First practical results on reduced-round KECCAK
 Unaligned rebound attack

María Naya-Plasencia
INRIA Paris-Rocquencourt, France

Outline

- Introduction
- First Practical Results [NP-Röck-Meier11]
- CP-Kernel: Differential paths.
- (Near) collisions and distinguishers.
- 2-rounds 2nd preimage.
- Unaligned rebound attack [Duc-Guo-Peyrin-Wei12]
- Rebound attack.
- Distinguisher on 8 rounds of KECCAK-f.

Introduction

Security requirements of hash functions

- Collision resistance

Finding two messages \mathcal{M} and \mathcal{M}^{\prime} so that $\mathcal{H}(\mathcal{M})=$ $\mathcal{H}\left(\mathcal{M}^{\prime}\right)$ must be "hard".

- Second preimage resistance

Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another message \mathcal{M}^{\prime} so that $\mathcal{H}(\mathcal{M})=\mathcal{H}\left(\mathcal{M}^{\prime}\right)$ must be " hard" .

- Preimage resistance

Given a hash \mathcal{H}, finding a message \mathcal{M} so that $\mathcal{H}(\mathcal{M})=\mathcal{H}$ must be "hard".

Security requirements of hash functions?

A strict definition of "hard":

- Collision resistance
- Generic attack needs $2^{\ell_{h} / 2}$ hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.
- Second preimage resistance and preimage resistance - Generic attack needs $2^{\ell{ }_{h}}$ hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.

Security requirements of hash functions

- Collision, (Second) Preimage resistance...

Is that all we ask of a hash function? NO.

- Other types of attacks: near-collisions, multicollisions, length extension attacks, distinguishers...

What Is a Distinguisher?

Good question...

In general, it is used for describing non-random properties:

- For example, finding an output or a family of outputs of the studied function with higher probability than for a random function.
$4 / 31$

Analysis of Building Blocks

Attacks on the hash functions not always possible, but we still value information about the security margin of a hash function. We can analyse reduced versions AND/OR the building blocks.

- Proofs based on ideal properties of compression functions or internal permutations \Rightarrow Study these components to check if the assumptions hold.

Differential cryptanalysis [Biham, Shamir90]

- Differential path $=$ configuration of differences in the internal state of the compression function through time.
- Each differential path has a probability of being verified.

6/31

First Practical Results on Reduced-round Keccak
 [NP-RÖck-Meier, Indocrypt 2011]

Previous Analysis on Keccak

- On building blocks.
- Zero sums up to 24 permutation rounds \Rightarrow Anne Canteaut's talk.
- Lathrop, Aumasson and Khovratovich: triangulation and cube attack results on 4 rounds.
- Unmodified Reduced-round Hash Function Setting.
- Bernstein: 2nd preimages on 6,7,8 rounds, complexities $2^{506}, 2^{507}, 2^{511.5}$ in time and $2^{176}, 2^{320}, 2^{508}$ in memory.

First Practical Results

- 4-round hash function distinguisher.
- 3-round near-collision.
- 2-round collision.
- 2-round (second) preimages.

We have implemented all of them.

Column Parity Kernel[Keccak team]

Transformation θ sums to each state-bit the parity of the weight of two columns \rightarrow Property of θ : when the weight of all the columns of a state is even, the transformation θ becomes the identity.

- For values and differences.
- Kernel: differences that are invariant through θ.
- We searched Double Kernels: verified for two rounds.
$9 / 31$

Building a double Kernel

10/31

Building a double Kernel

- $\chi: 1$ difference stays the same with proba 2^{-2}.
- Hash function setting: initial difference on message.
- Low weight differential paths for 3 rounds (6-6-6).

$$
\Delta_{1} \Rightarrow \Delta_{2} \Rightarrow \Delta_{3}
$$

Probability of $2^{-2(6+6)}=2^{-24}$.
11/31

Collision on 2 rounds (256)

- Best differential paths do not work as they impose a difference in hash value.
- Not possible with 3-slices in the kernel: we use 4-slice paths.
- With a probability of 2^{-32}, the paths final differences are not on the hash part.
$12 / 31$

Near-collision on 3 rounds (256)

- We can use the 3 -slice kernel: 2 rounds with cost 2^{24}, 1 more free round: 227 bits still without difference (generic 2^{64}).
- We can control some bits in the last round, and then with cost 2^{44} we obtain collision on 247 bits (generic 2^{101}).

Distinguisher on 4 rounds (256)

- Consider the best path (6-6-6), and the neutral bits: bits of the message that won't affect the path if they are modified.
- There are 81 neutral bits out of the 1088 bits of the message block.
- Once we find a message that verifies the 2 -round path, we can find 2^{81} more.
$14 / 31$

Distinguisher on 4 rounds (256)

- Off-line complexity: 2^{25}.
- There are 18 positions in the hash that will stay constant for any value of the 81 bits.
- On-line complexity: $2 N$, for a false alarm probability of $2^{-18 * N}$.
- Complexity $2^{25}+2 N \approx 2^{25}$.
$15 / 31$

Preimage attack on 2 rounds

2^{33} in time and 2^{29} in memory.

16/31

Preimage attack on 2 rounds

$$
\theta, \rho, \pi
$$

a_{0}		c_{0}		
	b_{0}		d_{0}	e_{0}
a_{1}	b_{1}	c_{1}		e_{1}
			d_{1}	

			e_{0}	a_{0}
			6	25
d_{1}		a_{1}	b_{0}	c_{0}
45		28	20	3
		c_{1}	d_{0}	
		0	44	
		e_{1}		
		62		
		b_{1}		
		27		

17/31

Preimage attack on 2 rounds

Treating first 48 slices (16 groups of 3):

- We consider three consecutive slices: $10 * 3-2=28$ unknown variables.
- We can compute from $\# 2$ the output of θ on two slices: 10 known bits from the backward computation (\#3).
- $2^{28-10}=2^{18}$ remain.

18/31

Preimage attack on 2 rounds

- 8×6-slice groups: $2^{18+18-7-5}=2^{24}$.
- 4×12-slice groups: $2^{24+24-16-5}=2^{27}$.
- 2×24-slice groups: $2^{27+27-22-5}=2^{27}$.
- 1×48-slice group: $2^{27+27-22-5}=2^{27}$
(with 44 non-repeated variables).
- 16 remaining: 12 -slice $\left(2^{27}\right)$ and 4 -slice $\left(2^{20}\right)$ group.
- 12-s and 4-s: 15 common bits: $2^{27+20-15-5}=2^{27}$.
- 16-s and 48-s: 44 common bits: $2^{27+27-44-5 * 2}=1$.

Preimage attack on 2 rounds

- Time complexity: $10 \times 2^{27} \times 2^{2} \approx 2^{33}$.
- Memory complexity: $4 * 2^{27}=2^{29}$.

20/31

UnALIGNED REBOUND ATTACK [Duc-Guo-Peyrin-Lei FSE 2012]

Unaligned Rebound Attack FSE 2012

- Simultaneous and independent work from ours.
- Also look for low weight differential paths using Kernels (similar found).
- Distinguishers by inverting one round.
- Unaligned rebound attack: 8 rounds permutation distinguisher.

Rebound attack [Mendel et al.09]

- Used for efficiently finding solutions of a differential path.
- Find solutions for an expensive part of the path in a cheap way, fill in the rest probabilistically.
- Largely used for building distinguishers on compression functions (mostly AES-based).

Rebound attack [Mendel et al.09]

We choose the differential path. Inbound phase:

1. we find differences for the black bytes that verify the path with a meet-in-the-middle (probability $=2^{-16}$).
2. then, for each difference match, 2^{16} values make the inbound possible.
Outbound phase: we need 2^{24} inbound solutions.

Rebound attack [Mendel et al.09]

- Average cost of finding one solution for the inbound part $=1$, but minimal cost needs to be paid (2^{16} in the example).
- As the remaining part of the path is verified with probability 2^{-24}, we obtain a solution for the whole path with cost 2^{24}.
- Generic cost in comparison: 2^{89}.
$24 / 31$

Unaligned Rebound attack [DGPW 12]

KECCAK has weak alignment: impossible to exploit truncated differentials or Super-Sboxes

$$
\begin{gathered}
C=n_{F}+n_{B}+\frac{1}{p_{\text {match }}\left\lceil p_{F} p_{B} N_{\text {match }}\right\rceil}+\frac{1}{p_{B} p_{F}} \\
\Gamma_{B}^{\text {out }} \Gamma_{F}^{\text {in }}=\frac{1}{p_{\text {match }}\left\lceil p_{F} p_{B} N_{\text {match }}\right\rceil}
\end{gathered}
$$

$25 / 31$

Buckets and Balls

- KECCAK has $64 * 5=320$ sboxes. Match through the inbound possible \Rightarrow input active sboxes the same as the output active sboxes.
- Adapted buckets and balls problem \Rightarrow all the sboxes need to be active.
- How are the bits distributed in the sboxes? DDT for a fixed input difference has all possible output differences with same probability, but the number of possible output differences depends strongly on the Hamming weight of the input.

Forward Path

- Use one of the previous low weight differential paths (ex: 2 rounds, 2^{-24}).
- Invert one round \rightarrow are all sboxes in the middle active? (ex: $2^{-6 * 2}$, generates $2^{19-1.7}$ all-active-sbox inputs.)
- Add one or two rounds in the end.
- 64 equivalent paths by translation $\left(\Gamma_{F}^{i n}=2^{6+17.3}=2^{23.3}\right)$.
$27 / 31$

Backward Path

- Same technique \Rightarrow not enough paths.
- Second round: X columns active, 2 bits per column, paths with 1 or 0 active bits per sbox.
- Half of the bits active for good probability of all sboxes active.
- Enough paths for the inbound, but more paths, less probability. We need: $p_{B} \geq \frac{1}{p_{F} N_{\text {match }}}$.
- First round: they spread.

How do they compute complexities

- Incorrect to just take into account the average probability:
- $p_{\text {match }}$ increases with the hamming weight.
- $N_{\text {match }}$ decreases with the hamming weight.
- Computations for obtaining one solution take into account the hamming weight.

Unaligned Rebound attack [DGPW 12]

- 8-round permutation distinguisher of KECCAK-f[1600], $2^{491.47}$ compared to $2^{1057.6}$.
- Assumptions on some subparts of the distinguisher have been verified indepedently with implementations.
- Distinguisher implemented on the 100 -bit version.

Conclusions

- We presented the first practical results on the hash function reduced-round scenario of KECCAK (4 out of 24).
- More rounds (Orr Dunkelman and Itai Dinur's talks).
- We briefly described the unaligned rebound attacks applied up to 8 rounds of KECCAK permutation.
- KECCAK (aka SHA-3) is a secure hash function with a (very) big security margin.

