Testing Distributed Systems through Symbolic Model Checking

G. Kalyon T. Massart C. Meuter L. Van Begin

Université Libre de Bruxelles Département d'Informatique

FORTE'07

June 28, 2007

Need for Validation Testing Centralized v.s. Distributed Systems

Need for Validation

Distributed control systems

- concurrent processes
- running on physically distributed hardware
- hard to design in nature
- critical systems (e.g. plant control system, ...)

Need for Validation Testing Centralized v.s. Distributed Systems

Need for Validation

Distributed control systems

- concurrent processes
- running on physically distributed hardware
- hard to design in nature
- critical systems (e.g. plant control system, ...)

Validation Techniques

Model-Checking:

- exhaustive verification
- but: not (yet) scalable to real-sized systems
- works on a model of the system

Testing and Monitoring:

- non-exhaustive verification
- scalable for real-sized systems
- widely used in industry
- works on the real system

Introduction

The Testing Problem A Symbolic Approach Experimental Results Conclusion Need for Validation Testing Centralized v.s. Distributed Systems

Testing

The System

- distributed and asynchronous
- instrumented to emit relevant events
 - (e.g. variable assignments, message transfer)
- execution traces are collected

Introduction

The Testing Problem A Symbolic Approach Experimental Results Conclusion Need for Validation Testing Centralized v.s. Distributed Systems

Testing

The System

- distributed and asynchronous
- instrumented to emit relevant events
 - (e.g. variable assignments, message transfer)
- execution traces are collected

The Tester

- analyses the collected traces
- checks whether a certain property holds

Need for Validation Testing Centralized v.s. Distributed Systems

Centralized v.s. Distributed Systems

Centralized System

- only one process
- events are totally ordered

Need for Validation Testing Centralized v.s. Distributed Systems

P1 e1 e2 e3

Centralized v.s. Distributed Systems

Centralized System

- only one process
- events are totally ordered

- multiple processes
- events are not totally ordered
- but a partial order can be obtained using vector clocks [Lam78, Mat89]

Ć

Tester

OK

Partial Order Traces Global Predicate Detection

Partial Order Traces

Model

- partially ordered set of events
- events are labelled with assignments

two events of the same process must be ordered

two events assigning the same variable must be ordered

$$P_1 \quad x:=1 \longrightarrow y:=3 \longrightarrow z:=4$$

$$P_2 \quad w:=4 \longrightarrow x:=0$$

ULB

Partial Order Traces Global Predicate Detection

Partial Order Traces

Model

- partially ordered set of events
- events are labelled with assignments

G. Kalyon, T. Massart, C. Meuter, L. Van Begin

- two restrictions:
 - two events of the same process must be ordered
 - two events assigning the same variable must be ordered

Semantics

ULB

 $P_1 \quad x:=1 \longrightarrow y:=3 \longrightarrow z:=4$

 $P_2 \quad w = 4 \longrightarrow x = 0$

Partial Order Traces Global Predicate Detection

 $P_1 \quad x:=1 \longrightarrow y:=3 \longrightarrow z:=4$ $P_2 \quad w:=4 \longrightarrow x:=0$

Partial Order Traces

Model

- partially ordered set of events
- events are labelled with assignments
- two restrictions:

two events of the same process must be ordered

2 two events assigning the same variable must be ordered

Semantics

Partial Order Traces Global Predicate Detection

Global Predicate Detection

So far...

Efficient techniques have been developed for several classes of predicate:

- Stable predicates [CL85] (such that $\phi \implies AG\phi$)
- Disjunctive predicates (of the form $EF(p_1 \lor p_2 \lor \cdots \lor p_n)$)
- Conjunctive predicates [GW94, GW96] (of the form $\mathsf{EF}(p_1 \land p_2 \land \cdots \land p_n)$)
- Observer independent predicates [CDF95] (such that $AF\phi \iff EF\phi$)
- Linear, semi-linear predicates [CG98]
- Regular predicates (RCTL logic) [GM01, SG03]

 $\phi ::= \top \mid \textbf{\textit{p}} \mid \neg \textbf{\textit{p}} \mid \phi \land \phi \mid \mathsf{EF}\phi \mid \mathsf{EG}\phi \mid \mathsf{AG}\phi \mid \mathsf{EX}[i]\phi$

Partial Order Traces Global Predicate Detection

Global Predicate Detection

So far...

Efficient techniques have been developed for several classes of predicate:

- Stable predicates [CL85] (such that $\phi \implies AG\phi$)
- Disjunctive predicates (of the form $EF(p_1 \lor p_2 \lor \cdots \lor p_n)$)
- Conjunctive predicates [GW94, GW96] (of the form $\mathsf{EF}(p_1 \land p_2 \land \cdots \land p_n))$
- Observer independent predicates [CDF95] (such that $AF\phi \iff EF\phi$)
- Linear, semi-linear predicates [CG98]
- Regular predicates (RCTL logic) [GM01, SG03]

 $\phi ::= \top \mid \textbf{\textit{p}} \mid \neg \textbf{\textit{p}} \mid \phi \land \phi \mid \mathsf{EF}\phi \mid \mathsf{EG}\phi \mid \mathsf{AG}\phi \mid \mathsf{EX}[i]\phi$

Our goal

Provide an efficient technique for full CTL (Computational Tree Logic):

 $\phi ::= \top \mid \textbf{\textit{p}} \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \mathsf{EX}\phi \mid \mathsf{AX}\phi \mid \mathsf{EG}\phi \mid \mathsf{AG}\phi \mid \mathsf{E}[\phi\mathsf{U}\phi] \mid \mathsf{A}[\phi\mathsf{U}\phi]$

Symbolic Representation Symbolic Computation

Symbolic Representation

Multirectangles

Cuts can be viewed as tuples of naturals:

• in a tuple $\langle x_1, ..., x_n \rangle$, x_i = the number of events process *i* has executed

Symbolic Representation Symbolic Computation

Symbolic Representation

Multirectangles

Cuts can be viewed as tuples of naturals:

- in a tuple $\langle x_1, ..., x_n \rangle$, x_i = the number of events process *i* has executed
- sets of cut can be represented as a union of multirectangles

$$= ([1,2] \times [0,1]) \cup ([2,3] \times [1,2]) \qquad (2,2) \longrightarrow (3,2)$$

$$(0,1) \longrightarrow (1,1) \longrightarrow (2,1) \longrightarrow (3,1)$$

$$(0,0) \longrightarrow (1,0) \longrightarrow (2,0) \longrightarrow (3,0)$$

Symbolic Representation Symbolic Computation

Symbolic Representation (cont'd)

Interval Sharing Tree (IST)

Symbolic data structure for representing sets of tuples:

- directed acyclic graph
- nodes are labelled with intervals
- each path from \top to \bot encodes a multirectangle

 $([0,1]\times[0,1])\cup([2,3]\times[0,1])\cup([2,3]\times[2,2])$

Symbolic Representation Symbolic Computation

[0, 1]

Symbolic Representation (cont'd)

Interval Sharing Tree (IST)

Symbolic data structure for representing sets of tuples:

- directed acyclic graph
- nodes are labelled with intervals
- each path from \top to \bot encodes a multirectangle

 $([0,1]\times[0,1])\cup([2,3]\times[0,1])\cup([2,3]\times[2,2])$

Using IST for CTL

For each CTL formula ϕ , we build symbolically an IST \mathcal{I}_{ϕ} representing $\llbracket \phi \rrbracket$

Symbolic Representation Symbolic Computation

Symbolic Computation

Tautology

If $\phi = \top$, we build \mathcal{I}_{\top} iteratively:

Symbolic Representation Symbolic Computation

Symbolic Computation

Tautology

- If $\phi = \top$, we build \mathcal{I}_{\top} iteratively:
 - start as if the trace had no communications

- $x:=1 \longrightarrow y:=3 \longrightarrow z:=4$
- w:=4 → x:=0

Symbolic Representation Symbolic Computation

Symbolic Computation

Tautology

- If $\phi = \top$, we build \mathcal{I}_{\top} iteratively:
 - start as if the trace had no communications
 - treat communications one at a time

$$\begin{array}{c} \begin{bmatrix} 0,3 \\ 0,3 \end{bmatrix} \\ \downarrow \\ \begin{bmatrix} 0,2 \\ 1 \end{bmatrix} \\ \downarrow \end{array} \end{array} \right) \left(\begin{array}{c} \begin{bmatrix} 0,1 \\ 0,2 \end{bmatrix} \\ \downarrow \\ \downarrow \end{array} \right) \left(\begin{array}{c} \begin{bmatrix} 0,3 \\ 0,2 \end{bmatrix} \\ \downarrow \\ \downarrow \end{array} \right) \\ \mathcal{I}_{0} \qquad \mathcal{B}(\mathbf{y}:=3) \qquad \mathcal{A}(\mathbf{x}:=0)$$

Symbolic Representation Symbolic Computation

 $x:=1 \longrightarrow y:=3 \longrightarrow z:=4$

 $w = 4 \longrightarrow x = 0$

Symbolic Computation

Tautology

If $\phi = \top$, we build \mathcal{I}_{\top} iteratively:

- start as if the trace had no communications
- treat communications one at a time
- stop when all communications have been treated

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Predicate

If $\phi = p \equiv (x \bullet c)$ with $\bullet \in \{=, \neq, <, \leq, >, \geq\}$, we build \mathcal{I}_p as follows:

$$x:=1 \longrightarrow y:=3 \longrightarrow z:=4$$

$$\downarrow$$

$$w:=4 \longrightarrow x:=0$$

$$p(x \neq 0)$$

ULB

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Predicate

- If $\phi = p \equiv (x \bullet c)$ with $\bullet \in \{=, \neq, <, \leq, >, \geq\}$, we build \mathcal{I}_p as follows:
 - we know that all events assigning x are totaly ordered

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Predicate

If $\phi = p \equiv (x \bullet c)$ with $\bullet \in \{=, \neq, <, \leq, >, \geq\}$, we build \mathcal{I}_p as follows:

• we know that all events assigning x are totaly ordered

$$A(\mathbf{x} := 1$$

т

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Predicate

If $\phi = p \equiv (x \bullet c)$ with $\bullet \in \{=, \neq, <, \leq, >, \geq\}$, we build \mathcal{I}_{ρ} as follows:

- we know that all events assigning x are totaly ordered
- some events sets p to true
- some events sets p to false

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Predicate

If $\phi = p \equiv (x \bullet c)$ with $\bullet \in \{=, \neq, <, \leq, >, \geq\}$, we build \mathcal{I}_p as follows:

- we know that all events assigning x are totaly ordered
- some events sets p to true
- some events sets p to false
- compute the union of all slices where:
 - p was set to true,
 - but not yet to false

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Boolean Operators

We can use standard set operations on IST:

$$\begin{bmatrix} \phi_1 \land \phi_2 \end{bmatrix} = \begin{bmatrix} \phi_1 \end{bmatrix} \cap \begin{bmatrix} \phi_2 \end{bmatrix} \\ \phi_1 \lor \phi_2 \end{bmatrix} = \begin{bmatrix} \phi_1 \end{bmatrix} \cup \begin{bmatrix} \phi_2 \end{bmatrix} \\ \begin{bmatrix} \neg \phi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix}$$

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Boolean Operators

We can use standard set operations on IST:

Existential Modalities

• symbolic computation for EX ϕ using $\llbracket EX\phi \rrbracket = \bigcup_{i \in [1,k]} \llbracket EX[i]\phi \rrbracket$:

$$\mathcal{I}_{EX\phi} = \bigcup_{i \in [1,k]} (\mathcal{I}_{\phi}^{[x_i \leftarrow (x_i-1)]} \cap \mathcal{I}_{\top})$$

• for EG ϕ and E[$\phi_1 U \phi_2$], use classical fixed point:

$$\begin{bmatrix} \mathsf{E}\mathsf{G}\phi \end{bmatrix} = \mathbf{g}\mathbf{f}\mathbf{p} \ \lambda\psi \cdot \llbracket\phi \rrbracket \cap \llbracket\mathsf{E}\mathsf{X}\psi \rrbracket$$
$$\begin{bmatrix} \mathsf{E}[\phi_1 \cup \phi_2] \end{bmatrix} = \mathbf{I}\mathbf{f}\mathbf{p} \ \lambda\psi \cdot \llbracket\phi_2 \rrbracket \cup (\llbracket\phi_1 \rrbracket \cap \llbracket\mathsf{E}\mathsf{X}\psi \rrbracket)$$

• for $\mathsf{EF}\phi \stackrel{\text{def}}{=} \mathsf{E}[\top \mathsf{U}\phi]$, we can compute $\mathcal{I}_{\mathsf{EF}\phi} = \downarrow \mathcal{I}_{\phi} \cap \mathcal{I}_{\top}$

Symbolic Representation Symbolic Computation

Symbolic Computation (cont'd)

Universal Modalities

• symbolic computation for AX ϕ using $[AX\phi] = [\neg EX \neg \phi]$:

$$\mathcal{I}_{AX\phi} = \overline{\mathcal{I}_{\mathsf{EX}\neg\phi}}$$

• for AG ϕ and A[$\phi_1 U \phi_2$], use classical fixed point:

$$\begin{bmatrix} \mathsf{A}\mathsf{G}\phi \end{bmatrix} = \mathbf{g}\mathbf{f}\mathbf{p} \ \lambda\psi \cdot \llbracket\phi \rrbracket \cap \llbracket\mathsf{A}\mathsf{X}\psi \rrbracket$$
$$\begin{bmatrix} \mathsf{A}[\phi_1\mathsf{U}\phi_2] \end{bmatrix} = \mathbf{I}\mathbf{f}\mathbf{p} \ \lambda\psi \cdot \llbracket\phi_2 \rrbracket \cup (\llbracket\phi_1 \rrbracket \cap \llbracket\mathsf{A}\mathsf{X}\psi \rrbracket)$$

• for AG ϕ , since $\llbracket AG\phi \rrbracket = \llbracket \neg EF \neg \phi \rrbracket$, we can compute $\mathcal{I}_{AG\phi} = \overline{\downarrow \mathcal{I}_{\neg \phi} \cap \mathcal{I}_{\top}}$

Experimental Results

Model	#proc	#events	IST	NuSMV		
			(in sec.)	(in sec.)		
Peterson	2	2000	0.46	349.57		
	2	5000	7.53	$\uparrow\uparrow$		
	2	15000	189.65	$\uparrow\uparrow$		
Peterson	2	2000	0.20	294.46		
Generalized	2	5000	6.44	$\uparrow\uparrow$		
	2	20000	390.90	$\uparrow\uparrow$		
	5	1000	2.04	13.74		
	5	1500	6.82	↑↑		
	5	5000	176.62	$\uparrow\uparrow$		
	10	1500	7.53	150.23		
	10	2000	27.01	↑↑		
	10	5000	147.89	$\uparrow\uparrow$		
$\uparrow\uparrow$ indicates (> 10 min.)						

Experimental Results

Model	#proc	#events	IST	NuSMV		
			(in sec.)	(in sec.)		
Alternating	2	1000	13.60	297.28		
Bit Protocol	2	2000	27.56	↑↑		
	2	5000	257.29	$\uparrow\uparrow$		
Dining	3	100	0.15	6.36		
Philosophers	3	200	1.11	<u>↑</u> ↑		
	3	2000	366.22	↑↑		
	5	100	0.25	↑↑		
	5	200	27.05	<u>↑</u> ↑		
	5	500	125.56	↑↑		
	10	100	1.67	↑↑		
	10	200	26.94	<u>↑</u> ↑		
	10	500	$\uparrow\uparrow$	$\uparrow\uparrow$		
$\uparrow\uparrow$ indicates (> 10 min.)						

Conclusion

What has been done?

- we proposed a symbolic technique for testing full CTL properties on distributed systems
- has been implemented and works well in practice

Future Work

- integration of the methods in our tool TraX
- interface with our industrial design environment dSL [DMM03,DGMM05]
- investigate possible further improvements of our technique
- investigate similar models (MSC...)
- comparison with other symbolic data structures (IDD,...)

Conclusion

Questions?