Inside Keccak

Guido Bertoni¹ Joan Daemen¹ Michaël Peeters² <u>Gilles Van Assche¹</u>

¹STMicroelectronics

²NXP Semiconductors

KECCAK & SHA-3 Day Université Libre de Bruxelles March 27, 2013

Outline

1 Defining Keccak

- 2 Differential and linear trail propagation
- 3 Alignment
- 4 Bounding differential and linear trail weights

5 The kernel

Outline

1 Defining Keccak

- 2 Differential and linear trail propagation
- 3 Alignment
- 4 Bounding differential and linear trail weights
- 5 The kernel

The beginning

- SUBTERRANEAN: Daemen (1991)
 - variable-length input and output
 - hashing and stream cipher
 - round function interleaved with input/output
- STEPRIGHTUP: Daemen (1994)
- PANAMA: Daemen and Clapp (1998)
- RADIOGATÚN: Bertoni, Daemen, Peeters and VA (2006)
 - experiments did not inspire confidence in RADIOGATÚN
 - neither did third-party cryptanalysis
 - [Bouillaguet, Fouque, SAC 2008] [Fuhr, Peyrin, FSE 2009]
 - NIST SHA-3 deadline approaching ...
 - U-turn: design a sponge with strong permutation f

🔹 КЕССАК (2008)

Designing the permutation Keccak-f

Our mission

To design a permutation called Keccak-*f* that cannot be distinguished from a random permutation.

- Like a block cipher
 - sequence of identical rounds
 - round function that is nonlinear and has good diffusion

...but not quite

- no need for key schedule
- round constants instead of round keys
- inverse permutation need not be efficient

Кессак

- Instantiation of a sponge function
- the permutation Keccaκ-f
 - **7** permutations: $b \in \{25, 50, 100, 200, 400, 800, 1600\}$
- Security-speed trade-offs using the same permutation, e.g.,
 - SHA-3 instance: *r* = 1088 and *c* = 512
 - permutation width: 1600
 - security strength 256: post-quantum sufficient
 - Lightweight instance: r = 40 and c = 160
 - permutation width: 200
 - security strength 80: same as SHA-1

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

χ , the nonlinear mapping in Keccak-f

- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Algebraic degree 2, inverse has degree 3
- LC/DC propagation properties easy to describe and analyze

θ' , a first attempt at mixing bits

- **Compute parity** $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{x,y,z} = a_{x,y,z} \oplus c_{x-1,z} \oplus c_{x+1,z}$$

Diffusion of θ'

Diffusion of θ' (kernel)

Defining Keccak

Diffusion of the inverse of θ'

ρ for inter-slice dispersion

- We need diffusion between the slices ...
- ρ : cyclic shifts of lanes with offsets

 $i(i+1)/2 \mod 2^\ell$

Offsets cycle through all values below 2^ℓ

ι to break symmetry

- XOR of round-dependent constant to lane in origin
- Without *i*, the round mapping would be symmetric
 - invariant to translation in the z-direction
- Without *i*, all rounds would be the same
 - susceptibility to slide attacks
 - defective cycle structure
- Without *ι*, we get simple fixed points (000 and 111)

A first attempt at Keccak-f

- Round function: $R = \iota \circ \rho \circ \theta' \circ \chi$
- Problem: low-weight periodic trails by chaining:

- **\mathbf{x}**: may propagate unchanged
- θ' : propagates unchanged, because all column parities are 0
- ρ : in general moves active bits to different slices ...
- ...but not always

The Matryoshka property

Patterns in Q' are z-periodic versions of patterns in Q

π for disturbing horizontal/vertical alignment

$$a_{x,y} \leftarrow a_{x',y'} \text{ with } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

A second attempt at Keccak-f

Round function: R = ι ο π ο ρ ο θ' ο χ
 Solves problem encountered before:

 π moves bits in same column to different columns!

Tweaking θ' to θ

$$b_{x,y,z} = a_{x,y,z} \oplus c_{x-1,z} \oplus c_{x+1,z-1}$$

Inverse of θ

- Diffusion from single-bit output to input very high
- Increases resistance against LC/DC and algebraic attacks

Кессак*-f* summary

Round function

 $\mathsf{round} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$

- Number of rounds: $12 + 2\ell$
 - KECCAκ-*f*[25] has 12 rounds
 - КЕССАК-*f*[1600] has 24 rounds

Design decisions behind KECCAK-f

Ability to control propagation of differences or linear masks

- Differential/linear trail analysis
- Lower bounds for trail weights
- Alignment and trail clustering
- $\blacksquare \Rightarrow$ This shaped $\theta \text{, } \pi \text{ and } \rho$
- Algebraic properties
 - Distribution of *#* terms of certain degrees
 - Ability of solving certain problems (CICO) algebraically
 - Zero-sum distinguishers (third party)
 - \blacksquare \Rightarrow This determined the number of rounds
- Analysis of symmetry properties

 \Rightarrow This shaped ι

Design decisions behind KECCAK-f

Ability to control propagation of differences or linear masks

- Differential/linear trail analysis
- Lower bounds for trail weights
- Alignment and trail clustering
- $\blacksquare \Rightarrow$ This shaped $\theta \text{, } \pi \text{ and } \rho$
- Algebraic properties
 - Distribution of *#* terms of certain degrees
 - Ability of solving certain problems (CICO) algebraically
 - Zero-sum distinguishers (third party)
 - \blacksquare \Rightarrow This determined the number of rounds
- Analysis of symmetry properties
 - \Rightarrow This shaped ι

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

Differential and linear trails in iterated mappings

Differential trail: sequence of differences

weight = $-\log_2(\text{fraction of pairs})$

Linear trail: sequence of linear masks

weight = $-2 \log_2(\text{correlation contribution})$

Non-linear mapping χ

- Transforms each **row** independently
- E.g., a difference going through χ
 - Output: affine space

Propagating differences through χ

The propagation weight...

- ... is determined by input difference only;
- ... is the size of the affine base;
- ... is the number of affine conditions.

Propagating linear masks through χ

The propagation weight...

- ... is determined by output mask only;
- ... is the size of the affine base.

Differential and linear trails in KeccakTools

- KeccakTools
 - A set of documented C++ classes to help analyze KECCAK Freely available on http://keccak.noekeon.org
 - Implements differential and linear trail propagation
- KeccakFPropagation works in "affine" direction:
 - Differential trails

Linear trails: forward propagation means backwards in time

$$\begin{bmatrix} a_0 & \lambda & a_1 & \lambda & a_2 \\ \hline \chi & & \pi^{-1}, \rho^{-1}, \theta^{T} \end{bmatrix} \begin{bmatrix} \chi & & \pi^{-1}, \rho^{-1}, \theta^{T} \\ \hline \star & & & \\ \hline \end{array} \end{bmatrix} \begin{bmatrix} \chi & & & \\ \hline \chi & & & \\ \hline \end{array}$$

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

Difference propagation in RIJNDAEL

Differential trail (fully specified)

- Deterministic propagation through MixColumns, ShiftRows and AddRoundKey
- Branching through SubBytes
- Truncated diff. trail specifying active/passive s-boxes
 - Deterministic propagation through SubBytes, ShiftRows and AddRoundKey
 - Branching through MixColumns
 - Sometimes deterministic: 1 byte \rightarrow 4 bytes

Alignment

Property of round function

relative to partition of state in blocks

Strong alignment

- Low uncertainty in propagation along block boundaries
- E.g., RIJNDAEL strongly aligned on byte boundaries

Weak alignment

- High uncertainty in propagation along block boundaries
- E.g., KECCAK weakly aligned on row boundaries...

Differential patterns

Alignment

Differential patterns (backwards)

Linear patterns

Alignment

Linear patterns (backwards)

Benefits of weak alignment

Weak alignment means trails tend to diverge

- Low clustering of trails
 - Differential $b'_0 \to b'_2$, with $DP(b'_0, b'_2) = \sum_{b'_1} DP(b'_0, b'_1, b'_2)$

■
$$b'_0 \xrightarrow{\lambda, \chi} b'_1 \xrightarrow{\lambda, \chi} b'_2$$

■ DP ≠ 0 ⇒ row $(\lambda(b'_0)) = row(b'_1) \wedge row(\lambda(b'_1)) = row(b'_2)$
■ Weak alignment: not many b'_1 values satisfy this

- Hard to build a truncated differential trail
- Hard to mount a rebound attack
 - See also [Duc et al., Unaligned Rebound Attack: Appl. to Keccak, FSE 2012]

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

Bounding differential and linear trail weights

Why bound trail weights?

 Security of KECCAK relies on absence of exploitable trails ...and not on presumed hardness of finding them
 ⇒ Bound differential and linear trails as tightly as possible

How to bound trail weights?

- Bounds vs design strategies
 - ARX: no relevant bounds
 - RIJNDAEL-based: strong and simply provable bounds, but
 - Not for truncated differentials and rebound attack
 - Weak alignment: computer-assisted proofs are possible

Inspired by similar efforts for

- Noekeon [Nessie, 2000]
- MD6 [Rivest et al., SHA-3 2008] [Heilman, Ecrypt Hash 2011]

Bounds for small instances of KECCAK

Number	Differential trails				
of rounds	<i>w</i> = 1	w = 2	<i>w</i> = 4	<i>w</i> = 8	
2	8	8	8	8	
3	16	18	19	20	
4	23	29	30	46	
5	30	42	\leq 54		
6	37	54	≤ 85		
16			\geq 148		
18				\geq 208	

Table: Minimum weight of w-symmetric differential trails

Bounds for small instances of KECCAK

Number	Linear trails				
of rounds	<i>w</i> = 1	w = 2	<i>w</i> = 4	<i>w</i> = 8	
2	8	8	8	8	
3	16	16	20	20	
4	24	30	38	46	
5	30	40	\leq 66		
6	38	52	≤ 9 4		
16			\geq 152		
18				\geq 208	

Table: Minimum weight of *w*-symmetric linear trails

Bounds for differential trails in Keccak-f[1600]

Rounds	Lower bound		Best known	
1	2		2	
2	8		8	
3	32	[Keccak team]	32	[Duc et al.]
4			134	[Keccak team]
5			510	[Naya-Plasencia et al.]
6	74	[Keccak team]	1360	[Keccak team]
24	296		???	

Pessimistic view

- Wide gap between bounds and known trails
 Open problem: narrow this gap (and also for linear trails)
- Bound too loose to prove ideal behavior

Optimistic view

- Proven absence of exploitable differential trail
- Trail weight apparently growing quickly with number of rounds

The best 3-round differential trail in Keccak-f[1600]

Outline

1 Defining Keccak

- 2 Differential and linear trail propagation
- 3 Alignment
- 4 Bounding differential and linear trail weights

5 The kernel

Reminder: θ , the mixing layer

- Single-bit parity flips already 10 bits
- Other linear mapping ho and π just move bits around

Reminder: θ , the mixing layer

Effect collapses if parity is zeroThe kernel

Chains

Sequence of active bits p_i with:

- p_{2i+1} and p_{2i} are in same column in b

The kernel

An in-kernel 3-round trail with a vortex

d

The kernel: an undesired property?

In-kernel vs non-kernel trails

■ All trails (both in-kernel and non-kernel):

- Scanned 3-round trails up to weight 36 (min. found: 32)
- None extended to 6-round trails with weight below 74

In-kernel trails:

- Scanned 3-round trails up to weight 54 (min. found: 35)
- None extended to 6-round trails with weight below 82

Pessimistic view

 \blacksquare The kernel makes θ act as the identity, clearly an undesired property

Optimistic view

- Staying in the kernel constrains the attacker
- Bounds are easier to prove in the kernel

Conclusion

Questions?

http://sponge.noekeon.org/ http://keccak.noekeon.org/