First practical results on reduced-round KECCAK

Unaligned rebound attack

María Naya-Plasencia INRIA Paris-Rocquencourt, France

Outline

Introduction

First Practical Results [NP-Röck-Meier11]

- CP-Kernel: Differential paths.
- (Near) collisions and distinguishers.
- 2-rounds 2nd preimage.

- Unaligned rebound attack [Duc-Guo-Peyrin-Wei12]
 - Rebound attack.
 - Distinguisher on 8 rounds of KECCAK-f.

INTRODUCTION

Security requirements of hash functions

Collision resistance

Finding two messages $\mathcal M$ and $\mathcal M'$ so that $\mathcal H(\mathcal M)=\mathcal H(\mathcal M')$ must be "hard".

Second preimage resistance
Given a message *M* and *H(M)*, finding another message *M'* so that *H(M) = H(M')* must be "hard".
Preimage resistance

Given a hash \mathcal{H} , finding a message \mathcal{M} so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}$ must be "hard".

Security requirements of hash functions?

A strict definition of "hard":

Collision resistance

• Generic attack needs $2^{\ell_h/2}$ hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.

Second preimage resistance and preimage resistance

• Generic attack needs 2^{ℓ_h} hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.

Security requirements of hash functions

Collision, (Second) Preimage resistance...

Is that all we ask of a hash function? NO.

Other types of attacks: near-collisions, multicollisions, length extension attacks, distinguishers...

What Is a Distinguisher?

Good question...

In general, it is used for describing non-random properties:

• For example, finding an output or a family of outputs of the studied function with higher probability than for a random function.

Attacks on the hash functions not always possible, but we still value information about the security margin of a hash function. We can analyse **reduced versions** AND/OR the **building blocks**.

▶ Proofs based on ideal properties of compression functions or internal permutations \Rightarrow Study these components to check if the assumptions hold.

Differential cryptanalysis [Biham, Shamir90]

▶ Differential path = configuration of differences in the internal state of the compression function through time.

Each differential path has a probability of being verified.

FIRST PRACTICAL RESULTS ON REDUCED-ROUND KECCAK [NP-Röck-Meier, Indocrypt 2011]

Previous Analysis on KECCAK

On building blocks.

• Zero sums up to 24 permutation rounds \Rightarrow Anne Canteaut's talk.

• Lathrop, Aumasson and Khovratovich: triangulation and cube attack results on 4 rounds.

Unmodified Reduced-round Hash Function Setting.

• Bernstein: 2nd preimages on 6,7,8 rounds, complexities $2^{506}, 2^{507}, 2^{511.5}$ in time and $2^{176}, 2^{320}, 2^{508}$ in memory.

First Practical Results

- 4-round hash function distinguisher.
- 3-round near-collision.
- 2-round collision.

2-round (second) preimages.

We have implemented all of them.

Column Parity Kernel[KECCAK team]

Transformation θ sums to each state-bit the parity of the weight of two columns \rightarrow Property of θ : when the weight of all the columns of a state is even, the transformation θ becomes the identity.

For values and differences.

- Kernel: differences that are invariant through θ .
- ► We searched Double Kernels: verified for two rounds.

Building a double Kernel

Building a double Kernel

▶ χ : 1 difference stays the same with proba 2^{-2} .

- ► Hash function setting: initial difference on message.
- ▶ Low weight differential paths for 3 rounds (6-6-6).

$$\Delta_1 \Rightarrow \Delta_2 \Rightarrow \Delta_3$$

Probability of $2^{-2(6+6)} = 2^{-24}$.

Collision on 2 rounds (256)

Best differential paths do not work as they impose a difference in hash value.

► Not possible with 3-slices in the kernel: we use 4-slice paths.

▶ With a probability of 2^{-32} , the paths final differences are not on the hash part.

Near-collision on 3 rounds (256)

We can use the 3-slice kernel: 2 rounds with cost 2^{24} , 1 more free round: 227 bits still without difference (generic 2^{64}).

▶ We can control some bits in the last round, and then with cost 2^{44} we obtain collision on 247 bits (generic 2^{101}).

Consider the best path (6-6-6), and the neutral bits: bits of the message that won't affect the path if they are modified.

► There are 81 neutral bits out of the 1088 bits of the message block.

• Once we find a message that verifies the 2-round path, we can find 2^{81} more.

Distinguisher on 4 rounds (256)

• Off-line complexity: 2^{25} .

► There are 18 positions in the hash that will stay constant for any value of the 81 bits.

• On-line complexity: 2N, for a false alarm probability of 2^{-18*N} .

Preimage attack on 2 rounds

Preimage attack on 2 rounds

Treating first 48 slices (16 groups of 3): We consider three consecutive slices: 10 * 3 - 2 = 28unknown variables.

▶ We can compute from #2 the output of θ on two slices: 10 known bits from the backward computation (#3).

$$2^{28-10} = 2^{18}$$
 remain.

Preimage attack on 2 rounds

16 remaining: 12-slice (2²⁷) and 4-slice (2²⁰) group.
12-s and 4-s: 15 common bits: 2²⁷⁺²⁰⁻¹⁵⁻⁵ = 2²⁷.
16-s and 48-s: 44 common bits: 2^{27+27-44-5*2} =1.

Preimage attack on 2 rounds

Fine complexity: $10 \times 2^{27} \times 2^2 \approx 2^{33}$.

• Memory complexity: $4 * 2^{27} = 2^{29}$.

UNALIGNED REBOUND ATTACK [Duc-Guo-Peyrin-Lei FSE 2012]

Unaligned Rebound Attack FSE 2012

Simultaneous and independent work from ours.

Also look for low weight differential paths using Kernels (similar found).

Distinguishers by inverting one round.

Unaligned rebound attack: 8 rounds permutation distinguisher.

Rebound attack [Mendel et al.09]

Used for efficiently finding solutions of a differential path.

► Find solutions for an expensive part of the path in a cheap way, fill in the rest probabilistically.

► Largely used for building distinguishers on compression functions (mostly AES-based).

Rebound attack [Mendel et al.09]

We choose the differential path. Inbound phase:

- 1. we find differences for the black bytes that verify the path with a meet-in-the-middle (probability= 2^{-16}).
- 2. then, for each difference match, 2^{16} values make the inbound possible.

Outbound phase: we need 2^{24} inbound solutions.

Rebound attack [Mendel et al.09]

Average cost of finding one solution for the inbound part =1, but minimal cost needs to be paid (2^{16} in the example).

As the remaining part of the path is verified with probability 2^{-24} , we obtain a solution for the whole path with cost 2^{24} .

• Generic cost in comparison: 2^{89} .

Unaligned Rebound attack [DGPW 12]

KECCAK has weak alignment: impossible to exploit truncated differentials or Super-Sboxes

$$C = n_F + n_B + \frac{1}{p_{match}} \frac{1}{\lceil p_F p_B N_{match} \rceil} + \frac{1}{p_B p_F}$$
$$\Gamma_B^{out} \Gamma_F^{in} = \frac{1}{p_{match}} \frac{1}{\lceil p_F p_B N_{match} \rceil}$$

Buckets and Balls

• KECCAK has 64 * 5 = 320 sboxes. Match through the inbound possible \Rightarrow input active sboxes the same as the output active sboxes.

Adapted buckets and balls problem \Rightarrow all the sboxes need to be active.

► How are the bits distributed in the sboxes? DDT for a fixed input difference has all possible output differences with same probability, but the number of possible output differences depends strongly on the Hamming weight of the input.

Forward Path

- Use one of the previous low weight differential paths (ex: 2 rounds, 2⁻²⁴).
- Invert one round \rightarrow are all sboxes in the middle active? (ex: 2^{-6*2} , generates $2^{19-1.7}$ all-active-sbox inputs.)
- Add one or two rounds in the end.
- ► 64 equivalent paths by translation $(\Gamma_F^{in} = 2^{6+17.3} = 2^{23.3}).$

Backward Path

▶ Same technique ⇒ not enough paths.
▶ Second round: X columns active, 2 bits per column, paths with 1 or 0 active bits per sbox.

Half of the bits active for good probability of all sboxes active.

▶ Enough paths for the inbound, but more paths, less probability. We need: p_B ≥ 1/(p_FN_{match}.
▶ First round: they spread.

How do they compute complexities

Incorrect to just take into account the average probability:

 \blacktriangleright p_{match} increases with the hamming weight.

 \blacktriangleright N_{match} decreases with the hamming weight.

Computations for obtaining one solution take into account the hamming weight.

Unaligned Rebound attack [DGPW 12]

▶ 8-round permutation distinguisher of KECCAK-f[1600], $2^{491.47}$ compared to $2^{1057.6}$.

Assumptions on some subparts of the distinguisher have been verified independently with implementations.

Conclusions

▶ We presented the first practical results on the hash function reduced-round scenario of KECCAK (4 out of 24).

▶ More rounds (Orr Dunkelman and Itai Dinur's talks).

► We briefly described the unaligned rebound attacks applied up to 8 rounds of KECCAK permutation.

► KECCAK (aka SHA-3) is a secure hash function with a (very) big security margin.