Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials

<u>Itai Dinur</u>¹, Orr Dunkelman^{1,2} and Adi Shamir¹

¹The Weizmann Institute, Israel

²University of Haifa, Israel

Keccak (Bertoni, Daemen, Peeters and Van Assche)

Uses the sponge construction

Keccak The Inner State

 Can be viewed as a 5x5x64-bit cube

Or as a 5x5 matrix,
 where each cell
 is a 64-bit lane in
 the direction of the

plane

z axis

Keccak The function f

• f is a **24-round** permutation on the 1600-bit state

Each round consists of 5 mappings R=ι°χ°π°ρ°Θ

• We denote $L = \pi \circ \rho \circ \Theta$ and refer to L as a "half-round", where $\iota \circ \chi$ make up the other half

Keccak The function f

- χ is the only **non-linear** mapping of Keccak
 - It has an algebraic degree of 2
- Ladds a low Hamming-weight round constant to the state

The state is initialized to zero before the XOR with the first message block

Keccak Collision Attacks on Round-Reduced Keccak

- "Practical analysis of reduced-round Keccak" by Naya-Plasencia, Röck and Meier (Indocrypt 2011)
 - Collisions in 2 rounds of Keccak-224 and Keccak-256
- "New attacks on Keccak-224 and Keccak-256" by Dinur, Dunkelman and Shamir (FSE 2012)
 - Collisions in 4 rounds of Keccak-224 and Keccak-256
- No published collision attack on Keccak-384 and Keccak-512

Keccak Our New Results

- **Keccak-512**: A **3**-round **practical** collision attack
- **Keccak-384**: A **3**-round **practical** collision attack
- A 4-round collision attack (faster than the birthday bound by 2⁴⁵)
- Keccak-256: A 5-round collision attack (faster than the birthday bound by 2¹³)

	Keccak-224	Keccak-256	Keccak-384	Keccak-512
Previous	4 (practical)	4 (practical)	-	-
New	-	5 (2 ¹¹⁵)	3 (practical) 4 (2 ¹⁴⁷)	3 (practical)

Keccak The Translation-Invariance Property

- Defined in the Keccak submission document
- 4 out of the 5 internal mappings (all but L) are translation invariant in the direction of the z axis (of length 64)

Keccak The Translation-Invariance Property

• If one state is the rotation of the other with respect to the z-axis, then applying to them any of the Θ , ρ , π , χ operations, maintains this property

Symmetric States

- A state which is rotation-invariant in the direction of the z axis by some rotation index i is called a symmetric state
- i can attain non-trivial values that divide the lane size 64 (i∈{1,2,4,8,16,32})

Consecutive Slice Sets An example

 For i=16 we split the state into 4 consecutive slice sets (CSS)

a ₁	b ₁	C ₁	d ₁	e ₁
f ₁	g_1	h ₁	i ₁	j_1
k ₁		m_1	n_1	o_1
p ₁	q_1	r_1	S ₁	t_1
u_1	V_1	w_1	x ₁	У ₁

a ₂	b ₂	C ₂	d ₂	e ₂
f ₂	g_2	h ₂	i ₂	j ₂
k ₂	l ₂	m ₂	n ₂	02
p ₂	q_2	r ₂	S ₂	t ₂
u ₂	V ₂	W ₂	x ₂	У ₂

Symmetric States An Example

- In symmetric states all CSS's are equal
- In a symmetric state with i=16, each 64-bit lane is composed of a 4-repetition of a 16-bit value

a ₁	a ₁	a ₁	a ₁	b ₁	b ₁	b ₁	b ₁	c ₁	c ₁	c ₁	c ₁	d_1	d_1	d_1	d_1	e ₁	e ₁	e ₁	e ₁
f_1	f_1	f_1	f_1	g_1	g_1	g_1	g_1	h_1	h_1	h_1	h_1	i ₁	i ₁	i ₁	i ₁	j ₁	j ₁	j ₁	j ₁
k ₁	k_1	k_1	k_1	l ₁	l ₁	l ₁	I ₁	m_1	m_1	m_1	m_1	n_1	n_1	n_1	n_1	01	01	01	01
p_1	p_1	p ₁	p ₁	q_1	q_1	q_1	q_1	r ₁	r ₁	r ₁	r_1	S_1	S_1	S ₁	S ₁	t ₁	t ₁	t ₁	t ₁
											W_1								

Symmetric states remain symmetric after applying the Θ , ρ , π , χ operations

a ₁	a ₁	a ₁	a ₁	b ₁	b ₁	b ₁	b ₁	c ₁	c ₁	c ₁	c ₁	d_1	d_1	d_1	d_1	e ₁	e ₁	e ₁	e ₁
f_1	f_1	f_1	f_1	g_1	g_1	g_1	g_1	h_1	h_1	h_1	h_1	i ₁	i ₁	i ₁	i ₁	j ₁	j ₁	j ₁	j ₁
k ₁	k_1	k_1	k_1	l ₁	l ₁	l ₁	l ₁	m_1	m_1	m_1	m_1	n ₁	n_1	n_1	n_1	01	01	01	01
p_1	p_1	p_1	p_1	q_1	q_1	q_1	q_1	r_1	r_1	r_1	r_1	S_1	S ₁	S ₁	S ₁	t ₁	t ₁	t ₁	t ₁
u_1	u_1	u_1	u_1	V_1	V_1	V_1	V_1	W_1	W_1	W_1	W_1	x_1	X ₁	X ₁	X ₁	y ₁	y ₁	y ₁	y ₁

 \downarrow Θ,ρ,π,χ

a ₂	a ₂	a ₂	a ₂	b ₂	b ₂	b ₂	b ₂	c ₂	c ₂	c ₂	c ₂	d ₂	d ₂	d ₂	d ₂	e ₂	e ₂	e ₂	e ₂
f_2	f_2	f_2	f_2	g_2	g ₂	g_2	g ₂	h ₂	h ₂	h ₂	h ₂	i ₂	i ₂	i ₂	i ₂	j ₂	j ₂	j ₂	j ₂
k ₂	k ₂	k ₂	k ₂	l ₂	l ₂	l ₂	l ₂	m ₂	m_2	m_2	m_2	n ₂	n ₂	n ₂	n ₂	02	02	02	02
p ₂	p ₂	p ₂	p ₂	q_2	q_2	q_2	q_2	r ₂	r ₂	r ₂	r ₂	S ₂	S ₂	S ₂	S ₂	t ₂	t ₂	t ₂	t ₂
u ₂	u ₂	u ₂	u ₂	V ₂	V ₂	V ₂	V ₂	W ₂	W ₂	W ₂	W ₂	x ₂	X ₂	X ₂	X ₂	y ₂	y ₂	y ₂	y ₂

The Fifth Mapping

• L destroys the perfect symmetry of the state by adding a non-symmetric round constant

An Overview of the Basic Attack

- Pick a single-block message such that the initial state is symmetric
- The state remains symmetric after the first 4 mappings
- The symmetry is slightly perturbed by the tampping since the constants added are of low Hamming-weight (between 1 and 5)
- The diffusion is sufficiently slow such that the state remains "close" to symmetric for the first few rounds

An Overview of the Basic Attack The Squeeze Attack

- The effective output size for symmetric messages is reduced
- We use a natural attack (called the squeeze attack) that exploits this property
- We force a larger than expected number of inputs to squeeze into a small subset of possible outputs in which collisions are more likely

An Overview of the Basic Attack The Squeeze Attack

- A member of the input set is mapped with probability p to the output set of size D
- The time complexity of the attack is $1/p \cdot VD$

Subset Cryptanalysis

- In order to devise and analyze the attack we use a very common cryptanalysis framework which we call subset cryptanalysis
- Uses subset characteristics to track the evolution of subsets through the internal state of the cryptosystem
 - Associate a triplet (input subset, output subset, transition probability) to each internal operation

Internal Differential Cryptanalysis

- Introduced by Thomas Peyrin (Crypto 2010) in the analysis of Grostl
- Standard differential cryptanalysis:

Internal differential cryptanalysis:

Generalized Internal Differential Cryptanalysis

- We generalize and extend it:
 - Shown to be applicable only to hash functions built using separate data-paths, whereas Keccak has only one data-path
 - The differences considered were between 2 parts of the state, whereas we consider more complex differential relations between multiple parts of the state

Internal Differences Definitions

- In symmetric states all CSS's are equal
- In states which are almost symmetric the differences between the first CSS and the other 3 CSS's $(\Delta_1, \Delta_2, \Delta_3)$ are of low Hamming weight
- We group all states with a fixed $(\Delta_1, \Delta_2, \Delta_3)$ into an internal difference set

Internal Differences Definitions

- Given a state u, the set
- {v | v=u+w and w is symmetric} is an internal difference set
- The differences between the CSS's is specified by
 u which is a representative state
- A state v of a lowest Hamming weight defines the weight of the internal difference
- The zero internal difference contains the symmetric states and has a weight of 0

- Any **symmetric** state chosen from the zero self-difference **remains symmetric** after applying Θ, ρ, π, χ
- Internal Differences are affine subspaces
- Their evolution through the 4 linear maps can be easily tracked

Internal Differential Characteristics A 1.5-round Example

- The evolution through χ is analyzed by considering rotated row sets (RRS)
- A RRS contains an Sbox (row) in the first CSS and its 3 symmetric counterparts in the other CSS's

- The input internal difference specifies the differences between the Sboxes of each RRS
- Each RRS can assume exactly 32 values
- The distribution of the output internal difference can be computed exhaustively
- For i=32 the output internal difference can be analyzed in a similar way to standard differential cryptanalysis

- A RRS with a zero input difference is called non-active
- A non-active RRS passes through χ with probability 1
- A low-weight internal difference passes through
 χ with high probability
- We look for internal differential characteristics composed of low-weight internal differences

Internal Differential Characteristics Another 1.5-round Example

Internal Differential Characteristics

Extension to 2.5 rounds

Extending Internal Differential Characteristics

- Given a characteristic that ends before the χ layer with a (relatively) high weight internal difference
- We extend it by 1.5 additional rounds to a subset characteristic
 - Do not restrict its subsets to specific internal differences
 - Avoid the reduction in probability

Extending Internal Differential Characteristics

• Exploit the **low algebraic degree** of χ to **aggregate** all the possible internal differences at the output of χ to a single **affine subspace**

Extend the characteristic by 1 round using an affine subspace

• Use the **low diffusion** of χ to bound the output subset size after an additional 0.5 round

The Evolution of Subsets

Choosing the Rotation Index

- A smaller rotation index enforces more symmetry relations
 - Reduces the size of the output set
 - **Reduces** the size of the **input** set

Choosing the Rotation Index

 Choose the smallest value of i∈{1,2,4,8,16,32} for which the input set is large enough to find a collision

Collision Attacks Practical Attacks

A 3-round collision in Keccak-512 (with rotation index i=4)

M1=

M2=

Output=

56BCC94B C4445644 D7655451 5DD96555 71FA7332 3BA30B23 958408C5 64407664 41805414 11190901 6ABAA8BA A8ABAEFA 7EF8AEEE ECCE68DC 4EC8ACEC DD5D5CCC

Collision Attacks Practical Attacks

A 3-round collision in Keccak-384 (with rotation index i=4)

M1=

M2=

Output=

99999991 11199999 4440C444 405C60DC 00000000 0C100010 777677F7 73F77767 3550F597 55D57155 66666664 6666666

Collision Attacks

- The 2.5-round characteristic is used in a 4-round collision attack on Keccak-384
- The time complexity is 2¹⁴⁷ (faster than the birthday bound by 2⁴⁵)

Collision Attacks

- A 5-round collision attack on Keccak-256
- Based on a target internal difference algorithm
 - An extension of the target difference algorithm (FSE 2012)

The Target Internal Difference Extending a Characteristic Backwards

The Target Internal Difference Algorithm Linking a Characteristic Form an Initial State

- The time complexity of the optimized attack is about 2¹¹⁵
 - Faster than the birthday bound by 2¹³

Conclusions and Future Work

- We presented the first collision attacks on round reduced Keccak-384 and Keccak-512
 - Some of them are practical
- For **Keccak-256** we **increased** the number of rounds that can be attacked from 4 to 5
 - We are still very far from attacking the full 24 rounds
- An interesting future work item is to find better internal differential characteristics for Keccak or to prove that they do not exist

Thank you for your attention!