of Petri nets. Algorithms to compute the covering set actually compute
a coverability set, which is a representation thereof. The most famous algorithm to
compute a coverability set of a Petri net is the Karp&Miller algorithm [KM69]. The
main drawback of this solution is that it turns out to be rather inefficient in practice.

In [Fin91], the Minimal Coverabiliy Tree algorithm has been introduced as an opti-
misation of the Karp&Miller algorithm. As we have seen in Chapter 6, that algorithm
is not correct. This is unfortunately also the case for a variation of the MCT, intro-
duced in [Lut95], implemented in the Pep tool, and supposed to correct the bug. In

259

the case of the MCT, an under-approximation might be computed. In the case of the
algorithm implemented in Pep, the termination is not guaranteed.

In Chapter 6, we have introduced a new algorithm to compute a coverability set
of Petri nets that is more efficient in practice than the Karp&Miller procedure. Its
optimisation relies on the ordering ⊑ that compares pairs of markings.

This algorithm has been discussed mainly from the theoretical point of view (albeit
the practical evaluation we have provided at the end of the chapter). This means
that several open questions remain regarding the (efficient) implementation of this
algorithm. In particular, it remains to devise efficient data-structures to store and
maintain transitively closed sets of pairs of markings, by means of their ⊑- maximal
pairs only (see Section 6.3.6 for a more detailed discussion on these issues).

The lack of results about the expressive power of WSTS

Unlike other models of computations (such as finite or push-down automata), the
study of the expressive powers of WSTS is still incomplete. The expressive power of
PN, PN+T and PN+R on finite words and for finite sets of accepting states, has been
fairly well characterised (see for instance [Pet81, Cia94, Jan86]). However, there is a
lack of results when upward-closed sets of accepting configurations are considered, or
for the general class of WSTS. Moreover, ω-languages have seldom been looked into.

In Chapter 7 and Chapter 8, we have partly completed these results:

• As far as ω-words are concerned, we have studied and compared the respective
expressive powers on ω-words of PN, PN+T, PN+NBA and PN+R, in Chapter 7.
We have strictly separated the classes of languages that are definable by these
models: PN+T are strictly more expressive that PN+NBA, which are in turn
strictly more expressive than PN. As far as PN+R are concerned, they are strictly
more expressive than PN+NBA. However, their relationship to PN+T still has
to be characterised precisely. By allowing the use of silent transitions, one can
simulate a PN+T thanks to a PN+R. The question remains open when silent
transitions are not allowed.

• As far as finite words are concerned, we have defined and studied the class
of well-structured languages, in Chapter 8. These languages are finite words
languages that are accepted by WSTS when upward-closed sets of accepting
states are considered. That class forms a full AFL and enjoys several positive
properties, such as the decidability of emptiness. The peculiar characteristic of
the sets of accepting states (upward-closed) seems also very naturally suited to
WSTS, because they are monotonic.

The main results of Chapter 8 are the three pumping lemmata (respectively on
WSTS, PN and PN+NBA) that we have introduced. These lemmata allow us

260 CHAPTER 9. CONCLUSION

to obtain several new results on the classes WSL, LG(PN), LG(PN+NBA) and
LG(PN+T), and to (re-)prove, in a very easy way, classical results from the
literature. In particular, we have been able to strictly separate the expressiveness
of sub-classes of EPN: LG(PN) is a strict subset of LG(PN+NBA), which is a
strict subset of LG(PN+T). Unfortunately, as in the case of ω-languages, the
relationship of LG(PN+R) to LG(PN+T) remains fuzzy (see Section 8.3.6 for a
short discussion of this problem). This is thus still an open problem.

To conclude this work on WSTS, let us remark that these results would be rather
useless without efficient procedures to extract models from the objects that have to
be analysed. These can be programs (written in plain programming language such as
C, C++, Ada,. . .), high-level description of systems (such as sequence charts), and so
forth. A large effort has been recently carried out by the community of computer-aided
verification in this direction. These efforts have produced tools such as Blast [HJMS03]
or Slam [BR02]. They are able to analyse directly programs written in C, for instance,
by means of powerful abstraction methods that extract infinite-state models from the
source code.

Much effort, however, remains to be done in this direction. But this is clearly
beyond the scope of this thesis. . .

The large flat screens that display advertisement in front of some department stores
are controlled by computers too. An unexpected crash of the controller can sometimes
be embarrassing for the advertiser. This one displays a typical error message of the Mi-
crosoft Windows operating system. (Source: http://www.fprintf.net/dang/blog/)

Bibliography

[AAB99] Parosh Aziz Abdulla, Aurore Annichini and Ahmed Bouajjani. Sym-
bolic verification of lossy channel systems: Application to the bounded re-
transmission protocol. In Rance Cleaveland, ed., TACAS, volume 1579
of Lecture Notes in Computer Science, pp. 208–222. Springer, 1999. ISBN
3-540-65703-7.

[AABJ04] Parosh Aziz Abdulla, Aurore Annichini, Ahmed Bouaj-
jani and Bengt Jonsson. Using forward reachability anal-
ysis for verification of lossy channel system s. Form. Meth-
ods Syst. Des., 25(1):pp. 39–65, 2004. ISSN 0925-9856. doi:
http://dx.doi.org/10.1023/B:FORM.0000033962.51898.1a.

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani and Bengt Jonsson. On-
the-fly analysis of systems with unbounded, lossy fifo channels. In Alan J.
Hu and Moshe Y. Vardi, eds., CAV, volume 1427 of Lecture Notes in
Computer Science, pp. 305–318. Springer, 1998. ISBN 3-540-64608-6.

[ABS01] Aurore Annichini, Ahmed Bouajjani and Mihaela Sighireanu. Trex:
A tool for reachability analysis of complex systems. In Berry et al.
[BCF01], pp. 368–372.

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson and Yih-Kuen
Tsay. General Decidability Theorems for Infinite-state Systems. In Pro-
ceedings of the 11th Annual Symposium on Logic in Comuter Science
(LICS’96), pp. 313–321. IEEE Computer Society Press, 1996.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theo-
retical Computer Science, 126(2):pp. 183–236, 1994.

[ADMN04] Parosh Aziz Abdulla, Johann Deneux, Pritha Mahata and Aletta
Nylén. Forward reachability analysis of timed petri nets. In Yassine
Lakhnech and Sergio Yovine, eds., FORMATS/FTRTFT, volume 3253
of Lecture Notes in Computer Science, pp. 343–362. Springer, 2004. ISBN
3-540-23167-6.

261

262 BIBLIOGRAPHY

[AHK02] Rajeev Alur, Thomas A. Henzinger and Orna Kupfer-
man. Alternating-time temporal logic. Journal of the
ACM, 49(5):pp. 672–713, 2002. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/585265.585270.

[AJ93] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with
unreliable channels. In LICS, pp. 160–170. IEEE Computer Society, 1993.

[Alh98] Sinan Si Alhir. UML in a Nutshell. O’reilly& Associates, inc., 1998.
ISBN 1-56592-448-7.

[Alu99] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron
Peled, eds., CAV, volume 1633 of Lecture Notes in Computer Science,
pp. 8–22. Springer, 1999. ISBN 3-540-66202-2.

[AN01] Parosh Aziz Abdulla and Aletta Nylén. Timed petri nets and bqos. In
José Manuel Colom and Maciej Koutny, eds., ICATPN, volume 2075
of Lecture Notes in Computer Science, pp. 53–70. Springer, 2001. ISBN
3-540-42252-8.

[AN02] Parosh Aziz Abdulla and Aletta Nylén. Undecidability of LTL for
Timed Petri Nets. In Proceedings of the 4th International Workshop on
Verification of Infinite-State Systems (INFINITY 2002). 2002.

[AQR+04] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof and
Yichen Xie. Zing: A model checker for concurrent software. In Rajeev
Alur and Doron Peled, eds., CAV, volume 3114 of Lecture Notes in
Computer Science, pp. 484–487. Springer, 2004. ISBN 3-540-22342-8.

[Ari96] ARIANE 5 flight 501 failure. Technical report,
http://homepages.inf.ed.ac.uk/perdita/Book/ariane5rep.html,
1996.

[Bar06] Sébastien Bardin. Vers un Model Checking avec Accélération Plate des
Systèmes Hétérogènes. Ph.D. thesis, ENS Cachan, France, 2006.

[BCF01] Gérard Berry, Hubert Comon and Alain Finkel, eds. Computer Aided
Verification, 13th International Conference, CAV 2001, Paris, France,
July 18-22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer
Science. Springer, 2001. ISBN 3-540-42345-1.

[BCR01] Thomas Ball, Sagar Chaki and Sriram K. Rajamani. Parameterized
verification of multithreaded software libraries. In Tiziana Margaria
and Wang Yi, eds., TACAS, volume 2031 of Lecture Notes in Computer
Science, pp. 158–173. Springer, 2001. ISBN 3-540-41865-2.

BIBLIOGRAPHY 263

[BFLP03] Sébastien Bardin, Alain Finkel, Jérôme Leroux and Laure Petrucci.
Fast: Fast acceleration of symbolikc transition systems. In Warren A.
Hunt and Fabio Somenzi, eds., CAV, volume 2725 of Lecture Notes in
Computer Science, pp. 118–121. Springer, 2003. ISBN 3-540-40524-0.

[BH05] Jesse D. Bingham and Alan J. Hu. Empirically efficient verification for
a class of infinite-state systems. In Nicolas Halbwachs and Lenore D.
Zuck, eds., TACAS, volume 3440 of Lecture Notes in Computer Science,
pp. 77–92. Springer, 2005. ISBN 3-540-25333-5.

[Bin05] Jesse D. Bingham. Model Checking Sequential Consistency and Param-
eterized Protocols. Ph.D. thesis, The University of British Columbia,
Canada, 2005.

[BM99] Ahmed Bouajjani and Richard Mayr. Model checking lossy vector ad-
dition systems. In Christoph Meinel and Sophie Tison, eds., STACS,
volume 1563 of Lecture Notes in Computer Science, pp. 323–333. Springer,
1999.

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces.
Ph.D. thesis, Université de Liège, 1999.

[Boo] Boost graph library. Home Page:
http://www.boost.org/libs/graph/doc/index.html.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project: debugging
system software via static analysis. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 1–3. ACM Press, New York, NY, USA, 2002. ISBN 1-
58113-450-9. doi:http://doi.acm.org/10.1145/503272.503274.

[Bry86] Randal E. Bryant. Graph-based Algorithms for Boolean Function Ma-
nipulation. IEEE Transaction on Computers, C-35(8):pp. 667–691, 1986.

[BW95] Bernard Boigelot and Pierre Wolper. An automata-theoretic approach
to presburger arithmetic constraints (extended abstract). In Alan My-
croft, ed., SAS, volume 983 of Lecture Notes in Computer Science, pp.
21–32. Springer, 1995. ISBN 3-540-60360-3.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen and Didier Lime. Efficient on-the-fly algorithms for the analysis
of timed games. In Mart́ın Abadi and Luca de Alfaro, eds., CONCUR,
volume 3653 of Lecture Notes in Computer Science, pp. 66–80. Springer,
2005. ISBN 3-540-28309-9.

264 BIBLIOGRAPHY

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In Dexter
Kozen, ed., Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pp. 52–71. Springer, 1981. ISBN 3-540-11212-X.

[CES83] Edmund M. Clarke, E. Allen Emerson and A. Prasad Sistla. Auto-
matic verification of finite state concurrent systems using temporal logic
specifications: A practical approach. In POPL, pp. 117–126. 1983.

[CFI96] Gérard Cécé, Alain Finkel and S. Purushothaman Iyer. Unreliable
channels are easier to verify than perfect channels. Information and Com-
putation, 124(1):pp. 20–31, 1996.

[CGP99] Edmund M. Clarke, Orna Grumberg and Doron A. Peled. Model
Checking. MIT Press, 1999. ISBN 0-262-03270-8.

[Cia94] Gianfranco Ciardo. Petri nets with marking-dependent ar cardinality:
Properties and analysis. In Robert Valette, ed., Application and Theory
of Petri Nets, volume 815 of Lecture Notes in Computer Science, pp. 179–
198. Springer, 1994. ISBN 3-540-58152-9.

[DB01] Giorgio Delzanno and Tefvik Bultan. Constraint-based Verification of
Client-server Protocols. In Proceedings of the 7th International Conference
on Principles and Practice of Constraint Programming (CP2001), volume
2239 of Lecture Notes in Computer Science, pp. 286–301. Srpinger, 2001.

[Del00] Giorgio Delzanno. Automatic verification of parameterized cache coher-
ence protocols. In E. Allen Emerson and A. Prasad Sistla, eds., CAV,
volume 1855 of Lecture Notes in Computer Science, pp. 53–68. Springer,
2000. ISBN 3-540-67770-4.

[DEP99] Giorgio Delzanno, Javier Esparza and Andreas Podelski. Constraint-
based analysis of broadcast protocols. In Jörg Flum and Mario
Rodŕıguez-Artalejo, eds., CSL, volume 1683 of Lecture Notes in Com-
puter Science, pp. 50–66. Springer, 1999. ISBN 3-540-66536-6.

[DFS98] Catherine Dufourd, Alain Finkel and Ph. Schnoebelen. Reset nets
between decidability and undecidability. In Larsen et al. [LSW98], pp.
103–115.

[DR00] Giorgio Delzanno and Jean-François Raskin. Symbolic representation
of upward-closed sets. In Susanne Graf and Michael I. Schwartzbach,
eds., TACAS, volume 1785 of Lecture Notes in Computer Science, pp.
426–440. Springer, 2000. ISBN 3-540-67282-6.

BIBLIOGRAPHY 265

[DRVB01] Giorgio Delzanno, Jean-François Raskin and Laurent Van Begin. At-
tacking symbolic state explosion. In Berry et al. [BCF01], pp. 298–310.

[DRVB02] Giorgio Delzanno, Jean-François Raskin and Laurent Van Begin.
Towards the automated verification of multithreaded java programs. In
Joost-Pieter Katoen and Perdita Stevens, eds., TACAS, volume 2280
of Lecture Notes in Computer Science, pp. 173–187. Springer, 2002. ISBN
3-540-43419-4.

[DRVB04] Giorgio Delzanno, Jean-François Raskin and Laurent Van Begin.
Covering sharing trees: a compact data structure for parameterized veri-
fication. STTT, 5(2-3):pp. 268–297, 2004.

[EFM99] Javier Esparza, Alain Finkel and Richard Mayr. On the Verification
of Broadcast Protocols. In Proceedings of the 14th Annual Symposium
on Logic in Computer Science (LICS’99), pp. 352–359. IEEE Computer
Society Press, 1999.

[EN98] E. Allen Emerson and Kedar S. Namjoshi. On Model Checking for Non-
deterministic Infinite-state Systems. In Proceedings of the 13th Annual
Symposium on Logic in Computer Science (LICS ’98), pp. 70–80. IEEE
Computer Society Press, 1998.

[Esp94] Javier Esparza. On the Decidabilty of Model Checking for Several mu-
calculi and Petri Nets. In Proceedings of the 19th International Colloquium
on Trees in Algebra and Programming (CAAP 1994), volume 787 of LNCs,
pp. 115–129. Springer, 1994.

[Fas] Fast web page. http://www.lsv.ens-cachan.fr/fast/example.php.

[FGRVB05] Alain Finkel, Gilles Geeraerts, Jean-François Raskin and Laurent
Van Begin. On the omega-language expressive power of extended petri
nets. Electronic Notes in Theoretical Computer Science, 128(2):pp. 87–
101, 2005.

[FGRVB06] Alain Finkel, Gilles Geeraerts, Jean-François Raskin and Laurent
Van Begin. On the omega-language expressive power of extended petri
nets. Theoretical Computer Science, 356(3):pp. 374–386, 2006.

[Fin90] Alain Finkel. Reduction and Covering of Infinite Reachability Trees.
Information and Computation, 89(2):pp. 144–179, 1990.

[Fin91] Alain Finkel. The minimal coverability graph for petri nets. In Rozen-
berg [Roz93], pp. 210–243.

[Fla97] David Flanagan. Java in a Nutshell (2nd edition). O’reilly & Associates,
inc., 1997. ISBN 1-56592-262-X.

266 BIBLIOGRAPHY

[FRSB02] Alain Finkel, Jean-François Raskin, Mathias Samuelides and Lau-
rent Van Begin. Monotonic extensions of petri nets: Forward and back-
ward search revisited. Electronic Notes in Theoretical Computer Science,
68(6), 2002.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition
systems everywhere! Theoretical Computer Science, 256(1-2):pp. 63–92,
2001.

[Ger01] Rob Gerth. Model checking if your life depends on it. a view from Intel’s
trenches. In Matthew B. Dwyer, ed., SPIN, volume 2057 of Lecture
Notes in Computer Science, p. 15. Springer, 2001. ISBN 3-540-42124-6.

[Gin75] Seymour Ginsburg. Algebraic and Automata-Theoretic Properties of
Formal Languages. Elsevier Science Inc., 1975. ISBN 0444105867.

[God96] Partice Godefroid. Partial–Order Methods for the Verification of Con-
current Systems: An Approach to the State–Explosion Problem, volume
1032 of Lecture Notes in Compute Science. Springer–Verlag, 1996.

[GPVW95] Rob Gerth, Doron Peled, Moshe Vardi and Pierre Wolper. Simple
on–the–fly automatic verification of linear temporal logic. In Chapman &
Hall, ed., Protocol Specification, Testing and Verification, pp. 3–18. 1995.

[Gra97a] Bernd Grahlmann. The pep tool. In Orna Grumberg, ed., CAV,
volume 1254 of Lecture Notes in Computer Science, pp. 440–443. Springer,
1997. ISBN 3-540-63166-6.

[Gra97b] Mark Grand. Java Language Reference. O’reilly, 1997. ISBN 1-56592-
326-X.

[GRVB04] Gilles Geeraerts, Jean-François Raskin and Laurent Van Begin. Ex-
pand, enlarge, and check: New algorithms for the coverability problem of
wsts. In Kamal Lodaya and Meena Mahajan, eds., FSTTCS, volume
3328 of Lecture Notes in Computer Science, pp. 287–298. Springer, 2004.
ISBN 3-540-24058-6.

[GRVB05] Gilles Geeraerts, Jean-François Raskin and Laurent Van Begin. Ex-
pand, enlarge and check... made efficient. In Kousha Etessami and Sri-
ram K. Rajamani, eds., CAV, volume 3576 of Lecture Notes in Computer
Science, pp. 394–407. Springer, 2005. ISBN 3-540-27231-3.

[GRVB06a] Pierre Ganty, Jean-François Raskin and Laurent Van Begin. A
complete abstract interpretation framework for coverability properties of
WSTS. In E. Allen Emerson and Kedar S. Namjoshi, eds., VMCAI,
volume 3855 of Lecture Notes in Computer Science, pp. 49–64. Springer,
2006. ISBN 3-540-31139-4.

BIBLIOGRAPHY 267

[GRVB06b] Gilles Geeraerts, Jean-François Raskin and Laurent Van Begin. Ex-
pand, enlarge and check: New algorithms for the coverability problem of
WSTS. Journal of Computer and System Sciences, 72(1):pp. 180–203,
2006.

[GRVB06c] Gilles Geeraerts, Jean-François Raskin and Laurent Van Begin.
Well-structured languages. Submitted for publication, 2006.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about Systems
with Many Processes. Journal of ACM, 39(3):pp. 675–735, 1992.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings
of the 11th Symposium on Logic in Computer Science (LICS ’96), p. 278.
IEEE Computer Society, 1996. ISBN 0-8186-7463-6.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Grégoire
Sutre. Software verification with blast. In Thomas Ball and Sriram K.
Rajamani, eds., SPIN, volume 2648 of Lecture Notes in Computer Sci-
ence, pp. 235–239. Springer, 2003. ISBN 3-540-40117-2.

[HKQ03] Thomas A. Henzinger, Orna Kupferman and Shaz Qadeer. From
prehistoric to postmodern symbolic model checking. Formal Methods in
System Design, 23(3):pp. 303–327, 2003.

[HLP01] Klaus Havelund, Michael R. Lowry and John Penix. Formal anal-
ysis of a space-craft controller using spin. IEEE Trans. Software Eng.,
27(8):pp. 749–765, 2001.

[HMU01] John Hopcroft, Rajeev Motwani and Jeffrey Ullman. Introduction to
Automata Theory, Languages, and Computation, second edition. Addison-
Wesley, 2001. ISBN 0201441241.

[HNRW06] Klaus Havelund, Manuel Núñez, Grigore Rosu and Burkhart Wolff,
eds. Formal Approaches to Software Testing and Runtime Verification,
First Combined International Workshops, FATES 2006 and RV 2006,
Seattle, WA, USA, August 15-16, 2006, Revised Selected Papers, volume
4262 of Lecture Notes in Computer Science. Springer, 2006. ISBN 3-540-
49699-8.

[HP79] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability prob-
lem for 5-dimensional vector addition systems. Theoretical Computer Sci-
ence, 8(2):pp. 135–159, April 1979. ISSN 0304-3975.

[Imm81] Neil Immerman. Number of quantifiers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):pp. 384–406, 1981.

268 BIBLIOGRAPHY

[INA] Ina: Integrated net analyzer. Home page:
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina/manual.html.

[Jac06] Daniel Jackson. Dependable Software by Design. Scientific American,
294(6), June 2006. ISSN 0036-8733.

[Jan86] Matthias Jantzen. Language theory of petri nets. In Wilfried Brauer,
Wolfgang Reisig and Grzegorz Rozenberg, eds., Advances in Petri
Nets, volume 254 of Lecture Notes in Computer Science, pp. 397–412.
Springer, 1986. ISBN 3-540-17905-4.

[JK95] Bengt Jonsson and Lars Kempe. Verifying safety properties of a class
of infinite-state distributed algorithms. In Pierre Wolper, ed., CAV,
volume 939 of Lecture Notes in Computer Science, pp. 42–53. Springer,
1995. ISBN 3-540-60045-0.

[JM07] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asyn-
chronous programs. In Martin Hofmann and Matthias Felleisen, eds.,
POPL, pp. 339–350. ACM, 2007. ISBN 1-59593-575-4.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel Program Schemata.
Journal of Computer and System Sciences, 3:pp. 147–195, 1969.

[LAS] The Liège Automata-based Symbolic Handler (lash). Available at
http://www.montefiore.ulg.ac.be/∼boigelot/research/lash.

[Lea00] Douglas Lea. Concurrent Programming in Java. The Java Series. Addison
Wesley, 2000. ISBN 0201695812.

[LL00] Michael Leuschel and Helko Lehmann. Solving coverability prob-
lems of petri nets by partial deduction. In PPDP ’00: Proceed-
ings of the 2nd ACM SIGPLAN international conference on Prin-
ciples and practice of declarative programming, pp. 268–279. ACM
Press, New York, NY, USA, 2000. ISBN 1-58113-265-4. doi:
http://doi.acm.org/10.1145/351268.351298.

[LS98] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for
minimal fixed points (extended abstract). In Larsen et al. [LSW98], pp.
53–66.

[LSW98] Kim Guldstrand Larsen, Sven Skyum and Glynn Winskel, eds. Au-
tomata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume
1443 of Lecture Notes in Computer Science. Springer, 1998. ISBN 3-
540-64781-3.

BIBLIOGRAPHY 269

[Lut95] Karsten Luttge. Zustandsgraphen von Petri-Netzen. Master’s thesis,
Humboldt-Universität zu Berlin, 1995.

[May84] Ernst W. Mayr. An algorithm for the general petri net reachability prob-
lem. SIAM Journal of Computing, 3(13):pp. 441–460, 1984.

[McM93] Kenneth L. McMillan. Symbolic Model Checking: an Approach to the
State Explosion Problem. Kluwer Academic Publishers, 1993. ISBN 0-
7923-9380-5.

[Mer74] Philip M. Merlin. A study of the recoverability of computing systems.
Ph.D. thesis, University of California, Irvine, CA., 1974.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989. ISBN 0-13-115007-3.

[Min67] Marvin Minsky. Finite and Infinite Machines. Englewood Cliffs, N.J.,
Prentice-Hall, 1967. ISBN 0131655639.

[NIS02] The economic impacts of inadequate infrastructure for software testing
(final report). Technical Report 02-3, National Institute of Standards and
Technology, May 2002.

[NT93] Leveson Nancy and Clark S. Turner. An investigation of the Therac-25
accidents. IEEE Computer, 26(7):pp. 18–41, July 1993. Updated version
at http://sunnyday.mit.edu/papers/therac.pdf.

[OW99] Scott Oaks and Henry Wong. Java Threads (Second Edition). O’Reilly
& Associates, inc., 1999. ISBN 1565924185.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In David L. Dill, ed., CAV, volume 818 of Lecture Notes in
Computer Science, pp. 377–390. Springer, 1994. ISBN 3-540-58179-0.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. Ph.D. thesis, Tech-
nical University Darmstadt, 1962.

[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall, 1981. ISBN 0136619835.

[Pre29] Mojźcesz Presburger. Über die Vollständigkeit eines gewissen sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt. In Comptes Rendus du premier congrès de
Mathématiciens des Pays Slaves, pp. 92–101. Warsaw, 1929.

[Pyt] Python web page. http://www.python.org.

270 BIBLIOGRAPHY

[PZ91] Louchka Popova-Zeugmann. On time petri nets. Elektronische Infor-
mationsverarbeitung und Kybernetik, 27(4):pp. 227–244, 1991.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini
and Ugo Montanari, eds., Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pp. 337–351. Springer, 1982. ISBN
3-540-11494-7.

[Ram74] Chander Ramchandani. Analysis of asynchronous concurrent systems
by timed Petri nets. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, MA., 1974.

[Rei86] Wolfgang Reisig. Petri Nets. An introduction. Springer, 1986. ISBN
0-387-13723-8.

[Ric53] Henry G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):pp.
358–366, March 1953.

[Roz93] Grzegorz Rozenberg, ed. Advances in Petri Nets 1993, Papers from the
12th International Conference on Applications and Theory of Petri Nets,
Gjern, Denmark, June 1991, volume 674 of Lecture Notes in Computer
Science. Springer, 1993. ISBN 3540566899.

[RSVB03] Jean-François Raskin, Mathias Samuelides and Laurent Van Begin.
Petri games are Monotonic but difficult to analyse. Technical Report 508,
Université Libre de Bruxelles, 2003.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and imple-
mentation of vampire. AI Commun., 15(2-3):pp. 91–110, 2002.

[RVB04] Jean-François Raskin and Laurent Van Begin. Petri nets with non-
blocking arcs are difficult to analyze. Electronic Notes in Theoretical Com-
puter Science, 98:pp. 35–55, 2004.

[Sal73] Arto Salomaa. Formal Languages. Academic Press, 1973. ISBN 0-12-
615750-2.

[Sal85] Arto Salomaa. Computation and Automata, volume 25 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1985.
ISBN 0-521-30245-5.

[SLL01] Jeremy G. Siek, Lie-Quan Lee and Andrew Lumsdaine. Boost Graph
Library, The: User Guide and Reference Manual. Addison Wesley Pro-
fessional, 2001. ISBN 0201729148.

BIBLIOGRAPHY 271

[STC96] Manuel Silva, Enrique Teruel and José Manuel Colom. Linear al-
gebraic and linear programming techniques for the analysis of place or
transition net systems. In Wolfgang Reisig and Grzegorz Rozenberg,
eds., Petri Nets, volume 1491 of Lecture Notes in Computer Science, pp.
309–373. Springer, 1996. ISBN 3-540-65306-6.

[Sti06] Gary Stix. Send in the Terminator. Scientific American, 294(12), De-
cember 2006. ISSN 0036-8733.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proceedings of the London Mathematical Society,
volume 42 of 2. 1936.

[Val78] Rüdiger Valk. On the computational power of extended petri nets. In
Józef Winkowski, ed., MFCS, volume 64 of Lecture Notes in Computer
Science, pp. 526–535. Springer, 1978. ISBN 3-540-08921-7.

[Van03] Laurent Van Begin. Efficient Verification of Counting Abstractions for
Parametric systems. Ph.D. thesis, Université Libre de Bruxelles, Belgium,
2003.

[VBvdA01] H. M. W. (Eric) Verbeek, Twan Basten and Wil M. P. van der
Aalst. Diagnosing workflow processes using woflan. Comput. J.,
44(4):pp. 246–279, 2001.

[VRD03] Guido Van Rossum and Fred Drake, eds. The Python Language
Reference Manual. Network Theory Ltd., 2003. ISBN 0954161785.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach
to automatic program verification (preliminary report). In LICS, pp. 332–
344. IEEE Computer Society, 1986.

[Zam97] Denis Zampuniéris. The Sharing Tree Data Structure: Theory and
Applicationsin Formal Verification. Ph.D. thesis, Facultés Universitaires
Notre-Dame de la Paix, Namur, Belgium, 1997.

[ZLC95] Denis Zampuniéris and Baudouin Le Charlier. Efficient Handling of
Large Sets of Tuples with Sharing Trees. In Proceedings of the Data Com-
pressions Conference (DCC’95), p. 428. IEEE Computer Society Press,
1995.

272 BIBLIOGRAPHY

Index

∗–dc–re, 74
L() (language of WSTS), 59
L(Σ), 75
L(Σ)∗, 75
L∗, 53
L+, 53
LG(), 59
LL(), 59
LP (), 59
LT (), 59
Lω(), 60
Λ

sequence of transitions, 58
tree, 88

⇒, 27
labelled, 57

⇒∗, 27, 56
⇒G, 54
⇒s, 213
α(), 74
· (concatenation)

languages, 53
word, 52

Lω
/ε (), 60

LL
/ε (), 59

LP
/ε (), 59

LS
/ε (), 59

LT
/ε (), 59
⊖, 180
4, 33
-, 48
⊑, 180
ε−closure⇒ (), 213
ς (n), 91
LR, 238

L≥, 238
L, 238
N1, 201
N2, 204
N3, 239
N4, 240
N5, 253
N6, 255
N7, 255
Ancestors (), 186
CovSeq (), 180
Cover (), 87
Dead (), 28
Max (), 18
Min (), 18
M(), 91
Nodes (), 116
PostApprox (d, i), 156
Post (), 27
Post∗ (), 27
PreUp (), 27
Pre (), 27
Pre∗ (), 27
Reach (), 27
States (), 44
Subword (), 44
UGen (), 20
limit (), 82
mps (), 132
| |

sre, 75
set, 14
word, 52

|=, 63
ω-Language of a WSTS, 60

273

274 INDEX

ω-language, 52
ω-word, 52
⊑, 79
→

BP, 49
EPN, 40
LCS, 44
SMPN, 32
Labelled EPN, 58

֌, 112
ε–dc–re, 74
wR, 53
[[]], 75
R.E., 14
AFL, 55
BP, 49
CFL, 54
EEC

LCS, 159
SMPN, 141
algorithm, 122

EPN, 39
EWSTS, 84
FinCovMax, 135
FinCov, 134
LCS, 43
SMPN, 30
TPN, 51
WQO, 16
WSL, 220
WSTS, 28
dc–re, 74
sre, 75

Abstract Family of Languages, 55
Adequate domain of limits, 24
Adequate sequence, 121
Algorithms

Accelerate, 90
EEC, 122
EEC on LCS, 159
EEC on SMPN, 141
removeSubtreeINA, 174

EN procedure, 94
backward coverability for WSTS, 85
Emerson-Namjoshi, 94
entailment sre, 77
fixed point in finite WSTS, 135
Karp&Miller, 90
MCT, 167
minimal coverability tree, 167

And-Or Graph, 111

Broadcast Protocol, 49

Canonical Set, 18
Classes of ω-Languages of WSTS, 60
Classes of Languages of WSTS, 59
Compatible Unfolding, 112
Complement of a language, 53
Concatenation

language, 53
word, 52

Context-Free Grammar, 54
Context-Free Language, 54
Counting abstraction, 37, 50
Coverability Set, 88

Deadlock-freeness, 28
Denotation of an sre, 75
Derivation Rule of a Grammar, 54
Downward-Closed Regular Expression, 74
Downward-Closed Set, 19
Dynamics of transition systems, 27

Effective WSTS, 84
Effective WSTS and Domain of Limits, 109
Enabled transition, effect of a transition,

32
Enabled transitions and firing, 40
Execution, 28
Extended Petri nets, 39
Extension of ⇒, 56

Finite WSTS, 130
Firable transition of LCS and effects, 44

Generator, 20

INDEX 275

Homomorphism, 53
characteristic function, 53
inverse, 53

Ideal, 19
Inverse homomorphism, 53
Iteration of a language, 53

Kleene closure of a language, 53

Label of a Sequence of Transitions, 58
Labelled Extended Petri nets, 57
Labelled transition system, 56
Labelled Tree, 88
Labelled Well-Structured Transition Sys-

tem, 57
Language, 52
Language concatenation, 53
Language of a WSTS, 59
Languages, 52
Limit corresponding to a configuration, 82
Lossy Channel System, 43
Lossy WSTS, 128
LTL, 63

Minimal elements of an upward-closed set,
20

Mirror of a word, 53
Monotonic SMPN, 34

Normal form sre, 76

Ordered Set, 15
Orderings, 15

WQO, 16
partial order, 15
preorder, 15
quasiorder, 15
total order, 15
well-founded order, 16
well-quasi-ordering, 16

Partial order, 15
Perfect Pairs, 116
Preorder, 15

Problems
AOGAvoid: The avoidability prob-

lem for And-Or graphs, 112
BoundEpn: The boundedness for EPN,

62
CPWsts: The coverability problem

for WSTS, 61
EmptyWsts: The emptiness problem

for WSTS, 62
LTLSatis: The action–based LTL sat-

isfiability problem for WSTS, 63
PBEpn: The place-boundedness for

EPN, 62
QLEpn: The quasi-liveness problem

for EPN, 62
RPWsts: The reachability problem

for WSTS, 60
UCWsts: The unbounded computa-

tion for WSTS, 61
UnivEWsts: The universality prob-

lem for WSTS, 63
Pumping lemma for CFL, 55

Quasiorder, 15

Reflexive and transitive closure, 14
Regular Language, 54

Self-Modifying Petri Nets, 30
Sequences of Ci and Li for SMPN, 137
Sequences of Ci’s and Li’s for LCS, 152
Simple Regular Expression, 75
Simply monotonic labelled WSTS, 213
Simply Monotonic WSTS, 128
State and set of states of an LCS, 44
Strongly Monotonic SMPN, 35
Subwords, 44

The ⊖ Operator, 180
The ⊑ Order, 180
The ς (n) sequence, 91
The Covering Sequence, 180
The Covering Set, 87
The Exact Partial Reachability Graph, 113

276 INDEX

The over–approximation And-Or Graph,
115

The Approx function, 153
The FinCovMax sequence, 135
The FinCov sequence, 134
The PostApprox function, 156
The WQO 4, 33
The WQO -, 48
Timed Petri net, 51
Total order, 15
Transition system, 27
Transitive closure, 14

Upward- and Downward-Closure, 19
Upward-Closed Set, 19

Well–Founded Order, 16
Well-quasi Ordering, 16
Well-Structured Language, 220
Well-Structured Transition System, 28
Word, 52
Word concatenation, 52
Words, 52

