
Acta Informatica manuscript No.
(will be inserted by the editor)

Gilles Geeraerts · Jean-François Raskin ·
Laurent Van Begin

Well-Structured Languages

the date of receipt and acceptance should be inserted later

Abstract This paper introduces the notion of well-structured language. A well-
structured language can be defined by a labelled well-structured transition sys-
tem, equipped with an upward-closed set of accepting states. That peculiar class
of transition systems has been frequently studied in the field of computer-aided
verification, where it has direct applications. Petri nets, and their monotonic ex-
tensions (like Petri nets with non-blocking arcs or Petri nets with transfer arcs),
for instance, are special subclasses of well-structured transition systems.

We show that the class of well-structured languages enjoy several important
closure properties. In order to establish these properties, we propose several pump-
ing lemmata that are applicable respectively to the whole class of well-structured
languages and to the classes of languages recognized by Petri nets or Petri nets
with non-blocking arcs. These pumping lemmata also allow us to strictly separate
the expressive power of Petri nets, Petri nets with non-blocking arcs and Petri nets
with transfer arcs.

1 Introduction

In this paper, we study the family of languages defined by well-structured (la-
belled) transition systems (WSTS for short). WSTS [6] are transition systems
whose state space is infinite but equipped with a well-quasi ordering (wqo for
short) and whose transition relation is monotonic w.r.t. this wqo. WSTS have re-
cently attracted a large interest in the community of model-checking because they

Laurent Van Begin has been supported by a “First Europe” grant EPH3310300R0012 of the
Walloon Region.

This work has been partially supported by a FRFC grant number 2.4530.02 of the belgian Na-
tional Fund for Scientific Research (FNRS).

Université Libre de Bruxelles – Département d’Informatique – CPI 212 – Boulevard du Triom-
phe, B-1050 Bruxelles BELGIUM. E-mail: {gigeerae, jraskin, lvbegin}@ulb.ac.be

2 Gilles Geeraerts et al.

enjoy nice decidability results and are useful to model important classes of sys-
tems (like parametric systems [4] and communication protocols [2]). In particular,
the coverability problem (a variation of the reachability problem) has been shown
decidable for the whole class of WSTS [1,6]. A large number of popular models
define WSTS: Petri nets [11], monotonic extensions of Petri nets (e.g., Petri nets
with transfer arcs [3]), lossy channel systems [2], broadcast protocols [4].

While the decidability properties of those models have been studied exten-
sively (see, for example [6]), there are few known results about their expressive
power in term of recognized languages. For example, several extensions of Petri
nets have been proposed but their expressive power has not been studied and com-
pared1 so far.

In a previous paper [5], we have started to study the expressive power of mono-
tonic extensions of Petri nets w.r.t. their ability to define sets of infinite words
(omega languages). Unfortunately, the techniques that we had developed in that
work were only applicable to omega languages. In the present paper, we gen-
eralize those techniques to make them applicable to the study of the expressive
power of WSTS measured in term of definable sets of finite words. This classical
measure allows us to compare the expressive power of WSTS with other well-
studied formalisms like finite automata (defining regular languages), push-down
automata (defining context free languages) or Turing machines (defining recur-
sively enumerable languages). We propose proof techniques that intensively use
basic properties of wqo. We believe that those proof techniques are interesting on
their own.

The main contributions of our paper can be summarized as follows: (i) we
define a natural class of languages recognized by WSTS for which the emptiness
problem is decidable, (ii) we show that this class has important closure properties
and forms an Abstract Family of Languages (AFL for short), (iii) to show the
limits of the expressive power of WSTS, we introduce a general pumping lemma
and show some examples of its possible applications, (iv) we study the relative
expressive power of Petri nets and two important monotonic extensions of theirs.
This study is made possible by two stronger pumping lemmata for these models.

The rest of this paper is structured as follows. In section 2, we recall some
preliminaries about wqo, WSTS and (monotonic extensions of) Petri nets. In sec-
tion 3, by considering different kinds of accepting conditions, we define three
classes of languages recognized by WSTS, and we show that one of them has sev-
eral interesting properties. That class is called the well-structured languages (WSL
for short). In section 4, we propose a general pumping lemma applicable to any
formalism that defines WSL. Two stronger versions of this lemma are defined and
shown applicable to monotonic extensions of Petri nets. In section 5, we use the
pumping lemmata to show the limits of WSL, some non-closure properties, and a
strict hierarchy of expressive power among the monotonic extensions of Petri nets
that we have considered.

1 Some partial results are know about Petri nets, see for example [11].

Well-Structured Languages 3

2 Preliminaries

In this first section, we recall the main basic results that will be useful in the se-
quel of the paper. More precisely, we recall the classical notions of languages,
Abstract family of Languages [7,13]. Then, we define well-quasi orderings and
well-structured transitions systems that form the basis of our definition of well-
structured languages. We close the section by recalling two classical models of
computation. The first one is constituted by the (monotonic extensions of) Petri
nets, whose languages are actually well-structured. The latter is the two counter
machine [10], that we use in section 3 to prove undecidable some interesting prop-
erties about well-structured languages.

Languages and abstract family of languages Given an (finite) alphabet Σ , a (fi-
nite) word on Σ is either the empty word ε or a finite concatenation of symbols in
Σ . A language on Σ is a (possibly infinite) set of words on Σ .

Let · denote the word concatenation. As usual w · ε = ε ·w = w. The con-
catenation of two languages L1 and L2 is the language L1 ·L2 = {w1 ·w2 | w1 ∈
L1,w2 ∈ L2}. The iteration of a language L is the language L+ = {w1 · . . . ·wn | n ≥
1∧∀1 ≤ i ≤ n : wi ∈ L}. Given a finite alphabet Σ , an homomorphism is a function
h : Σ∗ 7→ Σ∗ s.t. ∀w1,w2 ∈ Σ∗ : h(w1 ·w2) = h(w1) ·h(w2). The inverse of h is the
function h−1 : Σ∗ 7→ 2Σ∗

such that h−1(w) = {w′ | h(w′) = w}.

Definition 1 ([7,13]) A full abstract family of languages (full AFL for short) is a
set of languages closed under (i) union, (ii) concatenation, (iii) intersection with
regular languages, (iv) iteration, (v) homomorphism and (vi) inverse homomor-
phism.

Well-quasi orderings Well-quasi orderings are special cases of quasi orders that
are the cornerstone of the definition of WSTS.

Definition 2 A well quasi ordering ≤ on C (wqo for short) is a reflexive and tran-
sitive relation s.t. for any infinite sequence c0,c1, . . . of elements in C, there are i
and j, with i < j and ci ≤ c j .

In the sequel, we note ci < c j iff ci ≤ c j but c j 6≤ ci. When a set C of elements is
equipped with an ordering ≤, one can define the notion of upward-closed set. That
notion will be useful in the sequel to define accepting conditions of languages of
WSTS.

Definition 3 U ⊆ C is a ≤-upward-closed set if and only if: for any c ∈ U , for
any c′ ∈C such that c ≤ c′: c′ ∈ U .

Well-structured transition systems The transition systems have the characteristic
that their set of configurations is ordered by a wqo ≤, and their transition relation
is ≤-monotonic, as stated by the following definition:

Definition 4 A (labelled) well-structured transition system (WSTS for short) is a
tuple 〈C,c0,Σ ,⇒,≤〉 where:

– C is a (possibly infinite) set of configurations;

4 Gilles Geeraerts et al.

– c0 ∈ C is the initial configuration;
– Σ is a finite alphabet (that contains ε);
– ⇒⊆C×Σ ×C is the transition relation;
– ≤ is a wqo for the elements of C.

Moreover, ⇒ is monotonic w.r.t. to ≤, that is, for any c1, c2 and c3 in C: if
(c1,a,c2) ∈⇒ and c1 ≤ c3, then, there exist a finite sequence c1,c2, . . . ,ck ∈ C
(with k ≥ 2) and 1 ≤ ` < k, such that:

– c1 = c3;
– for any 1 ≤ i < `: (ci,ε,ci+1) ∈⇒;
– (c`,a,c`+1) ∈⇒;
– for any `+1 ≤ i < k: (ci,ε,ci+1) ∈⇒;

In the sequel we often write c1
a
⇒ c2 instead of (c1,a,c2) ∈⇒. When the char-

acter labelling the transition is not relevant, we might omit it and write c1 ⇒ c2 to
mean that there exists a ∈ Σ s.t. c1

a
⇒ c2. We also write c

w
⇒ c′ to mean that there

exists a (finite) sequence of configurations c1,c2, . . . ,cn such that (i) c
a0⇒ c1

a1⇒

c2 · · ·cn
an⇒ c′ and (ii) w = a0 ·a1 · · ·an (thus, some of the ai’s may be ε).

For any configuration c∈C, let PreUp(c) be the set of all configurations whose
one-step successors by ⇒ are larger (w.r.t. ≤) than c i.e., PreUp(c) = {c′ | c′ ⇒
c′′,c ≤ c′′}. When both ⇒ and ≤ are decidable, and when we can effectively
compute PreUp(c), for any c ∈C, the WSTS is called an effective WSTS (EWSTS
for short) [1].

The following lemma is a direct consequence of the definition of wqo and will
be useful in the sequel:

Lemma 1 Given a set C with the well-quasi ordering ≤⊆ C×C and an infinite
sequence S = c1,c2, . . . with ∀i ≥ 1 : ci ∈ C, there exists an infinite subsequence
ci1 ,ci2 , . . . of S such that ∀ j ≥ 1 : ci j ≤ ci j+1 .

Extended Petri nets In the sequel, we study in particular a subclass of EWSTS

defined by Extended Petri Nets. We distinguish three subclasses of Extended Petri
nets: the (regular) Petri nets, the Petri nets with non-blocking arcs and the Petri
nets with transfer arcs. Those models are classically used to model parameterized
systems [15].

A (labelled) Extended Petri Net (EPN) N is a tuple 〈P,T ,Σ ,m0〉, where P

is a finite set {p1, p2, . . . , pn} of places, T is a finite set of transitions and Σ is a
finite alphabet containing ε . A marking of the places is a function m : P 7→ N. A
marking can also be seen as a vector v such that vT = [m(p1),m(p2), . . . ,m(pn)].
m0 : P 7→ N is the initial marking. Each transition is of the form 〈I,O,s,d,b,λ 〉,
where I and O : P 7→ N are multi-sets of input and output places respectively.
By convention, O(p) (resp. I(p)) denotes the number of occurrences of p in O
(resp. I). s,d ∈ P ∪ {⊥} are the source and the destination places respectively,
b ∈N∪{+∞} is the bound and λ ∈ Σ is the label of the transition. Let us divide T

into Tr and Te such that T = Tr ∪Te and Tr ∩Te = /0. Without loss of generality,
we assume that for each transition 〈I,O,s,d,b,λ 〉 ∈T , either b = 0 and s =⊥= d
(regular Petri transitions, grouped into Tr); or b > 0, s 6= d, s 6= ⊥ and d 6= ⊥
(extended transitions, grouped into Te). We identify several non-disjoint classes
of EPN, depending on Te:

Well-Structured Languages 5

1. Petri nets (PN for short): an EPN is a PN iff Te = /0;
2. Petri nets with non-blocking arcs (PN+NBA): an EPN is a PN+NBA iff ∀t =

〈I,O,s,d,b,λ 〉 ∈ Te : b = 1;
3. Petri nets with transfer arcs (PN+T): an EPN is PN+T iff ∀t = 〈I,O,s,d,b,λ 〉 ∈

Te : b = +∞.

Places are graphically depicted by circles; transitions by filled rectangles. For
any transition t = 〈I,O,s,d,b,λ 〉, we draw an arrow from any place p ∈ I to tran-
sition t and from t to any place p ∈ O. For a PN+NBA (resp. PN+T), we draw a
dotted (grey) arrow from s to t and from t to d (provided that s,d 6= ⊥).

Given an extended Petri net N = 〈P,T ,Σ ,m0〉, and a marking m of N ,

a transition t = 〈I,O,s,d,b,λ 〉 is said to be enabled in m (notation: m t
−→) iff

∀p ∈P : m(p)≥ I(p). An enabled transition t = 〈I,O,s,d,b,λ 〉 can occur, which
deterministically transforms the marking m into a new marking m′ (we denote this

by m t
−→ m′). m′ is computed as follows:

1. First compute m1 such that: ∀p ∈ P : m1(p) = m(p)− I(p).
2. Then compute m2 as follows. If s = d = ⊥, then m2 = m1. Otherwise:

m2(s)=

{

0 if m1(s) ≤ b
m1(s)−b otherwise m2(d) =

{

m1(d)+m1(s) if m1(s) ≤ b
m1(d)+b otherwise

∀p ∈ P \{d,s} : m2(p) = m1(p)

3. Finally, compute m′, such that ∀p ∈ O : m′(p) = m2(p)+O(p).

Let σ = t1t2 . . .tn be a sequence of transitions. We write m σ
−→m′ to mean that there

exist m1, . . . ,mn−1 such that m
t1−→ m1

t2−→ . . .
tn−1
−−→ mn−1

tn−→ m′. Moreover, we let
Λ (σ) = λ1 ·λ2 · · ·λn, where ∀1 ≤ i ≤ n: λi is the label of ti. We sometimes write
m ∗

−→ m′ to mean that there exists a sequence of transitions σ such that m σ
−→ m′.

An EPN 〈P,T ,Σ ,m0〉, defines a WSTS S = 〈N|P|,m0,Σ ,⇒,4〉; where ⇒

is such that m1
a
⇒ m2 iff there is a transition t ∈ T with label a and m1

t
−→ m2.

Example 1 Fig. 1 presents a transition t = 〈I,O,s,d,+∞,a〉 equipped with a trans-
fer arc. I and O are such that : I(p1) = I(s) = 1, I(p2) = I(d) = 0, O(p2) = 1 and
O(p1) = O(s) = O(d) = 0.

The successive steps to compute the effect of the firing of t are shown. Namely,
(a) presents a marking m before the firing of t; (b) presents the marking m1 ob-
tained by removing I(p) tokens in every place p; (c) presents m2 obtained from
m1 by transferring to d the two tokens present in s; and (d) presents the resulting
marking m′ obtained after producing O(p) tokens in every place p.

If t had been equipped with a non-blocking arc (hence t = 〈I,O,s,d,1,a〉),
only one token would have been transfered from s to d at step (c). In both cases, t
would have been firable even if m1(s) had been 0. 3

Let 4 denote the wqo (see [1]) on markings, defined as follows: let m and m′

be two markings on the set of places P , then m 4 m′ iff ∀p ∈P : m(p)≤ m′(p).
Since 4 is a wqo, we obtain the following property, useful in the sequel:

Lemma 2 Given an infinite sequence of markings m1,m2, . . . we can always ex-
tract an infinite sub-sequence mi1 ,mi2 , . . . (∀ j : i j < i j+1) s.t. for any place p,
either mi j(p) < mi j+1(p) for all j ≥ 1 or mi j(p) = mi j+1(p) for all j ≥ 1.

6 Gilles Geeraerts et al.

s •
•
•

p1 •
• d

p2

t

a

(a)

s •
•

•p1 d

p2

t

a

(b)

s

•p1 d•
•

p2

t

a

(c)

s

•p1 d•
•

• p2

t

a

(d)

Fig. 1 The four steps to compute the effect of a transfer arc

Two counter machines Another classical model of computation is that of two
counter machines. It is well-known to be as expressive as Turing machines are,
and is therefore often used to prove the undecidability of relevant problems. Two
counter machines have been introduced in [10].

Definition 5 A two-counter machine C (2CM for short) is a tuple 〈c1,c2,L, Instr〉
where:

– c1, c2 are two counters taking their values in N;
– L = {l1, l2, . . . , lu} is a finite non-empty set of u locations;
– Instr is a function that labels each location l ∈ L with an instruction that has

one of the three following forms:
– l : c j := c j + 1; goto l′;, where j ∈ {1,2} and l ′ ∈ L, this is called an in-

crement;
– l : c j := c j −1; goto l′;, where j ∈ {1,2} and l ′ ∈ L, this is called a decre-

ment;
– l : if c j = 0 then goto l′ else goto l′′;, where j ∈ {1,2} and l ′, l′′ ∈ L,

this is called a zero-test.

Those instructions have their usual obvious semantics, in particular, decrement
can only be done if the value of the counter is strictly greater than zero.

A configuration of a 2CM 〈c1,c2,L, Instr〉 is a tuple 〈loc,v1,v2〉 where loc ∈ L
is the value of the program counter and v1, respectively v2, is a natural number
that gives the valuation of the counter c1, respectively c2. A computation γ of a
2CM 〈c1,c2,L, Instr〉 is a finite sequence of configurations

〈loc1,v
1
1,v

2
1〉,〈loc2,v

1
2,v

2
2〉, . . . ,〈locr,v

1
r ,v

2
r 〉

that respects the two following conditions:

1. “Initialization”: loc1 = l1, v1
1 = 0, and v2

1 = 0, i.e., a computation starts in l1
and the two counters have the value zero;

2. “Consecution”: for each i∈N such that 1≤ i < r, 〈loci+1,v1
i+1,v

2
i+1〉 is the con-

figuration obtained from 〈loci,v1
i ,v

2
i 〉 by applying the instruction Instr(loci).

Well-Structured Languages 7

Moreover, we let final(γ) = 〈locr,v1
r ,v

2
r 〉. A configuration 〈loc,v1,v2〉 is reach-

able in the 2CM 〈c1,c2,L, Instr〉, if there exists a finite computation γ such that
final(γ) = 〈loc,v1,v2〉.

A natural problem about 2CM is the boundedness problem:

Problem 1 Given a 2CM C = 〈c1,c2,L, Instr〉, the boundedness problem for 2CM

asks whether there is c ∈ N such that for all reachable configuration 〈loc,v1,v2〉
of C, we have v1 + v2 ≤ c.

It is well-known that this problem cannot be answered completely by an algorithm:

Theorem 1 ([10]) The boundedness problems is undecidable for 2CM.

3 Well-structured languages

This section is mainly devoted to the definitions of languages of WSTS (and the
motivations of these definitions). In accordance to previous classical works on
the expressive power of Petri nets (such as [11], [14] or [9], for instance), we
distinguish several classes of languages of WSTS, depending on the form of the
set of accepting states. Then, we study several properties of these different classes
of languages. As we will see, the class one obtains when considering ≤-upward-
closed sets of accepting states enjoys nice properties (the emptiness is decidable,
that class forms a full AFL, closed under intersection) that do not hold if we chose,
for instance, a finite set of accepting states. This will motivate our choice for the
definition of well-structured languages. Unfortunately, the universality problem
is undecidable for EWSTS. That result is proved by adapting a proof formerly
published in [12].

3.1 Languages of WSTS

We first define the notion of language of a WSTS:

Definition 6 Given a WSTS S = 〈C,c0,Σ ,⇒,≤〉, and a set C′ ⊆ C of accepting
configurations, the language of S, noted L(S,C′) is the set of all the words w such
that c0

w
⇒ c for some c ∈C′.

By imposing some well-chosen restrictions about the set of accepting config-
urations, one can obtain different classes of languages. In the restricted case of
PN, this approach has already been followed in classical works of the literature
such as [11], [14] or [9]. Namely, if S is a set of WSTS, then LL(S), LT (S) and
LG(S) are the classes of languages defined by a WSTS in S , and where the set
of accepting configurations is (resp.) a finite set of configurations; the set of every
deadlock configuration or; a ≤-upward-closed set of configurations.

Not surprisingly, these different classes of languages enjoy different proper-
ties, as shown by the following propositions. Proposition 1 states that LL(EWSTS)
and LT (EWSTS) are both equal to the set of recursively enumerable languages
(R.E.). This proposition stems from the fact that LL(PN+T) = R.E., as shown
in [3]. Hence the emptiness is undecidable on these classes.

8 Gilles Geeraerts et al.

Proposition 1 ([3]) LL(EWSTS) = LT (EWSTS) = R.E.

On the other hand, the emptiness is decidable for EWSTS with ≤-upward-
closed accepting set. That result stems from the fact that the coverability problem
is decidable on that class:

Problem 2 Given an EWSTS S and an upward-closed set U of configurations
of S, the coverability problem asks whether there exists a configuration c that is
reachable in S and that belongs to U .

The proof of decidability of that problem can be found, for instance in [6].
From the definition of the problem, it is not difficult to see that, given an EWSTS
S and an upward-closed set U of configurations of S, the language LG(S,U) = /0
iff the answer to the coverability problem is negative on S and U . This provides
us with an effective procedure to test the emptiness of the language of an EWSTS
when an upward-closed set of accepting configurations is considered. Hence, the
Theorem:

Theorem 2 The emptiness problem is decidable for the class of EWSTS, when
we consider ≤-upward-closed accepting sets.

As a direct consequence, one obtains:

Corollary 1 LG(EWSTS) 6= R.E.

Finally, one can prove that LG(WSTS) is a full AFL closed under intersection,
which is a strong indication that it is a class worth of attention.

Theorem 3 LG(WSTS) is a full AFL, closed under intersection.

Proof According to Definition 1, one has to show seven closure properties (the
six properties that define an AFL, plus the closure under intersection) in order to
establish this result. In the sequel, we assume that S1 = 〈C1, i1,Σ1,⇒1,≤1〉 and
S2 = 〈C2, i2,Σ2,⇒2,≤2〉 are two WSTS, and that U1 and U2 are their associated
upward-closed sets of accepting states. We also assume that h : Σ1 7→ Σ∗

1 is an
homomorphism s.t. h(ε)= ε , according to the definition from [7,13]. We prove the
closure of the seven operations by showing building a WSTS S = 〈C, i,Σ ,⇒,≤〉
and a set of accepting states U , s.t. LG(S,U) is the result of the operation in
question. We ensure that LG(S,U) is a WSL by proving that ≤ is a wqo, ⇒ is
≤-monotonic and U is upward-closed.
Intersection Let us build S and U s.t. LG(S,U) = LG(S1,U1)∩LG(S2,U2). The
way we build S is described in the following: C =C1×C2; i = (i1, i2); Σ = Σ1∩Σ2;
⇒= {

(

(c1,c2),a,(c′1,c
′
2)

)

| c1
a
⇒1 c′1∧ c2

a
⇒2 c′2}; ≤= {

(

(c1,c2),(c′1,c
′
2)

)

| c1 ≤1

c′1 ∧ c2 ≤2 c′2}; and U = {(c1,c2) | c1 ∈ U1 ∧ c2 ∈ U2}.
Clearly, LG(S,U) = LG(S1,U1)∩LG(S2,U2). Let us prove that ≤, ⇒ and U

have the desired properties:

– ≤ is a wqo Let ς = (c1
1,c

2
1),(c

1
2,c

2
2), . . . ,(c

1
n,c

2
n), . . . be an infinite sequence of

elements of C. Since ≤1 is a wqo on C1, following Lemma 1, one can extract
from ς a subsequence

ς ′ = (c1
ρ(1),c

2
ρ(1)),(c

1
ρ(2),c

2
ρ(2)), . . . ,(c

1
ρ(n),c

2
ρ(n)), . . .

Well-Structured Languages 9

such that for any j ≥ 1: c1
ρ(j) ≤1 c1

ρ(j+1) . Since ≤2 is a wqo on the elements of

C2, there are, in ς ′, two positions k and ` s.t. k < ` and c2
ρ(k) ≤2 c2

ρ(`). Hence,

(c1
ρ(k),c

2
ρ(k)) ≤ (c1

ρ(`),c
2
ρ(`)), which proves that ≤ is a wqo, according to Defi-

nition 2.
– ⇒ is ≤-monotonic Let (c1

1,c
2
1), (c1

2,c
2
2), and (c1

3,c
2
3) be three configurations

of C s.t. (c1
1,c

2
1)

a
⇒ (c1

2,c
2
2) and (c1

1,c
2
1) ≤ (c1

3,c
2
3). By definition of ⇒ and ≤,

this implies that c1
1

a
⇒1 c1

2, c2
1

a
⇒2 c2

2, c1
1 ≤1 c1

3 and c2
1 ≤2 c2

3. Since ⇒1 and ⇒2

are resp. ≤1- and ≤2-monotonic, there are c ∈ C1 and c′ ∈ C2 s.t.: c1
3

a
⇒1 c,

c2
3

a
⇒1 c′, c1

2 ≤1 c and c2
2 ≤2 c′. Hence (c1

3,c
2
3)

a
⇒ (c,c′) and (c1

2,c
2
2) ≤ (c,c′).

– U is ≤-upward-closed Let (c1
1,c

2
1) and (c1

2,c
2
2), both in C, be s.t. (c1

1,c
2
1) ≤

(c1
2,c

2
2) and (c1

1,c
2
1)∈U . Let us show that and (c1

2,c
2
2)∈U too. Since (c1

1,c
2
1)∈

U , we have c1
1 ∈U1 and c2

1 ∈U2, by definition of U . Since (c1
1,c

2
1)≤ (c1

2,c
2
2),

c1
1 ≤1 c1

2 and c2
1 ≤2 c2

2, by definition of ≤. But U1 and U2 are resp. ≤1- and ≤2-
upward-closed, which implies that c1

2 ∈ U1 and c2
2 ∈ U2. Hence (c1

2,c
2
2) ∈ U .

Union Let us construct S and U such that LG(S,U) = LG(S1,U1)∪LG(S2,U2).
We let C = {i} ∪C1 ∪C2 (where i is not in C1 nor in C2); Σ = Σ1 ∪ Σ2; ≤=≤1
∪ ≤2 ∪{(i, i)}; ⇒= {(i,ε, i1),(i,ε, i2)}∪⇒1 ∪⇒2 and U = U1 ∪U2.

Clearly, LG(S,U) = LG(S1,U1)∪LG(S2,U2). Let us show that we have the
right properties. By definition, ⇒ is≤-monotonic (remark that i is ≤-uncomparable
to any other element of C). Thus, it remains to prove that:

– ≤ is a wqo Let ς = c0,c2, . . . ,cn, . . . be an infinite sequence of elements of C.
Because it is infinite, one can extract, from that sequence, an infinite subse-
quence ς ′ = c j1 ,c j2 ,c j3 , . . ., s.t. either ∀k ≥ 1 : c jk ∈ C1 or ∀k ≥ 1 : c jk ∈ C2.
Since ≤1 and ≤2 are both wqo, there exist two positions k and ` s.t. k < ` and
either c jk ≤1 c j` or c jk ≤2 c j` . Hence c jk ≤ c j` , which proves that ≤ is a wqo
following Definition 2.

– U is ≤-upward-closed Let c1,c2 be two configurations in C s.t. c1 ∈ U and
c1 ≤ c2. Let us show that c2 ∈ U . We consider two cases: either c1 ∈ U1 or
c1 ∈U2. In the former case, since c1 and c2 are ≤-comparable, we deduce that
c2 ∈ C1 and thus, c1 ≤1 c2, by definition of ≤. Hence, c2 ∈ U1, since U1 is
≤1-upward-closed. This implies that c2 ∈ U . In the latter case, we obtain the
same conclusion by a similar reasoning

Concatenation Let us construct S and U such that LG(S,U) = LG(S1,U1) ·
LG(S2,U2). We let C =C1∪C2; i = i1; Σ = Σ1∪Σ2; ⇒= {(c,ε, i2) | c ∈U1}∪⇒2
∪⇒1; ≤=≤1 ∪ ≤2 and U = U2.

Clearly, LG(S,U) is the concatenation of LG(S1,U1) and LG(S2,U2). More-
over, it is trivial to see that ⇒ is ≤-monotonic (see previous property) and U

is ≤-upward-closed. Finally, one can show that ≤ is a wqo by reusing the same
reasoning as for the union.
Iteration Let us construct S such that LG(S,U) = LG(S1,U1)

+. We consider a
new configuration i0 6∈ C1 and let C = C1 ∪{i0}; i = i0; ≤=≤1 ∪{(i0, i0)}; ⇒=
{(i0,ε, i1)}∪{(c,ε, i0) | c ∈ U1}∪⇒1 and U = U1.

From these definitions, it is trivial to see that LG(S,U) = LG(S1,U1)
+ and

that ≤, ⇒ and U enjoy the desired properties.

10 Gilles Geeraerts et al.

Intersection with regular languages It is not difficult to see that any determinis-
tic finite-state automaton is a WSTS, when we chose the equality between states
as wqo. Hence, any regular language is a WSL. Since WSL are closed under inter-
section (see above), the closure with regular languages holds too.
Arbitrary homomorphism Let us construct S and U such that LG(S,U) =
h
(

LG(S1,U1)
)

. We extend the set of states C1 with elements from C1 × Σ ×N

in the following way: C = C1 ∪{(c,a, j) | c ∈C1 ∧∃c′ : c
a
⇒1 c′∧0 ≤ j ≤ |h(a)|}.

Intuitively, these extra states are the intermediate states that have to appear along
the path from c to c′ when reading h(a). More precisely, (c,a, j) is the state
reached after having read the j first characters of h(a) from c. We also let i = i1;
≤=≤1 ∪{

(

(c1,a, j),(c2,a, j)
)

| (c1,a, j),(c2,a, j) ∈C∧c1 ≤1 c2}. The transition
relation is built according to the intuition we have sketched when introducing C:

⇒=

(

c,ε,(c,a,0)
)

,
(

(c,a,0),w1,(c,a,1)
)

, c
a
⇒1 c′

... and
(

(c,a, |h(a)|−1),w|h(a)|,(c,a, |h(a)|)
)

h(a) = w1w2 . . .w|h(a)|
(

(c,a, |h(a)|),ε,c′
)

Finally, U = U1.
By construction, LG(S,U) = h

(

LG(S1,U1)
)

, and U is a ≤-upward-closed set.
It remains to show that:

– ≤ is a wqo Let us suppose it is not the case. Then, there exists a sequence of
elements of C: ς = c1,c2, . . . ,cn, . . . s.t. for any k ≥ 1, for any 1≤ n < k: cn 6≤ ck
(each configuration is ≤-uncomparable to all the previous ones). Remark that,
since≤1 is a wqo on the elements of C1 and since c≤1 c′ implies c≤ c′ (by def-
inition of ≤), one cannot extract, from ς , an infinite subsequence of elements
from C1. Thus, there is, in ς , an infinite subsequence ς ′ = c j1 ,c j2 , . . .c jn , . . .
s.t. for any k ≥ 1: (i) c jk 6∈C1 and (ii) for any 1 ≤ n < k: cn 6≤ ck.
By definition of an homomorphism, the value ` = maxa∈Σ{|h(a)|} is a finite
value. Hence, there exists 0 ≤ `′ ≤ ` and a character a of Σ s.t. the sequence
(c j1 ,a, `′),(c j2 ,a, `′), . . . ,(c jn ,a, `′), . . . is a subsequence of ς ′ and (c j1 ,a, `′) 6≤
(c j2 ,a, `′) 6≤ . . . 6≤ (c jn ,a, `′) 6≤ But this implies that c j1 6≤1 c j2 6≤1 . . . 6≤1
. . . 6≤1 c jn 6≤1 . . ., which contradicts the fact that ≤1 is a wqo.

– ⇒ is ≤-monotonic Let us show that, for any c1,c2,c3 ∈ C, and for any a ∈ Σ
s.t. c1

a
⇒ c2 and c1 ≤ c3, there exists c4 s.t. c3

a
⇒ c4 and c2 ≤ c4. We consider

two cases. (i) Either c1 ∈ C1. In that case, by definition of ⇒, we have a = ε
and c2 = (c1,b,0) for some b. Clearly, c4 = (c3,b,0) satisfies the conditions.
(ii) Or, c1 6∈ C1. In that case c1 = (c′,b, i) and c3 = (c′′,b, i) with c′ ≤1 c′′,
for some b. Again, we have to consider two subcases. (a) Either i < |h(b)|. In
that case c2 = (c′,b, i+1), and we chose c4 = (c′′,b, i+1), which satisfies the
conditions. (b) Or i = |h(b)|. In this case, c2 is a configuration of C1 such that
c′

a
⇒1 c2. We chose c4 s.t. c2 ≤1 c4 and c′′

a
⇒1 c4. Such a configuration exists

by monotonicity of ⇒1, and satisfies the monotonicity conditions of ⇒.

Inverse homomorphism Let us build S and U s.t. LG(S,U) = h−1
(

LG(S1,U1)
)

.

We let C = C1; i = i1; ≤=≤1; ⇒= {(c1,a,c2) | ∃m ∈ Σ∗ : h(a) = m∧ c1
m
⇒1 c2}

and U = U1.

Well-Structured Languages 11

Clearly, LG(S,U) = h−1
(

LG(S1,U1)
)

. By definition, U is ≤-upward-closed
and ≤ is a wqo. It remains to show that ⇒ is ≤-monotonic. Let c1, c2, c3 be three
configurations in C s.t. c1

a
⇒ c2 for some a, and c1 ≤ c3. By definition of ⇒, there

exists m ∈ Σ ∗ s.t. h(a) = m and c1
m
⇒1 c2. Moreover, c3 ∈ C1 and c1 ≤1 c3, by

definition. By using an inductive reasoning on the length of |m|, one can show that
there exists c4 ∈ C1 s.t. c3

m
⇒1 c4 and c2 ≤1 c4. Hence, c4 ∈ C and c3

a
⇒ c4, by

definition of ⇒. ut

It should now be clear that the class LG(WSTS) enjoys interesting proper-
ties: the emptiness is decidable on this class, under reasonable effectiveness as-
sumptions (Theorem 2), and it forms a full AFL closed under intersection (Theo-
rem 3). Moreover, the transition relation of WSTS is, by definition, ≤-monotonic.
Thus, ≤-upward-closed sets are perfectly suited accepting conditions for these
systems. For all these reasons, we will henceforth restrict ourselves to the study
of LG(WSTS). The languages in this class are called well-structured languages:

Definition 7 A language L is a well-structured language (WSL for short) iff L ∈
LG(WSTS).

Remark 1 It is worth recalling that a fourth kind of accepting condition has been
routinely studied in the literature. In our context, it is the class LP(WSTS) of prefix
languages one obtains by taking the whole set of configurations as accepting set.
By definition, such a set is upward-closed. Since a language that contains no words
of length < 2 cannot be in LP(WSTS), we have: LP(WSTS) ⊂ LG(WSTS). Most
of the results about the classes LG we are about to present can easily be re-obtained
on their corresponding classes LP.

3.2 Undecidability of universality

Unfortunately, the universality problem is undecidable on EWSTS. This problem
is defined as follows:

Problem 3 Given an EWSTS S, an alphabet Σ , and an upward-closed set of ac-
cepting markings U f , the universality problem asks whether LG(S,U f) = Σ∗.

Our proof of undecidability of the universality problem is an adaptation of
the proof of Theorem 5.6 in [12], which states the undecidability of the place-
boundedness problem for PN+NBA. That latter problem is defined as follows:

Problem 4 Given a PN+NBA N = 〈P,T ,Σ ,m0〉 and a place p ∈ P of N ,
the place-boundedness problem for PN+NBA asks whether there exists, for all
i ∈ N, a marking m such that m0

∗
−→ m and m(p) > i.

The proof of undecidability of that problem is based on a construction that,
given a 2CM, produces a PN+NBA to simulate it. This allows to reduce the bound-
edness problem of 2CM to place-boundedness of PN+NBA. Since we want to
adapt the proof, we first have to recall the construction presented in [12]. We also
give two lemmata that state properties of the PN+NBA’s obtained thanks to the
construction (these lemmata will be exploited when we adapt the proof).

12 Gilles Geeraerts et al.

li l′

c j K

ti

li: c j:=c j +1;goto l′

(a)

li l′

c j K

ti

li: c j:=c j −1;goto l′

(b)

li l′ li l′

c jc j T

t=0
i t 6=0

i

li: if c j = 0 then goto l ′ else goto l ′′

(c)

Fig. 2 Simulation of the operations of a 2CM by PN+NBA transitions.

Reduction to place boundedness The construction used in reduction of the bound-
edness problem for 2CM to the place boundedness problem of PN+NBA works as
follows. For any 2CM C = 〈c1,c2,L = {l1, l2, . . . , lu}, Instr〉, we build a PN+NBA
NC = 〈P,T ,Σ ,m0〉 defined as follows. Σ = {a,ε}. The set of places P is equal
to {c1,c2, l1, l2, . . . , lu,K,T, p1, p2}. The places c1 and c2 will be used to keep track
of the values of the two counters of C, l1, l2, · · · , lu called the control places will
be used to keep track of the program counter of C, K is called the capacity place,
T is called the trash. Finally, p1 and p2 are used to reinitialize the PN+NBA. The
set of transitions T is the smallest set of transitions such that for each li ∈ L:

– if Instr(li) is of the form c j := c j + 1;goto l′, then T contains the transition
ti = 〈I,O,⊥,⊥,0,ε〉 with I(li) = 1,I(K) = 1 and ∀p 6= li,K : I(p) = 0, O(c j) =
1,O(l′) = 1 and ∀p 6= c j, l′ : O(p) = 0;

– if Instr(li) is of the form c j := c j − 1;goto l′, then T contains the transition
ti = 〈I,O,⊥,⊥,0,ε〉 with I(li) = 1, I(c j) = 1 and ∀p 6= li,c j : I(p) = 0, O(l′) =
1,O(K) = 1 and ∀p 6= l′,K : O(p) = 0;

– if Instr(li) is of the form if c j = 0 then goto l′ else goto l′′ then T contains

two transitions t=0
i and t 6=0

i defined as:
– t=0

i = 〈I,O,c j,T,1,ε〉 with I(li) = 1 and ∀p 6= li : I(p) = 0, O(l′) = 1 and
∀p 6= l′ : O(l′) = 0;

– t 6=0
i = 〈I,O,⊥,⊥,0,ε〉 with I(li) = 1, I(c j) = 1 and ∀p 6= li,c j : I(p) = 0,

O(c j) = 1,O(l′′) = 1 and ∀p 6= c j, l′′ : O(p) = 0.

Figure 2(a) shows a transition that simulates an increment of c j by moving one
token from the capacity place to c j. Figure 2(b) shows a transition that simulates
a decrement of c j by moving one token from c j to the capacity place. Figure

Well-Structured Languages 13

c2

c1

•K

li

T

p2

p1

• l1

β2

β1

βli

β3

β4

Fig. 3 The PN+NBA NC.

2(c) shows a transitions that simulates a zero-test on c j when c j is equal to zero
(transition t=0

i) and when c j is greater than zero.
Finally, we also add to T the transitions βli (1 ≤ i ≤ u), β1, β2,β3 and β4 that

are used to reinitialize the PN+NBA and defined as follows: β1 = 〈I,O,⊥,⊥,0,ε〉
such that I(p1) = 1, I(c1) = 1 and ∀p 6= p1,c1 : I(p) = 0, O(p1) = 1,O(K) = 1
and ∀p 6= p1,K : O(p) = 0; β2 = 〈I,O,⊥,⊥,0,ε〉 such that I(p1) = 1, I(c2) = 1
and ∀p 6= p1,c2 : I(p) = 0, O(p1) = 1,O(K) = 1 and ∀p 6= p1,K : O(p) = 0;
β3 = 〈I,O,c1,T,1,ε〉 such that I(p1) = 1 and ∀p 6= p1 : I(p) = 0, O(p2) = 1 and
∀p 6= p2 : O(p) = 0; β4 = 〈I,O,c2,T,1,ε〉 such that I(p2) = 1 and ∀p 6= p2 : I(p) =
0, O(l1) = 1, O(K) = 1 and ∀p 6= l1,K : O(p) = 0; for all i such that 1 ≤ i ≤ u:
βli = 〈I,O,K,T,1,ε〉 such that I(li) = 1 and ∀p 6= li : I(p) = 0, O(p1) = 1 and
∀p 6= p1 : O(p) = 0.

We define the initial marking m0 as follows: m0(l1) = 1, m0(K) = 1, and
∀p 6= p1,K : m0(p) = 0. The construction is depicted in Fig. 3.

From [12], we have the following results:

Lemma 3 ([12]) For all the reachable markings m of N ′
C , we have that m(l1)+

. . .+m(lu)+m(p1)+m(p2) = 1.

Lemma 4 ([12]) A 2CM C is unbounded if and only if the place K of NC is un-
bounded.

Adaptation of the reduction We are now ready to show how that reduction can be
adapted to prove the undecidability of the universality problem for EWSTS. First
of all, we have to slightly modify the construction. Let N ′

C be the PN+NBA built

14 Gilles Geeraerts et al.

c2

c1

•K

li

T

p2

p1

• l1

f

β2

β1

βli

β3

β4

tli

t f

a

tp1

tp2

Fig. 4 The PN+NBA N ′
C .

from NC by adding a place f and transitions tl1 , . . . ,tlu ,tp1 ,tp2 and t f such that for
all 1≤ i≤ u : tli = 〈I,O,⊥,⊥,0,ε〉 where I(li) = 1 and ∀p 6= li : I(p) = 0,O(f) = 1
and ∀p 6= f : O(p) = 0; for i = 1,2 : tpi = 〈I,O,⊥,⊥,0,ε〉 where I(pi) = 1 and
∀p 6= pi : I(p) = 0,O(f) = 1 and ∀p 6= f : O(p) = 0; t f = 〈I,O,⊥,⊥,0,a〉 where
I(f) = 1, I(K) = 1 and ∀p 6= f ,K : I(p) = 0,O(f) = 1 and ∀p 6= f : O(p) = 0.
Each transition t = 〈I,O,s,t,b,ε〉 of NC is extended to place f such that I(f) = 0
and O(f) = 0.

The initial marking of N ′
C is m′

0 s.t. m′
0(f) = 0 and for any place p in the set

{l1, . . . , lu,c1,c2,K,T, p1, p2}, m′
0(p) = m0(p), .

Thus, N ′
C can stop to simulate C by firing tp (p ∈ {l1, . . . , lu, p1, p2}) and then

recognizes words of the form ai by firing t f (where i is bounded by the number of
tokens in K) The construction is shown in Fig. 4.

Let U f be the 4-upward-closed of markings {m | m(f) ≥ 1}. Let us first
notice that the following lemma holds:

Lemma 5 if m′
0

σ
−→ m in N ′

C , then σ is of the form t1 · · ·tn · tl · t i
f where n, i ≥ 0;

t1, . . . ,tn are transitions of NC (extended to f) and l ∈ {p1, p2, l1, . . . , lu}.

Proof First, it is easy to show that t f can be only fired if a transition tl with l ∈
{p1, p2, l1, . . . , lu} has been fired before. Indeed, remark that m′

0(f) = 0 and the
transitions tl with l ∈ {p1, p2, l1, . . . , lu} are the only ones that put one token into
place f and t f need at least one token into f to be fired.

Let us now show that all the transitions different from t f cannot be fired once
a transition tl with l ∈ {p1, p2, l1, . . . , lu} is fired. From Lemma 3, while transi-

Well-Structured Languages 15

tions of NC (extended to f) are fired, the set of places {p1, p2, l1, . . . , lu} contains
exactly one token. Suppose that we reach m by only firing transitions of NC (ex-
tended to f) from which a transition tl with l ∈ {p1, p2, l1, . . . , lu} is fired. By
definition, that transition removes the token in {p1, p2, l1, . . . , lu} and we reach a
marking where there is no token anymore in that set of places. All the transitions
except t f need at least one token in the set of places {p1, p2, l1, . . . , lu} to be fired
and t f does not add tokens in that set of places. We conclude that all the transitions
different from t f cannot be fired after firing tl with l ∈ {p1, p2, l1, . . . , lu}. Hence,
the lemma. ut

From Lemma 4, we deduce the following lemma:

Lemma 6 A 2CM C is unbounded if and only if LG(N ′
C ,U f) = {a}∗.

Proof ⇒ Suppose that C is unbounded. First notice that N ′
C is constructed from

NC by adding a place f (not modified by transitions of NC) and transitions. Hence,
from Lemma 3 and Lemma 4 we know that for all i ≥ 0 we can reach a marking
m from m′

0 by only firing transitions of NC (extended to f) such that m(K) > i
and m(p) = 1 with p ∈ {p1, p2, l1, . . . , lu}. Hence, the sequence of transitions tpt i

f
may be fired from m leading to a marking m′ ∈ U f . Since tp and the transitions
fired to reach m are labelled by ε and t f is labelled by a, we conclude that for all
i ≥ 0, the word ai is accepted by N ′

C .

⇐ Suppose that LG(N ′
C ,U f) = {a}∗. From Lemma 5 and since all the tran-

sitions except t f are labelled by ε , we know that for all i ≥ 0 there exists σ =

t1 · · ·tn · tl · t i
f with l ∈ {p1, p2, l1, . . . , lu} such that m′

0
t1···tn−−−→ m

tl ·t
i
f

−−→ m′ and m′ ∈

U f . The sequence of transitions tl · t i
f removes i tokens from K. Hence, m(K) ≥ i

and we conclude that for all i ≥ 0 there exists a reachable marking m such that
m(K) ≥ i.Moreover, m is reachable by firing transitions of NC (extended to f).
Hence, the marking m′ such that for all place p 6= f : m′(p) = m(p) is reachable
in NC, i.e. K is unbounded in NC. From Lemma 4, we conclude that C is un-
bounded. ut

This allows us to prove the following theorem:

Theorem 4 The universality problem is undecidable for EWSTS, when we con-
sider ≤-upward-closed accepting sets.

Proof From Theorem 1, we know that the boundedness problem is undecidable
for 2CM. Moreover, from Lemma 6 we know that we can reduce the boundedness
problem to the universality problem for EWSTS. We conclude that the universality
problem is undecidable for EWSTS. ut

4 Pumping lemmata

This section presents three lemmata that show the limitations in the expressiveness
of WSTS (for the first one), PN (for the second one), and PN+NBA (for the third
one). All these lemmata have a similar statement: if a given WSTS (resp. PN,

16 Gilles Geeraerts et al.

PN+NBA) accepts an infinite set of words {w1,w2, . . .} with a given structure,
then it must also accept other words that are built upon the words w1,w2, . . . In
some sense, these lemmata allow to “inflate” the set of accepted words. For that
reason, we have chosen to call them pumping lemmata, owing to their similarities
to the classical pumping lemmata for regular and context-free languages (see for
instance [8]).

The proof techniques rely on properties of infinite sequences of configura-
tions (equipped with a wqo), and monotonicity properties. The usefulness of these
pumping lemmata will be demonstrated in Section 5, where we apply them to
obtain several results about WSL.

4.1 A pumping lemma for WSL

Our first pumping lemma deals with WSL, and is very easy to prove:

Lemma 7 Let L be a WSL, and let w1,w2, . . . be an infinite sequence of words s.t.
∀k ≥ 1 : wk ∈ L and wk = Bk ·Ek. Then, here exist i < j s.t. B j ·Ei ∈ L.

Proof Let S = 〈C,c0,Σ ,⇒,≤〉 be a WSTS s.t. L(S,U) = L for some ≤-upward-

closed set U . For any k ≥ 1, let ck ∈ C be a configuration s.t. c0
Bk⇒ ck

Ek⇒ c′k, with

c′k ∈ U . By definition of wqo, there exists i < j s.t. ci ≤ c j. Hence, c0
B j
⇒ c j

Ei⇒ c′,
with c′i ≤ c′ by monotonicity. Thus, c′ ∈ U and B j ·Ei ∈ L. ut

4.2 A pumping lemma for PN

Our second pumping lemma states properties of languages of Petri nets (more
precisely, languages in the class LG(PN)). This lemma will be exploited in sec-
tion 5.2, to strictly separate the expressive power of PN and PN+NBA.

Lemma 8 Let N be a PN and U be an 4-upward-closed set of markings of N .
If there exists an infinite sequence of words w1,w2, . . . such that for any i ≥ 1,
there exist two words Bi, Ei with {Biw∗

i Ei} ⊆ L(N ,U), then there exist 0 <
n1 < n2 < n3 such that for any K ≥ 0, there exists K ′ ≥ K such that the word
Bn3 wi1

n3 wK′

n1
wi2

n2 En2 is in L(N ,U).

The proof of the lemma is quite tedious and technical. However, we believe
that the technique at work in this proof is interesting by itself, since it directly
exploits the monotonicity and well-quasi ordering properties that are characteris-
tic of WSTS. Before giving the proof, we provide the reader with a sketch that
presents the main arguments. By this mean, we hope to make the task of reading
the proof easier. Throughout this explanation, we refer to peculiar markings using
the same notations as in the proof. The reader is advised to refer to Fig. 5 and 6 to
get the intuition of the meaning of these notations.

The proof is constructive. From the fact that the PN accepts the words Biw∗
i Ei

for any i ≥ 1, we build, by applying Lemma 2, infinite sequences of markings that
are ordered (this is the purpose of the two first steps of the proof). Then, at the
third step, we exploit these ordering properties, as well as the monotonicity of the

Well-Structured Languages 17

PN, to show that a sequence of transitions with the desirable form is firable, and
leads to the accepting 4-upward-closed set of markings.

Step 1 For all i ≥ 1, we build the infinite sequences of runs Mi where the j− th

element of those sequences is a run that accepts the word Biw
2|P|+ j
i Ei (where

P is the set of places of the PN considered). Then, for all i ≥ 1 we build
the sub-sequence M

4

i of Mi by applying successively Lemma 2. Those sub-
sequences have the property that markings appearing in different runs are 4-
ordered, as shown on Fig. 5. The increasing sequences appear along the 2|P| +
1 first “columns”, and along the “diagonals” whose first element appears in one
of these “columns”.

Step 2 The second step consists to select an infinite subset of the M
4

i ’s. We do
this by building a sequence of runs such that the jth run is the first run appear-
ing in M

4

j . Again, we extract a sub-sequence S where markings appearing in
different runs are 4-ordered by applying successively Lemma 2. In this case,
only markings appearing along the 2|P| + 1 first “columns” are 4-ordered.
This is shown at Fig. 6 (a).

Step 3 Finally, we show how to split and combine parts of runs appearing in the
Mi’s and S to obtain a run that allows the PN to accept a word of the desired
form. This is shown at Fig. 6 (b).
In order to build this sequence, we rely on several variables, namely: c1, c2,
n, x and y. At the present step of the proof, we present several constraints
that relate x, y and n to c1, c2 and K. These constraints are meant to produce
a sequence of transitions that accepts a word of the desired form. The main
(and most technical) part of step 3 consists to show that these constraints are
satisfiable.
The first part of the sequence is the prefix of M

4

ρ(n)(x), up to the “column” c1

(see Fig. 6(b)). At that point, we are guaranteed that the marking we obtain is
larger than M

4

ρ(1)
(y,c1). This allows us to continue the sequence with a part

of M
4

ρ(1)
(y), starting at column c1 and ending at column c2 +y−1. Again, by

exploiting the properties of the sequences built at steps 1 and 2, we are ensured
that the marking we have reached is larger than M

4

ρ(2)(1,c2). This allow us to

finish the sequence with the suffix of M
4

ρ(2)(1). The word accepted by this
sequence is of the desired form, since we have correctly chosen the values of
x, y and n (in particular, y is large enough to ensure that the central part of the
word is longer than K times |wn1 |).

We are now ready to present the proof of Lemma 8.

Proof Let N be a PN with set of places P and initial marking minit , such that
{Biw∗

i Ei} ⊆ L(N ,U) for all i ≥ 1.

Step 1 For any i ≥ 1, let Mi be the infinite sequence of all the runs accepting the

words of the form Biw
j
i Ei, with j ≥ 2|P| +1. That is, Mi is the sequence of runs

18
G

ill
es

G
ee

ra
er

ts
et

al
.

M
4

i (1) = minit
Bi−→ M

4

i (1,1)
wi−→ M

4

i (1,2)
wi−→ ·· ·

wi−→ M
4

i (1,2|P| +1) · · · · · · · · · · · · · · · · · ·
Ei−→ ni,1 ∈ U

4 4 4 4 4 4 4

M
4

i (2) = minit
Bi−→ M

4

i (2,1)
wi−→ M

4

i (2,2)
wi−→ ·· ·

wi−→ M
4

i (2,2|P| +1)
wi−→ M

4

i (2,2|P| +2) · · · · · · · · · · · ·
Ei−→ ni,2 ∈ U

4 4 4 4 4 4 4 4

M
4

i (3) = minit
Bi−→ M

4

i (3,1)
wi−→ M

4

i (3,2)
wi−→ ·· ·

wi−→ M
4

i (3,2|P| +1)
wi−→ M

4

i (3,2|P| +2)
wi−→ M

4

i (3,2|P| +3) · · · · · ·
Ei−→ ni,3 ∈ U

4 4 4 4 4 4 4 4 4

...
...

...

··· ··· ···

M
4

i (k) = minit
Bi−→ M

4

i (k,1)
wi−→ M

4

i (k,2)
wi−→ ·· ·

wi−→ M
4

i (k,2|P| +1)
wi−→ M

4

i (k,2|P| +2)
wi−→ M

4

i (k,2|P| +3)
wi−→ ·· ·

Ei−→ ni,k ∈ U

4 4 4 4 4 4 4 4 4

...
...

...

··· ··· ···

Fig. 5 The sequence of runs M
4

i . The runs have been selected in order to obtain the increasing sequences of markings that are shown on the Figure.

W
ell-Structured

L
anguages

19

(a)

S(1) = minit
Bρ(1)
−−−→ M

4

ρ(1)
(1,1)

wρ(1)
−−−→ M

4

ρ(1)
(1,2)

wρ(1)
−−−→ ·· ·

wρ(1)
−−−→ M

4

ρ(1)
(1,2|P| +1) · · ·

Eρ(1)
−−−→ nρ(1),1 ∈ U

4 4 4

S(2) = minit
Bρ(2)
−−−→ M

4

ρ(2)
(1,1)

wρ(2)
−−−→ M

4

ρ(2)
(1,2)

wρ(2)
−−−→ ·· ·

wρ(2)
−−−→ M

4

ρ(2)
(1,2|P| +1) · · ·

Eρ(2)
−−−→ nρ(2),1 ∈ U

4 4 4

S(3) = minit
Bρ(3)
−−−→ M

4

ρ(3)
(1,1)

wρ(3)
−−−→ M

4

ρ(3)
(1,2)

wρ(3)
−−−→ ·· ·

wρ(3)
−−−→ M

4

ρ(3)
(1,2|P| +1) · · ·

Eρ(3)
−−−→ nρ(3),1 ∈ U

4 4 4

...
...

...

S(k) = minit
Bρ(k)
−−−→ M

4

ρ(k)(1,1)
wρ(k)
−−−→ M

4

ρ(k)(1,2)
wρ(k)
−−−→ ·· ·

wρ(k)
−−−→ M

4

ρ(k)(1,2|P| +1) · · ·
Eρ(k)
−−−→ nρ(k),1 ∈ U

4 4 4

...
...

...

(b)

M
4

ρ(1)
(y) = minit

Bρ(1)
// M 4

ρ(1)
(y,1)

wρ(1)
// M 4

ρ(1)
(y,c1)

wρ(1)
+3

wρ(1)
+3 M 4

ρ(1)
(y,c2 + y−1)

t| rr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

wρ(1)
//

Eρ(1)
// nρ(1),y

M
4

ρ(n)
(x) = minit

Bρ(n)
+3 M 4

ρ(n)
(x,1)

wρ(n)
+3

wρ(n)
+3 M 4

ρ(n)
(x,c1)

KS

Eρ(n)
// nρ(n),x

M
4

ρ(2)(1) = minit

Bρ(2)
//

wρ(2)
// M 4

ρ(2)(1,c2)
wρ(2)

+3
Eρ(2)

+3 nρ(2),1

Fig. 6 (a) shows the sequence of runs S. It is built by considering the first runs of every M
≤
i , and keeping only those that allow to build the 2|P| + 1 infinite

increasing sequences of markings that are shown. (b) shows the firable sequence (along the ⇒’s) that accepts a word of the form Bn3 wi1
n3wK′

n1
wi2

n2 En2 .

20 Gilles Geeraerts et al.

(where j ≥ 2|P| +1):

minit
υ j
−→ m1

j

ς1
j

−→ m2
j

ς2
j

−→ ···
ς j

j
−→ m j+1

j

υ ′
j

−→ n j

minit
υ j+1
−−→ m1

j+1

ς1
j+1

−−→ m2
j+1

ς2
j+1

−−→ ···
ς j+1

j+1
−−→ m j+2

j+1

υ ′
j+1

−−→ n j+1

. . .

where for any ` ≥ j: n` ∈ U , Λ (υ`) = Bi and Λ (υ ′
`) = Ei. Moreover, ∀` ≥ j :

∀1 ≤ k ≤ ` : Λ (ς k
`) = wi. By applying Lemma 2 successively, we construct, for

any i ≥ 1, an infinite subsequence M
4

i of Mi:

minit
υπ(1,i)
−−−→ m1

π(1,i)

ς1
π(1,i)

−−−→ m2
π(1,i)

ς2
π(1,i)

−−−→ ···
ςπ(1,i)

π(1,i)
−−−→ mπ(1,i)+1

π(1,i)

υ ′
π(1,i)

−−−→ nπ(1,i)

minit
υπ(2,i)
−−−→ m1

π(2,i)

ς1
π(2,i)

−−−→ m2
π(2,i)

ς2
π(2,i)

−−−→ ···
ςπ(2,i)

π(2,i)
−−−→ mπ(2,i)+1

π(2,i)

υ ′
π(2,i)

−−−→ nπ(2,i)

. . .

where every M
4

i is such that:

(a) For any 1 ≤ j ≤ 2|P| + 1, the sequence of markings m j
π(1,i),m

j
π(2,i) . . . is in-

creasing: ∀` ≥ 1 : m j
π(`,i) 4 m j

π(`+1,i);

(b) For any 1 ≤ j ≤ 2|P| +1, there exists a set of places Places(M 4

i , j)⊆P that
strictly increase along the sequence m j

π(1,i),m
j
π(2,i) . . . The other places stay

constant along the sequence: ∀` ≥ 1 : m j
π(`,i)(p) < m j

π(`+1,i)(p) if and only if

p ∈ Places(M 4

i , j);

(c) For any 1 ≤ j ≤ 2|P| +1, for any ` ≥ 1 we also have: m j+`−1
π(`,i) 4 m j+`

π(`+1,i) .

Let us now introduce some notations. We denote by M
4

i (`) the `-th run of
M

4

i . We denote by M
4

i (`, j) the marking number j in M
4

i (`), i.e., m j
π(`,i) in

M
4

i (`). We denote by σ `
i (k1,k2) the sequence of transitions of M

4

i (`) one fires

from M
4

i (`,k1) to reach M
4

i (`,k2). That is, σ `
i (k1,k2) = ς k1

π(`,i) ·ς
k1+1
π(`,i) · . . . ·ς

k2−1
π(`,i)

in M
4

i (`). We also denote by σ `
i (·,k) the sequence υπ(`,i) ·ς1

π(`,i) · · ·ς
k−1
π(`,i) ; and by

σ `
i (k, ·) the sequence ς k

π(`,i) · . . . · ς
π(`,i)
π(`,i) ·υ

′
π(`,i) both in M

4

i (`).

Step 2 To finish with the construction, we consider the infinite sequence of runs

M
4

1 (1),M 4

2 (1), . . . made up of the first runs of all M
4

i . From this sequence,
we extract the infinite subsequence S = M

4

ρ(1)(1),M 4

ρ(2)(1), . . . by successively
applying Lemma 2 again. We construct S such that:

(d) For any 1 ≤ j ≤ 2|P| +1 the sequence M
4

ρ(1)
(1, j),M 4

ρ(2)
(1, j), . . . is increas-

ing:

∀k ≥ 1 : M
4

ρ(k)(1, j) 4 M
4

ρ(k+1)(1, j) (1)

Well-Structured Languages 21

(e) For any 1 ≤ j ≤ 2|P| + 1, there exists a set of places Places(S, j) ⊆ P that
strictly increase along the sequence M

4

ρ(1)(1, j),M 4

ρ(2)(1, j), . . . All the other
places stay constant along the sequence:

∀k ≥ 1 : M
4

ρ(k)(1, j)(p) < M
4

ρ(k+1)(1, j)(p) iff p ∈ Places(S, j) (2)

Let c1 and c2 be s.t. 1 ≤ c1 < c2 ≤ 2|P| +1 and Places(S,c1) = Places(S,c2).
Remark that c1 and c2 always exist because there are 2|P| subsets of P .

(f) The sets of strictly increasing places of the selected M
4

i are equal: for any
1 ≤ j ≤ 2|P| +1, for any k ≥ 1 : Places(M 4

ρ(k), j) = Places(M 4

ρ(k+1)
, j). This

is possible because there is a finite number of subsets of P .

One can now summarize points (a) to (c) of the construction by the two fol-
lowing conditions2, which hold for any k ≥ 1, for any 1 ≤ j ≤ 2|P| + 1 and for
any ` ≥ 1:

∀µ ≥ ν ≥ 0 : M
4

ρ(k)(`, j) 4 M
4

ρ(k)(`+ µ, j +ν) (3)

M
4

ρ(k)(`, j)(p) < M
4

ρ(k)(`+1, j)(p) iff p ∈ Places(M 4

ρ(k), j) (4)

Step 3 The rest of the proof consists in showing that there exist i1 ≥ 0, i2 ≥

0 and 0 < n1 < n2 < n3 such that for any K ∈ N, one can devise a word w =

Bn3 wi1
n3 wK′

n1
wi2

n2 En2 with K ′ ≥ K that is accepted by N . The accepting sequence
of transitions (called σ) is built as follows: σ = σ x

ρ(n)(·,c1) ·σ y
ρ(1)

(c1,c2 + y−1) ·

σ1
ρ(2)(c2, ·) for well-chosen values of n, x and y. We now explain how to compute

those values for any K.

Choice of n Let mn be the marking such that M
4

ρ(n)(1,c1)
σ1

ρ(1)(c1,c2)
−−−−−−−−−→ mn. Re-

mark that, since we are dealing with Petri nets, the sequence σ 1
ρ(1)(c1,c2) has

a constant effect (i.e., characterized by a vector of natural constants) equal to
M

4

ρ(1)(1,c2)−M
4

ρ(1)(1,c1). Thus mn =M
4

ρ(n)(1,c1)+M
4

ρ(1)(1,c2)−M
4

ρ(1)(1,c1).
We choose n > 2 such that:

mn = M
4

ρ(n)
(1,c1)+M

4

ρ(1)
(1,c2)−M

4

ρ(1)
(1,c1) < M

4

ρ(2)
(1,c2) (5)

Let us show that such a n exists. First notice that σ 1
ρ(1)(c1,c2) is firable from

M
4

ρ(n)
(1,c1) for all n > 2, because M

4

ρ(n)
(1,c1) < M

4

ρ(1)
(1,c1) following (1).

Then, recall that Places(S,c1) = Places(S,c2). Since, for any p ∈ Places(S,c1),
the sequence M

4

ρ(1)
(1,c1)(p),M 4

ρ(2)
(1,c1)(p), . . . is strictly growing by (2), we

have ∀p ∈ Places(S,c1) : ∀n ≥ 1 : M 4

ρ(n)(1,c1)(p)≥ n−1. Thus there exists n ≥ 1

s.t. ∀p ∈ Places(S,c1) : M
4

ρ(n)(1,c1)(p) ≥ M
4

ρ(2)(1,c2)(p)−M
4

ρ(1)(1,c2)(p) +

2 More precisely, 3 is a consequence of (a) and (c), and 4 stems from (b).

22 Gilles Geeraerts et al.

M
4

ρ(1)(1,c1)(p). This is equivalent to ∀p∈Places(S,c1) : mn(p)≥M
4

ρ(2)(1,c2)(p),

by definition of mn. On the other hand, for any p ∈ P \Places(S,c1), we have:
M

4

ρ(n)(1,c1)(p) =M
4

ρ(1)(1,c1)(p) and M
4

ρ(2)(1,c2)(p) =M
4

ρ(1)(1,c2)(p), by (2)
again. From these two equalities, we obtain:

M
4

ρ(n)(1,c1)(p)−M
4

ρ(2)(1,c2)(p) = M
4

ρ(1)(1,c1)(p)−M
4

ρ(1)(1,c2)(p)

and thus:

M
4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(1,c2)(p)−M

4

ρ(1)
(1,c1)(p) = mn(p) = M

4

ρ(2)
(1,c2)(p)

Hence, we conclude that, for any place p ∈ P : mn(p) ≥ M
4

ρ(2)(1,c2)(p).

Choice of y We choose y > 0 such that:

y > K + c1 − c2 +1 (6)

Choice of x Finally, we choose x > y such that:

M
4

ρ(n)(x,c1) < M
4

ρ(n)(1,c1)+M
4

ρ(1)(y,c1)−M
4

ρ(1)(1,c1) (7)

One can prove that such a x always exists by a the same reasoning as in the choice
of n, and by the fact that Places(M 4

ρ(n),c1) = Places(M 4

ρ(1),c1) (Point (f) above).

Indeed, ∀p∈Places(M 4

ρ(1),c1), the sequence M
4

ρ(n)(1,c1)(p),M 4

ρ(n)(2,c1)(p), . . .

is strictly increasing by (4) and (f), and we can thus choose x large enough to
have M

4

ρ(n)
(x,c1)(p) ≥ M

4

ρ(n)
(1,c1)(p)+M

4

ρ(1)
(y,c1)(p)−M

4

ρ(1)
(1,c1)(p), for

any place p in the set Places(M 4

ρ(1),c1). On the other hand, for any p ∈ P \

Places(M 4

ρ(1),c1), we know, by the points (b) and (f) of the construction, that:

M
4

ρ(1)(y,c1)(p) = M
4

ρ(1)(1,c1)(p). Thus, M
4

ρ(n)(x,c1)(p) ≥ M
4

ρ(n)(1,c1)(p) +

M
4

ρ(1)(y,c1)(p)−M
4

ρ(1)(1,c1)(p) iff M
4

ρ(n)(x,c1)(p)≥M
4

ρ(n)(1,c1)(p). This lat-

ter point is true by (b). We conclude that for any p ∈ P : M
4

ρ(n)(x,c1)(p) ≥

M
4

ρ(n)(1,c1)(p)+M
4

ρ(1)(y,c1)(p)−M
4

ρ(1)(1,c1)(p).
The next step amounts to showing that the sequence σ is firable. From minit ,

we fire σ x
ρ(n)(·,c1) and reach M

4

ρ(n)
(x,c1). From that marking, we can fire the se-

quence σ y
ρ(1)

(c1,c2 + y−1). This is possible because M
4

ρ(n)
(x,c1) < M

4

ρ(1)
(y,c1).

Indeed, by (7): M 4

ρ(n)
(x,c1)<M

4

ρ(1)
(y,c1)+

(

M
4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)

)

. How-

ever, we know that
(

M
4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)

)

< 〈0, . . . ,0〉, by (1). This implies

that M
4

ρ(n)
(x,c1) < M

4

ρ(1)
(y,c1) and we have:

minit

σ x
ρ(n)(0,c1)

−−−−−−−−→ M
4

ρ(n)
(x,c1)

σ y
ρ(1)(c1,c2 + y−1)

−−−−−−−−−−−−−−→ m

Well-Structured Languages 23

To finish the sequence, we have to show that m <M
4

ρ(2)(1,c2). Since the effect

of σ y
ρ(1)(c1,c2 + y−1) is constant and equal to M

4

ρ(1)(y,c2 + y−1)−M
4

ρ(1)(y,c1),
we have:

m = M
4

ρ(n)
(x,c1)+M

4

ρ(1)
(y,c2 + y−1)−M

4

ρ(1)
(y,c1)

⇒ m < M
4

ρ(n)(1,c1)+M
4

ρ(1)(y,c1)−M
4

ρ(1)(1,c1)

+M
4

ρ(1)(y,c2 + y−1)−M
4

ρ(1)(y,c1) by (7)

⇒ m < M
4

ρ(n)
(1,c1)−M

4

ρ(1)
(1,c1)+M

4

ρ(1)
(y,c2 + y−1)

⇒ m < M
4

ρ(n)(1,c1)−M
4

ρ(1)(1,c1)+M
4

ρ(1)(1,c2) by (3)

⇒ m < M
4

ρ(2)(1,c2) by (5)

We can thus fire σ 1
ρ(2)(c2, ·) from m and obtain m′ such that m′ < nρ(2) (by

monotonicity), which implies that m′ ∈ U . Thus, N accepts Λ (σ), which is of
the form Bn3 wi1

n3 wK′

n1
wi2

n2 En2 with (i) n1 = ρ(1), n2 = ρ(2) and n3 = ρ(n), hence
0 < n1 < n2 < n3; (ii) i1 ≥ 0, i2 ≥ 0 and (iii) K ′ ≥ K. ut

4.3 A pumping lemma for PN+NBA

Let us turn our attention to the third pumping lemma. Its proof relies on the fol-
lowing auxiliary lemma:

Lemma 9 Let N = 〈P,T ,Σ ,m0〉 be a PN+NBA, and let σ be a finite sequence
of transitions of N that contains n occurrences of transitions in Te. Let m1, m′

1,

m2 and m′
2 be four makings such that (i) m1

σ
−→ m′

1, (ii) m2
σ
−→ m′

2 and (iii) m2 <

m1. Then, for every place p ∈ P: m′
2(p)−m′

1(p) ≥ m2(p)−m1(p)−n.

Proof Let us consider a place p ∈ P . First, we remark that when we fire σ from
m2 instead of m1, its Petri net arcs will have the same effect on p. On the other
hand, since we want to find a lower bound on m′

2(p)−m′
1(p), we consider the

situation where no non-blocking arcs affect p when σ is fired from m1, but they
all remove one token from p when σ is fired from m2. In the latter case, the
effect of σ on p is m′

1(p)−m1(p)− n. We obtain thus: m′
2(p) ≥ max{m2(p)+

m′
1(p)−m1(p)− n,0}. Hence m′

2(p) ≥ m′
1(p)+ m2(p)−m1(p)− n, and thus:

m′
2(p)−m′

1(p) ≥ m2(p)−m1(p)−n. ut

We can now state our pumping lemma for PN+NBA:

Lemma 10 Let N be a PN+NBA and U be an 4-upward-closed set of markings
of N . If there exists an infinite sequence of words w1,w2, . . . such that for any
i ≥ 1, there exist two words Bi,Ei with {Biw∗

i Ei} ⊆ L(N ,U), then there exist
i1 ≥ 0, i2 > 0, i3 ≥ 0 and 0 < n1 < n2 < n3 such that the word Bn3 wi1

n3 wi2
n1 wi3

n2 En2
is in L(N ,U).

Once again, since the proof of Lemma 10 is rather technical, we first sketch it
informally. The proof may be decomposed into two steps:

24 Gilles Geeraerts et al.

Step 1 This step is similar to Step 1 of Lemma 8. More precisely, for all i ≥
2|P| +1 (where P is the set of places of the PN+NBA considered), we build
the infinite sequences of runs where the j− th element of those sequences is a
run that accepts the word Biw

i+ j−1
i Ei. Then, for all i≥ 2|P|+1 we build a sub-

sequence of runs by applying successively Lemma 2. Those sub-sequences
have the property that markings appearing in different runs are 4-ordered.
The increasing sequences appear along the 2|P| +1 first “columns”.

Step 2 Finally, we show how to split and combine parts of runs appearing in the
Mi’s to obtain a run that allows the PN+NBA to accept a word of the desired
form.
In order to build this sequence, we rely on several variables, namely: c1, c2
and n. At the present step of the proof, we present several constraints on c1,
c2 and n. These constraints are meant to produce a sequence of transitions that
accepts a word of the desired form. The main (and most technical) part of step
2 consists to show that these constraints are satisfiable.

Proof Let N be a PN+NBA with set of places P and initial marking minit such
that {Biw∗

i Ei} ⊆ L(N ,U).

Step 1 Since {Biw∗
i Ei} ⊆ L(N ,U), all the words of the form Biw

j
i Ei(j ≥ 0) are

accepted by N . Let us consider the infinite sequence of the runs that accept all
these words, for i ≥ 2|P| +1:

minit
υi−→ m1

i
ς1

i−→ m2
i

ς2
i−→ ···

ς i
i−→ mi+1

i
υ ′

i−→ ni

minit
υi+1
−−→ m1

i+1

ς1
i+1

−−→ m2
i+1

ς2
i+1

−−→ ···
ς i+1

i+1
−−→ mi+2

i+1

υ ′
i+1

−−→ ni+1
. . .

where for any i ≥ 2|P| +1: Λ (υi) = Bi, Λ (υ ′
i) = Ei, ni ∈U and for any 1 ≤ j ≤ i:

Λ (ς j
i) = wi.
By applying Lemma 2 successively, we can construct an infinite subsequence

of that sequence:

minit
υρ(1)
−−−→ m1

ρ(1)

ς1
ρ(1)

−−→ m2
ρ(1)

ς2
ρ(1)

−−→ ···
ςρ(1)

ρ(1)
−−−→ mρ(1)+1

ρ(1)

υ ′
ρ(1)

−−−→ nρ(1)

minit
υρ(2)
−−−→ m1

ρ(2)

ς1
ρ(2)

−−→ m2
ρ(2)

ς2
ρ(2)

−−→ ···
ςρ(2)

ρ(2)
−−−→ mρ(2)+1

ρ(2)

υ ′
ρ(2)

−−−→ nρ(2)

. . .

such that, for any 1 ≤ j ≤ 2|P| +1, the sequence m j
ρ(1)m

j
ρ(2) . . . is increasing:

∀1 ≤ j ≤ 2|P| +1 : ∀k ≥ 1 : m j
ρ(k) 4 m j

ρ(k+1)
(8)

and, for any 1 ≤ j ≤ 2|P| + 1 there exists a set of places, noted Places(j) that
strictly increase along the sequence m j

ρ(1)
m j

ρ(2)
. . . while the other places stay con-

stant:

∀1 ≤ j ≤ 2|P| +1 : ∀k ≥ 1 : m j
ρ(k)(p) < m j

ρ(k+1)
(p) iff p ∈ Places(j) (9)

Well-Structured Languages 25

Since, there are 2|P| subsets of P , there exist 1 ≤ c1 < c2 ≤ 2|P| + 1 such that
Places(c1) = Places(c2).

In the following, we denote by σρ(j)(k1,k2) with k1 < k2 the sequence ς k1
ρ(j) ·

. . . · ς k2−1
ρ(j) . We also denote by σρ(j)(·,k), the sequence υρ(j) · ς1

ρ(j) · . . . · ς
k−1
ρ(j); and

by σρ(j)(k, ·) the sequence ς k
ρ(j) · . . . · ς

ρ(j)
ρ(j) ·υ

′
ρ(j)

Step 2 The rest of the proof consists in devising a word of L(N ,U) that is of

the form Bn3wi1
n3 wi2

n1 wi3
n2 En2 , with i1 ≥ 0, i2 > 0, i3 ≥ 0 and 0 < n1 < n2 < n3. The

sequence of transitions that accepts this word (called σ) is built as follows:

σ = σρ(n)(·,c1) ·σρ(1)(c1,c2) ·σρ(2)(c2, ·)

for a well-chosen value of n. We next explain how to compute this value.
We choose n > 2 such that, when firing σρ(1)(c1,c2) from mc1

ρ(n), we reach a

marking m < mc2
ρ(2). Let us show that such a n always exists. First, remark that for

any n > 2: σρ(1)(c1,c2) is firable from mc1
ρ(n) since, by (8), mc1

ρ(n) < mc1
ρ(1). Let k

be the number of non-blocking arcs in σρ(1)(c1,c2). By Lemma 9, we have that

∀p ∈ P : m(p) ≥ mc1
ρ(n)(p)+mc2

ρ(1)(p)−mc1
ρ(1)(p)− k (10)

But, since Places(c1) = Places(c2), we can state the following. For any place
p ∈ Places(c1) and for any n ≥ 1: mc1

ρ(n)(p) ≥ n− 1, since by (9) the sequence

mc2
ρ(1)(p),mc2

ρ(2)(p), . . . is strictly increasing. In particular, if we choose n such
that

n > max
p∈Places(c1)

(

mc2
ρ(2)(p)−mc2

ρ(1)(p)+mc1
ρ(1)(p)

)

+ k

we have ∀p ∈ Places(c1) : mc1
ρ(n)(p) ≥ mc2

ρ(2)(p)−mc2
ρ(1)(p)+ mc1

ρ(1)(p)+ k and
thus:

∀p ∈ Places(c1) : mc1
ρ(n)(p)+mc2

ρ(1)(p)−mc1
ρ(1)(p)− k ≥ mc2

ρ(2)(p) (11)

By (10) and (11), we obtain:

∀p ∈ Places(c1) : m(p) ≥ mc2
ρ(2)(p) (12)

On the other hand, for any place p, the monotonicity property of PN+NBA im-
plies that m(p)≥ mc2

ρ(1)(p). And since, by (9): ∀p ∈ P \Places(c1) : mc2
ρ(1)(p) =

mc2
ρ(2)(p), we obtain:

∀p ∈ P \Places(c1) : m(p) ≥ mc2
ρ(2)(p) (13)

By (12) and (13), we conclude that m < mc2
ρ(2)

.

Thus, the sequence of transitions σ = σρ(n)(·,c1) ·σρ(1)(c1,c2) ·σρ(2)(c2, ·) is

firable from minit (with n computed as explained above) and leads to a marking m′,
i.e minit

σ
−→ m′. Since m < mc2

ρ(2)
, we also have that m′ < nρ(2), by monotonicity.

26 Gilles Geeraerts et al.

Hence m′ ∈ U , and the word Λ (σ) ∈ L(N ,U). It is not difficult to see that
by the previous construction this word is of the form: Bn3 wi1

n3 wi2
n1 wi3

n2 En2 with (i)
n3 = ρ(n), n1 = ρ(1) and n2 = ρ(2), hence 0 < n1 < n2 < n3, and (ii) i1 ≥ 0,
i2 = c2 − c1 > 0, i3 ≥ 0. ut

5 Properties of WSL

In this section, we apply the pumping lemmata of the previous section to obtain
several results about WSL and languages of EPN. Section 5.1 presents properties
of WSL that can be proved thanks to Lemma 7. Then, the pumping lemmata on
PN and PN+NBA are exploited in sections 5.2 and 5.3 to prove a strict hierarchy
among the languages of PN, PN+NBA and PN+T; as well as in section 5.4, to
obtain closure properties of languages of EPN.

5.1 Consequences of Lemma 7

We first study several classical languages and show that they are not well-structured.
These languages are: the set of all words of the form anbn, the set of all words of
the form anbm with m ≥ n, and the set of all palindromes.

– L = {anbn|n ≥ 1} 6∈ LG(WSTS). Suppose that L ∈ LG(WSTS). Since, ∀k ≥
1 : akbk ∈ L , we can apply Lemma 7 (letting Bk = ak and Ek = bk, for any
k ≥ 1). We conclude that there is i < j s.t. a jbi ∈ L , which is a contradiction.
Notice that this results is also a consequence of Theorem 3 and Theorem 2,
following the reasoning given in [11, pages 175–176].

– L ≥ = {anbm|m ≥ n} 6∈ LG(WSTS). The proof is similar to the previous one.
– L R = {w ·wR} 6∈ LG(WSTS). Let Σ be an alphabet and w = a1 · . . . ·an ∈ Σ∗,

we define the mirror of w, as the word wR = an · . . . ·a1. Let us suppose L R ∈
LG(WSTS). Since {anbban | n ≥ 0} ⊆ L R, we can apply Lemma 7 (letting
Bk = akb and Ek = bak, for k ≥ 1). We conclude that there exist i < j such that
a jbbai ∈ L R, which is a contradiction. Hence L R 6∈ LG(WSTS).

These results allow us to show that neither the class of WSL, nor LG(PN), nor
LG(PN+NBA), nor LG(PN+T) are not closed under complement.

Proposition 2 LG(WSTS),LG(PN),LG(PN+NBA) and LG(PN+T) are not closed
under complement.

Proof It is not difficult to devise a PN N and an 4-upward-closed set U such that
L(N ,U) = {anbm | m < n}. It is well-known [11] that LG(PN) is closed under
union and that the regular languages are all in LG(PN). Hence, {anbm | m < n}∪
(

(a+b)∗ \a∗b∗
)

is in LG(PN), but also in PN+NBA and in PN+T, since PN is
a syntactic subclass of theirs. However, its complement is L ≥ = {anbm | m ≥ n},
which is not a WSL. ut

Finally, we can also exploit the previous results to show that the class of WSL
is incomparable to the class of Context Free Languages (C.F.L., for short).

Well-Structured Languages 27

Proposition 3 The class LG(WSTS) is incomparable to the class of context-free
languages.

Proof C.F.L. 6⊆ LG(WSTS) stems from the fact that L , which is well-known to
be a C.F.L., is not in L(WSTS). We prove that LG(WSTS) 6⊆ C.F.L. thanks to
L1 = {aib jck | i ≥ j ≥ k ≥ 0}. It is not difficult to devise a PN that accepts L1 for
some 4-upward-closed set. On the other hand, we prove that L1 is not a C.F.L.
thanks to the classical pumping lemma for C.F.L.

For that purpose, we have to devise, for any constant n ∈ N, a word ωn ∈ L1
such that |ωn| ≥ n and, for any words u, v, w, x and y respecting (i) ω = u·v·w·x ·y,
(ii) |v ·w · x| ≤ n and (iii) |v · x|> 0, we can find i ≥ 0 s.t. u · vi ·w · xi · y 6∈ L1.

For any n≥ 0, we let ωn = anbncn. Clearly ωn ∈L1 and |ωn| ≥ n, for any n. Let
us consider all the possible values of u, v,. . . , y that respect the three conditions
above, and let us show that, for all these values, there exists a i ≥ 0 such that
u · vi ·w · xi · y 6∈ L1.

– If either v or x contain at least two different characters, the word u ·v2 ·w ·x2 ·y
is clearly not a word of L1.

– If v ∈ a∗, then, since |v ·w · x| ≤ n, there are two possibilities. Either x ∈ a∗.
In that case, we choose i = 0 and the word u · v0 · w · x0 · y is of the form
an−|v·x|bncn, and is clearly not in L1, since |v ·x|> 0. Otherwise, x∈ b∗. In that
case, we choose i = 0 again and we obtain a word of the form an−|v|bn−|x|cn,
which is not in L1 because |v · x|> 0.

– If v ∈ b∗, there are two possibilities again. Either x ∈ b∗, and by choosing
i = 0 we obtain anbn−|v·x|cn 6∈ L1. Or, x ∈ c∗, we choose i = 2 and obtain
anbn+|v|cn+|x| 6∈ L1.

– If v ∈ c∗, then, x∈ c∗, and, by choosing i = 2, we obtain anbncn+|v·x| 6∈L1. ut

5.2 PN+NBA are more expressive than PN

In this section we prove that the class of languages accepted by PN+NBA strictly
contains the class of languages accepted by PN (when the acceptance condition
is an 4-upward-closed set). Since the class of PN form a syntactic subclass of
PN+NBA, we obtain this result by showing that there is a language accepted by a
PN+NBA that cannot be accepted by any PN.

Separation of PN+NBA and PN The strategy adopted in the proof is as fol-
lows. We look into the PN+NBA N1 of Fig. 7 with initial marking m0 such that
m0(p1) = 1 and m0(p) = 0 for p ∈ {p2, p3, p4, p5, p6}, and prove it accepts every
word of the form iks

(

akcbkd
) j, for k ≥ 0 and j ≥ 0 (Lemma 11), but not those

of the form in3san3c(bn3dan3c)i1
(

bn1dan1c
)k(

bn2dan2c
)i2

bn2d, for k big enough,
and 0 < n1 < n2 < n3 (Lemma 12). Then we invoke Lemma 8 (pumping lemma
on PN) to prove that every PN accepting the words of the first form also accepts
words of the latter, which implies that no PN accepts L(N1,N

6).

Lemma 11 For any k ≥ 0, for any j ≥ 0, the word iks
(

akcbkd
) j

is in L(N1,N
6).

28 Gilles Geeraerts et al.

N1

•

p1

p2

p3

p4

p5

p6

t1 i

t2

s

t3
a

t4

c

t5
b

t6

d

Fig. 7 The PN+NBA used in the proof of Theorem 5.

Proof Remark that, since the 4-upward-closed set considered here is N
6, we just

need to show that a sequence of transitions labelled by iks
(

akcbkd
) j

is firable in
N1 to get the Lemma.

The following holds for any k ≥ 0. After firing the transitions t k
1t2 from the

initial marking of N1, we reach the marking m1 such that m1(p2)= k, m1(p3)= 1,
and m1(p j) = 0 for j ∈ {1,4,5,6}. Then, we can fire tk

3t4 from m1. This leads
to the marking m2 such that m2(p4) = k, m2(p5) = 1, and m2(p j) = 0 for j ∈
{1,2,3,6}. From m2, tk

5 can be fired. This sequence of transitions moves the k
tokens from p4 to p2. Then, from the resulting marking, t6 can be fired. Since,
p4 is now empty, the effect of t6 only consists in moving the token from p5 to p3
(its non-blocking arc has no effect) and we reach m1 again. Thus, the sequence of
transitions tk

3t4tk
5t6, labelled by akcbkd, can be fired arbitrarily often from m1, and

reaches the same marking. Hence the word iks
(

akcbkd
) j

is in L(N1,N
6), for any

k ≥ 0, any j ≥ 0. ut

Lemma 12 Let n1, n2 and n3 be three natural numbers such that 0 < n1 < n2 < n3.
The words

in3san3c(bn3dan3c)i1
(

bn1dan1c
)k(

bn2dan2c
)i2

bn2d

are not in L(N1,N
6), for all i1 ≥ 0, k ≥ n3 −n1 and i2 ≥ 0.

Proof In this proof, we will identify a sequence of transitions with the word it
accepts (all the transitions have different labels). Clearly (see the proof of Lemma
11), for any n3 ≥ 0, m ≥ 0, the firing of in3s

(

an3cbn3d
)m

from m0 leads to a
marking m1 such that m1(p2) = n3, m1(p3) = 1, and ∀i ∈ {1,4,5,6} : m1(pi) = 0
(the non-blocking arc of t6 hasn’t consumed any token in p4). By firing an3cbn1d

from m1, we now have n1 tokens in p2, n3 − n1 − 1 tokens in p4 and one to-
ken in p6 (this time the non-blocking arc has moved one token since n1 < n3).
Clearly, at each subsequent firing of an1cbn1d, the non-blocking arc of t6 will

Well-Structured Languages 29

remove one token from p4 and the marking of this place will strictly decrease
until p4 becomes empty. Let ` = n3 − n1 − 1. It is easy to see that that firing
an3cbn1d

(

an1cbn1d
)`

from m1 leads to a marking m2 with m2(p2) = n1, m2(p3) =
1, m2(p6) = n3 − n1 and ∀ j ∈ {1,4,5} : m2(p j) = 0. This characterization also
implies that we can fire an1cbn1d an arbitrary number of times from m2 be-

cause m2
a

n1cbn1d
−−−−−→ m2. On the other hand, it is not possible to fire an1cbn2d ,

with n2 > n1, from m2. Indeed m2
a

n1 cbn1
−−−−→ m3, with m3(p5) = 1, m3(p2) = n1,

m3(p6) = n3 − n1 and ∀ j ∈ {1,3,4} : m3(p j) = 0, which does not allow to fire
the b-labelled transition t5 anymore. We conclude that, ∀k ≥ n3 − n1, a sequence
labelled by in3s

(

an3cbn3d
)m

an3c
(

bn1dan1c
)k
bn2dan2c, is not firable in N1. Thus,

we will not find in L(N1,N
6) any word with this prefix, hence the Lemma. ut

Thanks to these lemmata, we can prove Proposition 4.

Proposition 4 There is no PN N with an 4-upward-closed set U such that
L(N ,U) = L(N1,N

6).

Proof By Lemma 11, any PN N s.t. L(N ,U) = L(N1,N
6) for some 4-upward-

closed set of accepting markings U , must accept iks
(

akcbkd
) j

, for any k ≥ 1 and
j ≥ 0. Hence, we can apply Lemma 8, by letting Bk = iksakc, Ek = bkd and
wk = bkdakc, for any k ≥ 1. We conclude that N also accepts a word of the form:

in3san3c
(

bn3dan3c
)i1(bn1dan1c

)L′(
bn2dan2c

)i2bn2d such that 0 < n1 < n2 < n3

and L′ ≥ n3 − n1. Since it is not in L(N1,U), by Lemma 12, there is no PN N

and no 4-upward-closed set U s.t. L(N ,U) = L(N1,N
6). ut

Thus, we conclude that:

Theorem 5 LG(PN) ⊂ LG(PN+NBA).

Proof LG(PN) ⊆ LG(PN+NBA) is trivial since PN is a syntactic subclass of
PN+NBA. The strictness of the inclusion is given by Proposition 4. ut

5.3 PN+T are more expressive than PN+NBA

Let us now prove a similar result about the classes PN+NBA and PN+T: the
class of languages that can be accepted by PN+T strictly contains the class of
languages accepted by PN+NBA. For this purpose, we first show that a PN+T

can always simulate a PN+NBA, hence LG(PN+NBA) ⊆ LG(PN+T). Then, we
prove, thanks to Lemma 10, that there is a language that can be recognized by a
PN+T, but not by a PN+NBA, which implies the strictness of the inclusion.

Simulation of a PN+NBA by a PN+T Lemma 13 below states that any PN+NBA

can be simulated by a PN+T. The proof of this lemma is based on the following
construction. Let us consider a PN+NBA N = 〈P,T ,Σ ,m0〉, and an 4-upward-
closed set U of markings, and let us show how to transform them into a PN+T
N ′ and an 4-upward-closed set U ′ such that LG(N ,U) = LG(N ′,U ′).

30 Gilles Geeraerts et al.

N2

•

p1 p2

p3

p4

t1

a

t2

b

t3 b

t4 a

Fig. 8 The PN+T used in the proof of Theorem 6.

Let us consider the partition of T into Te and Tr as defined in Section 2, and a
new place pTr (the trash place). We show now how to build N ′ = 〈P ′,T ′,Σ ,m′

0〉
and U ′. First, P ′ = P ∪{pTr}. For each transition t = 〈I,O,s,d,1,λ 〉 in Te, we
put in T ′: tl = 〈I,O,s, pTr,+∞,λ 〉 and te = 〈Ie,Oe,⊥,⊥,0,λ 〉, two new transi-
tions, such that: ∀p ∈ P :

(

p 6= s ⇒ Ie(p) = I(p) ∧ p 6= d ⇒ Oe(p) = O(p)
)

,
Ie(s) = I(s)+1 and Oe(d) = O(d)+1. We also add into T ′ all the transitions of
Tr (extended to pTr such that they have no guard and no effect on pTr). Finally,
∀p ∈ P = m′

0(p) = m0(p), m′
0(pTr) = 0 and U ′ = {m | ∃m′ ∈ U : ∀p ∈ P :

m(p) = m′(p)}.

Example 2 Fig. 9 illustrates the above construction. 3

Lemma 13 For any PN+NBA N with an 4-upward-closed set U , it is possi-
ble to construct a PN+T N ′ and an 4-upward closed set U ′ s.t.: L(N ,U) =
L(N ′,U ′).

Proof Let us consider the previous construction and let us prove that L(N ,U) =
L(N ′,U ′).

L(N ,U) ⊆ L(N ′,U ′) We show that, for every sequence of transitions σ of

N that leads into a marking m ∈ U , we can find a sequence of transitions σ ′ of
N ′ that leads into a marking m′ ∈ U ′ such that Λ (σ) = Λ (σ ′).

Let us define the function f : T ×N
|P| → T ′ such that ∀t ∈ Tr : f (t,m) = t

and ∀t = 〈O, I,s,d,1,λ 〉 ∈ Te : f (t,m) = te, if m(s) > I(s) (the non-blocking arc
still has an effect after the firing of the Petri part of the transition); and f (t,m)= tl ,
otherwise.

Let σ = m0
t1−→ m1

t2−→ . . .
tn−→ mn

tn+1
−−→ mn+1 be a sequence of N such that

mn+1 ∈ U . Then we may see that σ ′ = m′
0

f (t1 ,m′
0)

−−−−−→ m′
1

f (t2 ,m′
1)

−−−−−→ . . .
f (tn,m′

n−1)
−−−−−−→

m′
n

f (tn+1 ,m′
n)

−−−−−−→ m′
n+1 is a sequence of N ′, where ∀1 ≤ i ≤ n + 1 : m′

i is such that
m′

i(p) = mi(p) for all p ∈ P and m′
i(pTr) = 0. Hence, m′

n+1 ∈ U ′ and Λ (σ ′) is

Well-Structured Languages 31

accepted. Since we have ∀1 ≤ i ≤ n+1 : Λ (ti) = Λ (f (ti,mi−1)), we conclude that
Λ (σ) = Λ (σ ′), hence L(N ,U) ⊆ L(N ′,U ′).

L(N ′,U ′) ⊆ L(N ,U) We show that, for every sequence of transitions σ ′ of

N ′ that leads into a marking m′ ∈ U ′, we can find a sequence of transitions σ of
N that leads into a marking m ∈ U such that Λ (σ ′) = Λ (σ).

We define the function g : T ′ → T such that for all t ∈ Tr: g(t) = t and for
all t ∈ Te : g(te) = g(tl) = t. Moreover, we define the relation 4P that compares
two markings only on the places that are in P . Thus, if m is defined on P and
m′ on P ′ (remember that P ⊆ P ′), m′ 4P m iff ∀p ∈ P : m′(p) ≤ m(p).

Let σ ′ = m′
0

t1−→ m′
1

t2−→ . . .
tn−→ m′

n
tn+1
−−→ m′

n+1 be a sequence of N ′ such that

m′
n+1 ∈ U ′. Then, there exist m1,m2, . . .mn+1 in N such that we have m0

g(t1)
−−→

m1
g(t2)
−−→ . . .

g(tn)
−−→ mn

g(tn+1)
−−−−→ mn+1 and mn+1 ∈ U . To prove that the sequence

of markings exists, we show by induction on the indexes, that m′
i 4P mi for all i

such that 0 ≤ i ≤ n+1. That implies that ∀1 ≤ i ≤ n+1 : g(ti) is firable from mi−1
because g(ti) consumes no more tokens in any place p than ti does.

Base case: j = 0. The base case is trivially verified.
Induction step: j = k. By induction hypothesis, we have: ∀0 ≤ j ≤ k− 1 :

m′
j 4P m j. In the case where tk = 〈I,O,s,d,b,λ 〉 (from m′

k−1) has the same effect
on P than g(tk) (from mk−1), we directly have that m′

k 4P mk. This happens if
tk is a regular Petri transition or if mk−1(s) = m′

k−1(s) = I(s).
Otherwise tk has a transfer arc and we must consider two cases:

– The transfer of tk has no effect and the non-blocking arc of g(tk) moves one
token from the source s to the target d, hence I(s) = m′

k−1(s) < mk−1(s). Since
tk and g(tk) have the same effect except that g(tk) removes one more token from
s and adds one more token in d, and since m′

k−1 4P mk−1 with m′
k−1(s) <

mk−1(s), we conclude that m′
k 4P mk.

– The transfer of tk moves at least one token from the source s to pTr and the
non-blocking arc of g(tk) moves one token from s to d. Since tk and g(tk)
have the same effect on the places in P except that g(tk) adds one more token
in d and tk may remove more tokens from s, and since m′

k−1 4P mk−1, we
conclude that m′

k 4P mk.

Thus, there are m1,m2, . . . ,mn+1 s.t. m0
g(t1)
−−→ m1

g(t2)
−−→ . . .

g(tn)
−−→ mn

g(tn+1)
−−−−→

mn+1 in N and ∀1 ≤ i ≤ n + 1 : m′
i 4P mi. Thus, mn+1 ∈ U . Since Λ (ti) =

Λ (g(ti)) for all 1≤ i≤ n+1, we conclude that Λ (σ ′)=Λ (σ), hence L(N ′,U ′)⊆
L(N ,U). ut

Separation of PN+T and PN+NBA Let us now prove that LG(PN+NBA) is
strictly included in LG(PN+T). We consider the PN+T N2 presented in Fig.8
with the initial marking m0(p1) = 1 and m0(p) = 0 for p ∈ {p2, p3, p4}. The two
following Lemmata allow us to better understand the behaviour of N2.

Lemma 14 For any k ≥ 1, for any j ≥ 0, the word
(

akbk
) j

is in L(N2,N
4).

32 Gilles Geeraerts et al.

(a)

s d

p

t

t ′

(b)

s d

ppTr

t ′

te

tl

2

Fig. 9 A PN+NBA N (a) and the corresponding PN+T N ′ (b)

Proof Remark that, since the 4-upward-closed set considered here is N
4, we just

need to show that a sequence of transitions labelled by
(

akbk
) j

(j ≥ 0) is firable
in N2 to get the lemma.

The following holds for any k ≥ 1. From the initial marking m0 of N2, we
can fire tk

1t2tk−1
3 (which is labelled by akbk), and obtain the marking m1 such that

m1(p2) = 1 and ∀p ∈ {p1, p3, p4} : m1(p) = 0. Thus, t4 is firable from m1 and
does not transfer any token, but produces a token in p3 and moves the token from
p2 to p1. It is thus not difficult to see that t4tk−1

1 t2tk−1
3 , labelled by akbk, can be

fired from m1. The marking one obtains is m1 again. Hence, we can fire a sequence
labelled by akbk arbitrarily often from m1. Thus, any word of the form

(

akbk
) j

is
in L(N2,N

4). ut

Lemma 15 Let n1,n2,n3 be three natural numbers such that 0 < n1 < n2 < n3.
For any i1≥ 0, i2 > 0 and i3≥ 0, the words of the form:

an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2

are not in L(N2,N
4).

Proof The following holds for any n1,n2,n3 with 0 < n1 < n2 < n3. From the ini-
tial marking of N2, the only sequence of transitions labelled by an3 is tn3

1 . Firing
this sequence leads to the marking m1 such that m1(p1) = 1,m1(p3) = n3 and
m1(p) = 0 if p ∈ {p2, p4}. From m1 the only firable sequence of transitions la-
belled by bn3 is t2tn3−1

3 . This leads to the marking m2 such that m2(p2) = 1 and
m2(p) = 0 if p 6= p2. The only sequence of transitions firable from m2 and labelled
by an3 is t4tn3−1

1 . Since m2(p3) = 0, the transfer of t4 has no effect when fired from

m2. Hence, we reach m1 again after firing t4tn3−1
1 . By repeating the reasoning, we

conclude that the only sequence of transitions firable from the initial marking and
labelled by (an3bn3)i1an3 (when i1 > 0) is tn3

1 t2tn3−1
3 (t4tn3−1

1 t2tn3−1
3)i1−1t4tn3−1

1 and
leads to m1. In the case where i1 = 0, the sequence tn3

1 is firable and leads to m1

too. From m1, the only firable sequence of transitions labelled by bn1 is t2tn1−1
3 .

This leads to a marking similar to m2, noted m′
2, except that p3 contains n3 − n1

tokens. Then, the only firable sequence of transitions labelled by an1 is t4tn1−1
1 . In

this case, the transfer of t4 moves the n3 − n1 tokens from p3 to p4 and we reach
a marking similar to m1, noted m′

1, except that p4 contains n3 −n1 tokens and p3
contains n1 tokens. From m′

1, the only firable sequence of transitions labelled by
bn1an1 is t2tn1−1

3 t4tn1−1
1 and leads to m′

1. Hence, the sequence (t2tn1−1
3 t4tn1−1

1)i2 is
firable from m′

1.
However, after firing t2tn1−1

3 from m′
1, we reach a marking m′′

2 similar to m2
except that p4 contains n3 − n1 tokens and from which no transition labelled by

Well-Structured Languages 33

b is firable. Since n2 > n1, we conclude that there is no sequence of transitions
labelled by bn2 that is firable from m′

1, hence an3(bn3an3)i1(bn1an1)i2(bn2an2)i3an2

with i1 ≥ 0, i2 > 0, i3 ≥ 0 is not in L(N2,N
4). ut

Thanks to these two lemmata, and thanks to Lemma 10, we can now prove
Proposition 5, that states that no PN+NBA can accept the language of N2.

Proposition 5 There is no PN+NBA with an 4-upward-closed set U such that
L(N ,U) = L(N2,N

4).

Proof By Lemma 14, any PN+NBA N s.t. L(N ,U) = L(N2,N
4) for some 4-

upward-closed set U , accepts
(

a jb j
)k

, for any j ≥ 1,k ≥ 1. Thus, we can apply
Lemma 10, by letting Bi = ai, Ei = bi and wi = biai, for all i ≥ 1, and obtain that
N accepts a word of the form: an3(bn3an3)i1(bn1an1)i2(bn2an2)i3bn2 with 0 < n1 <
n2 < n3 and i2 > 0. Since, by Lemma 15, this word is not in LG(N2,N

4), there can
be no PN+NBA N and no 4-upward-closed-set U s.t.: L(N ,U)=L(N2,N

4).
ut

The two last propositions allow us to conclude that:

Theorem 6 LG(PN+NBA) ⊂ LG(PN+T)

Proof LG(PN+NBA) ⊆ LG(PN+T) is given by Lemma 13. The strictness of the
inclusion is given by Proposition 5. ut

5.4 Closure Properties of EPN

The pumping lemmata on PN and PN+NBA can also be used to show that neither
LG(PN) nor LG(PN+NBA) are closed under iteration.

Theorem 7 LG(PN) and LG(PN+NBA) are not closed under iteration.

Proof It is easy to show that L = {anbm|n ≥ m} ∈ LG(PN) (hence, L is also in
LG(PN+NBA)). Let us show, by contradiction, that L+ 6∈ LG(PN). Suppose that
there is a PN N and an upward-closed set U s.t. LG(N ,U) = L+. Let Bi = ai,
wi = biai and Ei = bi for all i ≥ 1. Thanks to Lemma 8, we obtain that LG(N ,U)
contains a word of the form:

an3(bn3an3)i1(bn1an1)K(bn2an2)i2bn2

with n1 < n2 < n3, K ≥ 1, which is not in L∗. Hence the contradiction. A similar
proof for PN+NBA invokes Lemma 10. ut

Following Definition 1, we immediately deduce that:

Corollary 2 LG(PN) and LG(PN+NBA) are not full AFL.

On the other hand, it is easy to show that:

Theorem 8 LG(PN+T) is a full AFL, closed under intersection.

34 Gilles Geeraerts et al.

Proof The proof is quite immediate. Hence, we only report the main ideas. In the
following, we consider two PN+T N1 and N2 and two upward-closed set U1
and U2, and we assume that the set of places and transitions of this two nets are
disjoint. For each property to prove we show how to build a PN+T that accepts
the desired language.
Union L(N1,U1)∪L(N2,U2) ∈ LG(PN+T). We build a PN+T such that its set
of transitions is the union of the sets of transitions of N1 and N2 and its set of
places is the union of the sets of places of the two nets. Moreover, we add a place
init and two transitions t1 and t2 such that t1 consumes a tokens from init and adds
a number of tokens in the places of N1 corresponding to the number of tokens
assigned by the initial marking of N1 to those places. t2 consumes a tokens from
init and adds a number of tokens in the places of N2 corresponding to the number
of tokens assigned by the initial marking of N2 to those places. The initial marking
of the PN+T contains only one token in init. The accepting 4-upward-closed set
is the Cartesian product of U1 and U2.
Concatenation L(N1,U1) ·L(N2,U2)∈ LG(PN+T). We build a PN+T such that
its set of transitions is the union of the sets of transitions of N1 and N2 and its
set of places is the union of the sets of places of the two nets. Moreover, we add
transitions that test if the current marking is in U1, removes all the tokens from
places of N1 by using transfer arcs with the target place Trash (added into the set
of places), and finally add a number of tokens into the places of N2 corresponding
to the number of tokens assigned by the initial marking of N2 to those places.
Notice that it is easy to define a mechanism that ensures that those transitions are
fired sequentially (some new places must by use). The initial marking corresponds
to the initial marking of N1. More precisely, the places of N2 contain zero tokens
into the initial marking. The accepting 4-upward-closed set corresponds to U2
where markings are extended to places of N1 that may contain any number of
tokens.
Intersection L(N1,U1)∩L(N2,U2) ∈ LG(PN+T). We build a PN+T such that
its set of places is the union of the sets of places of the two nets. To each pair
of transitions t1 and t2, respectively of N1 and N2, labelled by the same symbol
(different from ε) we have a set of transitions that remove tokens from the input
places of t1 and t2, apply the transfers of the two transitions and finally add tokens
into the output places of the transitions t1 and t2. As previously noticed, it is easy
to define a mechanism that ensure that those transitions are fired sequentially.
Finally, the PN+T also contains all the transitions of the two nets labelled by ε .
The initial marking of the PN+T corresponds to the initial marking of N1 on the
places of N1 and corresponds to the initial marking of N2 on the places of N2.
The accepting 4-upward-closed set is U1 ∩U2 (extended to places used to ensure
that transitions are fired sequentially and may contain any number of tokens).
Iteration L+(N1,U1) ∈ LG(PN+T). The idea is similar to the construction for
the concatenation.
Arbitrary homomorphism h(L(N1,U1)) ∈ LG(PN+T). We replace in N1 each
transition labelled by a by a sequence of transitions labelled by h(a). As noticed
previously it is easy to ensure that those transitions are fired sequentially. The ini-
tial marking corresponds to the initial marking of N1 (extended to the extra places
and those places are empty). The accepting 4-upward-closed set corresponds to
U1 (extended to the extra places).

Well-Structured Languages 35

Inverse homomorphism h−1(L(N1,U1)) ∈ LG(PN+T). The PN+T that accepts
the language is built as follows. We first define a finite observer that recognizes the
sequences h−1(a) for each symbol a. We also ensure that when the observer has
recognized h−1(a) then it fires a transition labelled by ε leading to a terminal state.
Those transitions are called the terminal transitions of h−1(a). Then, We compute
the PN+T by applying the construction presented in the intersection section on
the observer and N1. Finally, for each symbol a the label of the terminal transition
of h−1(a) is replaced by a and the label of the other transitions are replaced by ε .
The initial marking corresponds to the initial marking of N1 extended to places
of the observer. The accepting 4-upward-closed set corresponds to N1 extended
to places of the observer and where at least one terminal place of the observer is
non-empty. ut

5.5 Some remarks about the pumping lemmata

It is interesting to compare Lemma 7, that provides a very general property holding
for any WSL, with Lemma 8 and Lemma 10, which both apply to more restricted
classes of languages (namely, LG(PN) and LG(PN+NBA), respectively), but state
more precise properties of these classes of languages.

When we restrict ourselves to the class PN (resp. PN+NBA), Lemma 8 (resp.
10) is more general than Lemma 7. Indeed, we obtain Lemma 7, by letting wi = ε
in Lemma 8 (resp. 10) for any i ≥ 1.

As a consequence the following results can be proved thanks to Lemma 8 (see
section 5.1 for the definition of these languages): L 6∈ LG(PN); L ≥ 6∈ LG(PN);
L R 6∈ LG(PN); LG(PN) is not closed under complement. Similar results can be
obtained about PN+NBA thanks to Lemma 10. Finally, since L ∈ LL(PN), but
L 6∈ LG(PN), we have LG(PN)⊂LL(PN) (and LG(PN+NBA)⊂LL(PN+NBA)=
R.E. by the same reasoning).

6 Conclusion

The (labelled) well-structured transition systems are a well-known class of infinite-
state transition systems, that enjoy monotonicity properties and whose set of states
is well-quasi ordered. In the present work, we have studied several properties of
the classes of languages that can be recognized by WSTS, and some of their sub-
classes, such as the EPN. We have proved three pumping lemmata by exploiting
specific properties of the WSTS (which is, to the best of our knowledge, original
in this context). These lemmata have allowed us mainly to strictly separate the
expressiveness of three important classes of EPN: the PN, the PN+NBA, and the
PN+T. This last result demonstrates the meaningfulness of the different commu-
nication procedures present in these three models.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General Decidability Theorems for
Infinite-state Systems. In Proceedings of the 11th Annual Symposium on Logic in Comuter
Science (LICS’96), pages 313–321. IEEE Computer Society Press, 1996.

36 Gilles Geeraerts et al.

2. P.A. Abdulla, A Bouajjani, and B Jonsson. On-the-Fly Analysis of Systems with Un-
bounded, Lossy FIFO Channels. In Proceedings of the 10th International Conference on
Computer Aided Verification (CAV’98), volume 1427 of LNCS, pages 305–318. Springer,
1998.

3. G. Ciardo. Petri nets with marking-dependent arc multiplicity: properties and analysis. In
Proceedings of the 15th International Conference on Applications and Theory of Petri Nets
(ICATPN 94), volume 815 of LNCS, pages 179–198. Springer, 1994.

4. E. A. Emerson and K. S. Namjoshi. On Model Checking for Non-deterministic Infinite-
state Systems. In Proceedings of the 13th Annual Symposium on Logic in Computer Science
(LICS ’98), pages 70–80. IEEE Computer Society Press, 1998.

5. A. Finkel, G. Geeraerts, J.-F. Raskin, and L. Van Begin. On the omega-language expressive
power of extended Petri nets. In Proceedings of EXPRESS’04, 11th International Workshop
on Expressiveness in Concurrency, London, Great Britain, volume 128(2) of Electronic
Notes in Theoretical Computer Science, pages 87–101. Elsevier Publishing, 2004.

6. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001.

7. Seymour Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., 1975.

8. John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation, second edition. Addison-Wesley, 2001.

9. Matthias Jantzen. Language theory of petri nets. In Wilfried Brauer, Wolfgang Reisig, and
Grzegorz Rozenberg, editors, Proc. of Advances in Petri Nets 1986, volume 254 of Lecture
Notes in Computer Science, pages 397–412. Springer, 1986.

10. N.M. Minsky. Finite and Infinite Machines. Englewood Cliffs, N.J., Prentice-Hall, 1967.
11. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.
12. J.-F. Raskin and L. Van Begin. Petri Nets with Non-blocking Arcs are Difficult to Analyse.

In Proceedings of the 5th International Workshop on Verification of Infinite-state Systems
(INFINITY 2003), volume 96(1) of ENTCS. Elsevier, 2003.

13. Arto Salomaa. Formal Languages. Academic Press, 1973.
14. Arto Salomaa. Computation and Automata, volume 25 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1985.
15. L. Van Begin. Efficient Verification of Counting Abstractions for Parametric systems. PhD

thesis, Université Libre de Bruxelles, Belgium, 2003.

