

Satisfiability of a Spatial Logic with Tree Variables

Emmanuel Filiot INRIA Futurs, Lille, Mostrare Project Jean-Marc Talbot University of Provence, LIF, Marseille Sophie Tison University of Lille1, LIFL, Mostrare Project

Lausanne, 2007

The Tree Query Logic (TQL)

- introduced by Cardelli and Ghelli (ICALP'02)
- adapted to ordered unranked trees
- to query XML documents
- boolean operations, recursion, tree variables
- extends CDuce pattern-matching language (non-linearity, ...)
- variable-free fragment studied for unordered trees (Boneva, Talbot, Tison, LICS'05)

Select titles

$$\mathsf{bib}[\ _\ \S\ \mathsf{book}[\ _\S\ \mathsf{title}[\pmb{X}]]\ \S\ _\]$$

Select titles

Select books published in 1999

→ Model data-values by an infinite alphabet

Select books not published in 1999

bib[
$$_$$
 $\%$ book[$_$ $\%$ year[\neg 1999] $\%$ $_$] \land X $\%$ $_$]

Select books which occur at least twice

→ Use non-linearity to check tree equalities

Check whether every book has at least one author

→ Use iteration to navigate by width

Outline

- Hedges, Automata and TQL
- Towards a Decidable Fragment of TQL
- 3 Tree Automata with Global Equalities and Disequalities (TAGED)
- MSO with Tree Isomorphisms Tests

Hedge Signature

- $\Sigma = \{a, b, f, \dots\}$: countable set of labels
- constant 0: empty hedge
- unary symbols $a \in \Sigma$:

binary symbol ;

Hedges

Definition (Hedges)

A **hedge** h is a term over the signature $\{0, \ \S, (a)_{a \in \Sigma}\}$. Equality relation satisfies:

$$0 \, \mathring{,} \, h = h$$
 $h \, \mathring{,} \, 0 = h$ $h_1 \, \mathring{,} \, (h_2 \, \mathring{,} \, h_3) = (h_1 \, \mathring{,} \, h_2) \, \mathring{,} \, h_3$

A tree is a rooted hedge.

Example

Hedge Automata (Murata, 99)

- Q: set of states
- $F \subseteq Q$: set of final states
- $\Delta \subseteq 2^{\Sigma} \times \mathsf{REG}(Q) \times Q$: set of rules, denoted $\alpha(L) \to q$
- \bullet α finite or cofinite set of labels
- $a(L) \rightarrow q$ stands for $\{a\}(L) \rightarrow q$

Example

TQL formulas

- formulas ϕ interpreted as set of hedges: $\llbracket \phi \rrbracket \subseteq \mathsf{Hedges}$
- syntax and semantics:

```
empty hedge 0 location \alpha[\phi] concatenation \phi \ \ \phi'
```

TQL formulas

- formulas ϕ interpreted as set of hedges: $\llbracket \phi \rrbracket \subseteq \mathsf{Hedges}$
- syntax and semantics:

```
\begin{array}{lll} \text{empty hedge} & \llbracket \mathbf{0} \rrbracket & = & \{\mathbf{0}\} \\ \text{location} & \llbracket \alpha[\phi] \rrbracket & = & \{a(h) \mid h \in \llbracket \phi \rrbracket, a \in \alpha\}, \ \alpha \subseteq \Sigma \\ \text{concatenation} & \llbracket \phi \ \mathring{,} \ \phi' \rrbracket & = & \{h \ \mathring{,} \ h' \mid h \in \llbracket \phi \rrbracket, h' \in \llbracket \phi' \rrbracket \} \end{array}
```

TQL formulas

- formulas ϕ interpreted as set of hedges: $[\![\phi]\!] \subseteq \mathsf{Hedges}$
- syntax and semantics:

TQL formulas: tree variables and recursion

- tree variables X, Y, \ldots may occur: $\rho : \{X, Y, \ldots\} \rightarrow \mathsf{Trees}$
- recursion variables ξ, \ldots may occur: $\delta : \{\xi, \ldots\} \to 2^{\mathsf{Hedges}}$
- syntax and semantics:

• all formulas considered in this talk are **recursion-closed**. Interpretation over ρ **only**, denoted $[\![\phi]\!]_{\rho}$.

• set of trees:

• set of trees:

$$\Sigma[_]$$

set of trees:

$$\Sigma[_]$$

$$a(a(0)) \models \mu\xi.(a[\xi] \lor 0)$$

set of trees:

$$\Sigma[_]$$

$$\begin{array}{lll} a(\ a(\ 0\)) & \models & \mu\xi.(a[\xi]\ \lor\ 0) \\ a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \end{array}$$

set of trees:

$$\Sigma[_{-}]$$

$$\begin{array}{lll} a(\ a(\ 0\)) & \models & \mu \xi.(a[\xi]\ \lor\ 0) \\ a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \\ a(\ a(\ 0\)) & \models & a[\xi] \end{array}$$

set of trees:

$$\Sigma[_{-}]$$

$$a(a(0)) \models \mu\xi.(a[\xi] \lor 0)$$

 $a(a(0)) \models a[\xi] \lor 0$
 $a(a(0)) \models a[\xi]$
 $a(0) \models \xi$

set of trees:

$$\Sigma[_{-}]$$

$$a(a(0)) \models \mu\xi.(a[\xi] \lor 0)$$
 $a(a(0)) \models a[\xi] \lor 0$
 $a(a(0)) \models a[\xi]$
 $a(0) \models \xi$
 $a(0) \models a[\xi] \lor 0$

set of trees:

$$\Sigma[_{-}]$$

$$\begin{array}{lll}
a(\ a(\ 0\)) & \models & \mu\xi.(a[\xi]\ \lor\ 0) \\
a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \\
a(\ a(\ 0\)) & \models & \xi \\
a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\
a(\ 0\) & \models & a[\xi]
\end{array}$$

set of trees:

$$\Sigma[_{-}]$$

$$\begin{array}{lll} a(\ a(\ 0\)) & \models & \mu \xi. (a[\xi]\ \lor\ 0) \\ a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \\ a(\ a(\ 0\)) & \models & a[\xi] \\ & a(\ 0\) & \models & \xi \\ & a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\ & a(\ 0\) & \models & a[\xi] \\ & 0 & \models & \xi \end{array}$$

set of trees:

$$\Sigma[_{-}]$$

$$\begin{array}{lll} a(\ a(\ 0\)) & \models & \mu \xi. (a[\xi]\ \lor\ 0) \\ a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \\ a(\ a(\ 0\)) & \models & a[\xi] \\ & a(\ 0\) & \models & \xi \\ & a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\ & a(\ 0\) & \models & a[\xi] \\ & 0 & \models & \xi \\ & 0 & \models & a[\xi]\ \lor\ 0 \end{array}$$

set of trees:

$$\Sigma[_{-}]$$

$$\begin{array}{lll} a(\ a(\ 0\)) & \models & \mu \xi. (a[\xi]\ \lor\ 0) \\ a(\ a(\ 0\)) & \models & a[\xi]\ \lor\ 0 \\ a(\ a(\ 0\)) & \models & \xi \\ a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\ a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\ a(\ 0\) & \models & a[\xi]\ \lor\ 0 \\ o & \models & \xi \\ 0 & \models & a[\xi]\ \lor\ 0 \\ 0 & \models & 0 \end{array}$$

• set of trees:

$$\Sigma[$$
_]

• unary trees labeled only by as: $\mu\xi.(a[\xi] \lor 0)$

• all books have been published in 2006:

bib[(book[_ \(\frac{9}{9} \) year[2006]])*]
Satisfiability of a Spatial Logic with Tree Variables

• select all books published in 2006:

• there is a year during which two books have been published:

```
\mathsf{bib}[\ \_\ \S\ \mathsf{book}[\ \_\S\ \mathsf{year}[X]] \land Y\ \S\ \_\ \S\ \mathsf{book}[\ \_\S\ \mathsf{year}[X]] \land \neg Y\ \S\ \_\ ]
```

More Examples

• trees of the form $a(t, t, t, t, \dots, t)$, for all trees t:

$$a[X^*]$$

context-free language aⁿbⁿ:

$$\mu\xi$$
.(a [0] $\xi \xi b$ [0] \vee 0)

Outline

- 1 Hedges, Automata and TQL
- Towards a Decidable Fragment of TQL
- Tree Automata with Global Equalities and Disequalities (TAGED)
- MSO with Tree Isomorphisms Tests

Undecidability of TQL

Satisfiability Problem

Given a recursion-closed formula ϕ , are there an assignment ρ of tree variables and a hedge h such that $h \in [\![\phi]\!]_{\rho}$?

Theorem

The satisfiability problem is undecidable for TQL formulas.

By reduction from emptiness test of intersection of two context-free grammars.

Guarded Fragment without Tree Variables

Definition

- no tree variables
- all recursion variables are **guarded**, i.e. must occur under a location: $\mu\xi.(a[0]; \xi; b[0] \lor 0)$ is **not** guarded, while $\mu\xi.(a[\xi] \lor 0)$ is.

Theorem (Satisfiability and Expressivity)

- satisfiability of guarded formulas without tree variables is decidable;
- guarded formulas without tree variables can define all regular hedge languages.

Adding Tree Variables: Bounded Fragment

- recursions are guarded
- the number of positions where a tree is captured by a variable is bounded
- we provide a syntactic definition in the paper

Examples

$a[X^*]$	$a(t,t,\ldots,t)$	not bounded
$a[\mu\xi.(X;\xi\lor 0)]$	$a(t,t,\ldots,t)$	not bounded
a[X ; X]	a(t,t)	bounded
$\mu \xi$.($a[\xi] \lor X$)	$a(a(a(\ldots a(t))))$	bounded

What remains?

- use recursion $\mu \xi . \phi$ to navigate by depth
- use iteration ϕ^* to navigate by width
- cannot test an unbounded number of tree equalities
- but can express at least: non-linear tree patterns with membership constraints of this form

What remains?

- use recursion $\mu \xi . \phi$ to navigate by depth
- use iteration ϕ^* to navigate by width
- cannot test an unbounded number of tree equalities
- but can express at least: non-linear tree patterns with membership constraints of this form

a

(Anti-patterns, Kirchner, Kopetz, Moreau, ESOP'07)

Main Theorem

Theorem

Satisfiability of bounded TQL formulas is decidable.

By reduction to emptiness test of bounded TAGED.

where X_1, \ldots, X_n are the tree variables occurring in ϕ .

Outline

- Hedges, Automata and TQL
- Towards a Decidable Fragment of TQL
- Tree Automata with Global Equalities and Disequalities (TAGED)
- MSO with Tree Isomorphisms Tests

Tree Automata with Global Equalities and **Disequalities**

A tree automata A with global equalities and disequalities (TAGED) is given by:

Tree Automata with Global Equalities and **Disequalities**

A tree automata A with global equalities and disequalities (TAGED) is given by:

$$=_A \subseteq Q^2$$
 $\neq_A \subseteq Q^2$

equivalence relation on a **subset** of Q non-reflexive symmetric relation

Accepting Runs

Accepting Runs

Accepting Runs

- equalities and disequalities can be tested arbitrarily faraway
- different from usual Automata with Constraints where tests are local (Bogaert, Tison, STACS'92) (Dauchet, Caron, Coquidé, JCS'95) (Karianto, Löding, ICALP'07)

Example

Set of trees of the form:

with t labeled only by as

Example

Set of trees of the form:

with t labeled only by as

- states q, q_t, q_f
- final state: qf
- transitions:

$$egin{aligned} \mathsf{a}(q^*) &
ightarrow q & \mathsf{a}(q^*) &
ightarrow q_t \ \mathsf{b}(q_t^*) &
ightarrow q_f \end{aligned}$$

• equalities: $q_t =_A q_t$

Example

Set of trees of the form:

with t labeled only by as

- states q, q_t, q_f
- final state: qf
- transitions:

$$egin{aligned} \mathsf{a}(q^*) &
ightarrow q & \mathsf{a}(q^*) &
ightarrow q_t \ \mathsf{b}(q_t^*) &
ightarrow q_f \end{aligned}$$

• equalities: $q_t =_A q_t$

Bounded TAGED

Definition

A bounded TAGED is a pair (A, k) where A is a TAGED and $k \in \mathbb{N}$ is a natural.

Definition (Accepting Runs)

A run is accepting if every state in the domain of $=_A$ and \neq_A occurs at most k times.

Examples

```
\{b(t, t, ..., t) \mid t \in \text{Trees}\} not definable by a bounded TAGED.
```

 $\{b(t,t) \mid t \in \mathsf{Trees}\}\$ **definable** by a bounded TAGED.

Emptiness Problem

- Input: a (bounded) TAGED A
- **Output**: is there a tree accepted by *A*?

Theorem

Emptiness problem for bounded TAGED is decidable.

Idea:

- decomposition into configurations
- emptiness test of every subpart of configurations
- context disunification procedure to manage inequalities

Relation to TQL

Theorem

- Guarded TQL ⇒ TAGED
- Bounded TQL ⇒ bounded TAGED
- i.e. for all formula ϕ of guarded TQL (resp. bounded TQL) over X_1, \ldots, X_n , the language $\exists X_1 \ldots \exists X_n \phi$ is definable by a computable TAGED (resp. bounded TAGED).

Idea Non-trivial generalization of the proof for the variable-free fragment.

Relation to TQL

Theorem

- Guarded TQL ⇒ TAGED
- Bounded TQL ⇒ bounded TAGED
- i.e. for all formula ϕ of guarded TQL (resp. bounded TQL) over X_1, \ldots, X_n , the language $\exists X_1 \ldots \exists X_n \phi$ is definable by a computable TAGED (resp. bounded TAGED).

Idea Non-trivial generalization of the proof for the variable-free fragment.

Corollary

Satisfiability of bounded TQL formulas is decidable.

Still open for the full guarded TQL fragment.

Outline

- Hedge Algebra, Hedge Automata and TQL
- Towards a Decidable Fragment of TQL
- Tree Automata with Global Equalities and Disequalities (TAGED)
- MSO with Tree Isomorphisms Tests

MSO with Tree Isomorphism Tests: MSO(∼)

- hedges h viewed as structures over the signature next-sibling, first-child, label_a, $a \in \Sigma$
- first-order variables denote nodes
- second-order variables denote set of nodes
- an new predicate $x \sim y$ to test tree isomorphisms between subtrees rooted at x and y respectively

Example

The language

in binary trees can be defined by:

 $\exists x \exists x_1 \exists x_2, \quad \mathsf{root}_a(x) \land \mathsf{first\text{-}child}(x, x_1) \land \mathsf{next\text{-}sibling}(x_1, x_2) \land x_1 \sim x_2 \land \phi_{\mathit{hin}}$

Satisfiability of $MSO(\sim)$

Theorem

Satisfiability of $MSO(\sim)$ is undecidable.

Idea (adapted from Mongy, 81)

- Start from a PCP instance $(u_1, v_1), \ldots, (u_n, v_n)$
- Encode solutions $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$ by trees of the form:

Existential Fragment: MSO³(~)

Formulas of the form:

$$\exists x_1 \ldots \exists x_n \psi(x_1, \ldots, x_n)$$

• tests $x_i \sim x_j$ only on x_1, \ldots, x_n in ψ

Theorem

- expressivity: MSO[∃](~) sentences and bounded TAGED can effectively define the same hedge languages;
- satisfiability: decidable for $MSO^{\exists}(\sim)$.

Work in progress: another application

Unification with membership constraints

- atoms of the form s = s' or $x \in L$
- s, s' are terms with variables
- FO over these atoms is decidable (Comon, Delor, ICALP'90)

Work in progress: another application

Unification with membership constraints

- atoms of the form s = s' or $x \in L$
- s, s' are terms with variables
- FO over these atoms is decidable (Comon, Delor, ICALP'90)
- add context variables C and atoms C ∈ L
- restriction: cannot use the same context variable in two different terms
- full FO is undecidable (even with the restriction)
- decidable for Existential FO (by using bounded TAGED)

Future Work: Emptiness of TAGED

= =	no test	bounded	unbounded
no test	linear	decidable	??
bounded	EXPTIME	decidable (paper)	??
unbounded	EXPTIME-complete	decidable	??