
Inside Keccak

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1

1STMicroelectronics

2NXP Semiconductors

Keccak & SHA-3 Day
Université Libre de Bruxelles

March 27, 2013

1 / 49



Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

2 / 49



Defining Keccak

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

3 / 49



Defining Keccak

The beginning

Subterranean: Daemen (1991)
variable-length input and output
hashing and stream cipher
round function interleaved with input/output

StepRightUp: Daemen (1994)

Panama: Daemen and Clapp (1998)
RadioGatún: Bertoni, Daemen, Peeters and VA (2006)

experiments did not inspire confidence in RadioGatún
neither did third-party cryptanalysis
[Bouillaguet, Fouque, SAC 2008] [Fuhr, Peyrin, FSE 2009]
NIST SHA-3 deadline approaching …
U-turn: design a sponge with strong permutation f

Keccak (2008)

4 / 49



Defining Keccak

Designing the permutation Keccak-f

Our mission

To design a permutation called Keccak-f that cannot be distinguished
from a random permutation.

Like a block cipher
sequence of identical rounds
round function that is nonlinear and has good diffusion

…but not quite
no need for key schedule
round constants instead of round keys
inverse permutation need not be efficient

5 / 49



Defining Keccak

Keccak

Instantiation of a sponge function
the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
Security-speed trade-offs using the same permutation, e.g.,

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as SHA-1

6 / 49



Defining Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

7 / 49



Defining Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
lane

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

7 / 49



Defining Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
slice

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

7 / 49



Defining Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
row

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

7 / 49



Defining Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
column

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

7 / 49



Defining Keccak

χ, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Algebraic degree 2, inverse has degree 3

LC/DC propagation properties easy to describe and analyze

8 / 49



Defining Keccak

θ′, a first attempt at mixing bits

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z

+ =

column parity θʹ effect

combine

9 / 49



Defining Keccak

Diffusion of θ′

θʹ

10 / 49



Defining Keccak

Diffusion of θ′ (kernel)

θʹ

11 / 49



Defining Keccak

Diffusion of the inverse of θ′

θʹ

12 / 49



Defining Keccak

ρ for inter-slice dispersion

We need diffusion between the slices …
ρ: cyclic shifts of lanes with offsets

i(i+ 1)/2 mod 2ℓ

Offsets cycle through all values below 2ℓ

13 / 49



Defining Keccak

ι to break symmetry

XOR of round-dependent constant to lane in origin
Without ι, the round mapping would be symmetric

invariant to translation in the z-direction

Without ι, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

Without ι, we get simple fixed points (000 and 111)

14 / 49



Defining Keccak

A first attempt at Keccak-f

Round function: R = ι ◦ ρ ◦ θ′ ◦ χ

Problem: low-weight periodic trails by chaining:

θʹ ρ

χ: may propagate unchanged
θ′: propagates unchanged, because all column parities are 0
ρ: in general moves active bits to different slices …
…but not always

15 / 49



Defining Keccak

The Matryoshka property

θʹ ρ

θʹ ρ

Patterns in Q′ are z-periodic versions of patterns in Q

16 / 49



Defining Keccak

π for disturbing horizontal/vertical alignment

ax,y ← ax′,y′ with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)

17 / 49



Defining Keccak

A second attempt at Keccak-f

Round function: R = ι ◦ π ◦ ρ ◦ θ′ ◦ χ

Solves problem encountered before:

θ ρ π

π moves bits in same column to different columns!

18 / 49



Defining Keccak

Tweaking θ′ to θ

θ

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z−1

19 / 49



Defining Keccak

Inverse of θ

θ

Diffusion from single-bit output to input very high

Increases resistance against LC/DC and algebraic attacks

20 / 49



Defining Keccak

Keccak-f summary

Round function

round = ι ◦ χ ◦ π ◦ ρ ◦ θ

Number of rounds: 12+ 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

21 / 49



Defining Keccak

Design decisions behind Keccak-f

Ability to control propagation of differences or linear masks
Differential/linear trail analysis
Lower bounds for trail weights
Alignment and trail clustering
⇒ This shaped θ, π and ρ

Algebraic properties
Distribution of # terms of certain degrees
Ability of solving certain problems (CICO) algebraically
Zero-sum distinguishers (third party)
⇒ This determined the number of rounds

Analysis of symmetry properties
⇒ This shaped ι

22 / 49



Defining Keccak

Design decisions behind Keccak-f

Ability to control propagation of differences or linear masks
Differential/linear trail analysis
Lower bounds for trail weights
Alignment and trail clustering
⇒ This shaped θ, π and ρ

Algebraic properties
Distribution of # terms of certain degrees
Ability of solving certain problems (CICO) algebraically
Zero-sum distinguishers (third party)
⇒ This determined the number of rounds

Analysis of symmetry properties
⇒ This shaped ι

22 / 49



Differential and linear trail propagation

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

23 / 49



Differential and linear trail propagation

Differential and linear trails in iterated mappings

Differential trail: sequence of differences

weight = − log2(fraction of pairs)

Linear trail: sequence of linear masks

weight = −2 log2(correlation contribution)

24 / 49



Differential and linear trail propagation

Non-linear mapping χ

Transforms each row independently
E.g., a difference going through χ

Output: affine space

χ

25 / 49



Differential and linear trail propagation

Propagating differences through χ

The propagation weight…
… is determined by input difference only;
… is the size of the affine base;
… is the number of affine conditions.

26 / 49



Differential and linear trail propagation

Propagating linear masks through χ

The propagation weight…
… is determined by output mask only;
… is the size of the affine base.

27 / 49



Differential and linear trail propagation

Differential and linear trails in KeccakTools

KeccakTools
A set of documented C++ classes to help analyze Keccak
Freely available on http://keccak.noekeon.org
Implements differential and linear trail propagation

KeccakFPropagation works in “affine” direction:
Differential trails

Linear trails: forward propagation means backwards in time

28 / 49

http://keccak.noekeon.org


Alignment

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

29 / 49



Alignment

Difference propagation in Rijndael

Differential trail (fully specified)
Deterministic propagation through MixColumns, ShiftRows and
AddRoundKey
Branching through SubBytes

Truncated diff. trail specifying active/passive s-boxes
Deterministic propagation through SubBytes, ShiftRows and
AddRoundKey
Branching through MixColumns

Sometimes deterministic: 1 byte→ 4 bytes

30 / 49



Alignment

Alignment

Property of round function
relative to partition of state in blocks

Strong alignment
Low uncertainty in propagation along block boundaries
E.g., Rijndael strongly aligned on byte boundaries

Weak alignment
High uncertainty in propagation along block boundaries
E.g., Keccak weakly aligned on row boundaries…

31 / 49



Alignment

Differential patterns

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

θ

ρ, π

32 / 49



Alignment

Differential patterns (backwards)

π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1 π-1, ρ-1, θ-1

33 / 49



Alignment

Linear patterns

π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT π-1, ρ-1, θT

34 / 49



Alignment

Linear patterns (backwards)

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

θ-T

ρ, π

35 / 49



Alignment

Benefits of weak alignment

Weak alignment means trails tend to diverge

Low clustering of trails
Differential b′0 → b′2, with DP(b′0, b

′
2) = ∑b′1

DP(b′0, b
′
1, b
′
2)

b′0
λ,χ→ b′1

λ,χ→ b′2
DP ̸= 0 ⇒ row(λ(b′0)) = row(b′1) ∧ row(λ(b′1)) = row(b′2)
Weak alignment: not many b′1 values satisfy this

Hard to build a truncated differential trail
Hard to mount a rebound attack

See also [Duc et al., Unaligned Rebound Attack: Appl. to Keccak, FSE 2012]

36 / 49



Bounding differential and linear trail weights

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

37 / 49



Bounding differential and linear trail weights

Why bound trail weights?

Security of Keccak relies on absence of exploitable trails
…and not on presumed hardness of finding them
⇒ Bound differential and linear trails as tightly as possible

38 / 49



Bounding differential and linear trail weights

How to bound trail weights?

Bounds vs design strategies
ARX: no relevant bounds
Rijndael-based: strong and simply provable bounds, but

Not for truncated differentials and rebound attack

Weak alignment: computer-assisted proofs are possible

Inspired by similar efforts for
Noekeon [Nessie, 2000]
MD6 [Rivest et al., SHA-3 2008] [Heilman, Ecrypt Hash 2011]

39 / 49



Bounding differential and linear trail weights

Bounds for small instances of Keccak

Number Differential trails
of rounds w = 1 w = 2 w = 4 w = 8

2 8 8 8 8
3 16 18 19 20
4 23 29 30 46
5 30 42 ≤ 54
6 37 54 ≤ 85

16 ≥ 148

18 ≥ 208

Table: Minimum weight of w-symmetric differential trails

40 / 49



Bounding differential and linear trail weights

Bounds for small instances of Keccak

Number Linear trails
of rounds w = 1 w = 2 w = 4 w = 8

2 8 8 8 8
3 16 16 20 20
4 24 30 38 46
5 30 40 ≤ 66
6 38 52 ≤ 94

16 ≥ 152

18 ≥ 208

Table: Minimum weight of w-symmetric linear trails

41 / 49



Bounding differential and linear trail weights

Bounds for differential trails in Keccak-f[1600]

Rounds Lower bound Best known

1 2 2
2 8 8
3 32 [Keccak team] 32 [Duc et al.]

4 134 [Keccak team]

5 510 [Naya-Plasencia et al.]

6 74 [Keccak team] 1360 [Keccak team]

24 296 ???

Pessimistic view
Wide gap between bounds and known trails
Open problem: narrow this gap (and also for linear trails)
Bound too loose to prove ideal behavior

Optimistic view
Proven absence of exploitable differential trail
Trail weight apparently growing quickly with number of rounds

42 / 49



Bounding differential and linear trail weights

The best 3-round differential trail in Keccak-f[1600]
z = 0

weight: 4

χ

z = 0

θ, ρ, π

z = 55 z = 56

weight: 4

χ

z = 55 z = 56 z = 57

θ

z = 55 z = 56 z = 57

ρ, π

z = 0 z = 6 z = 14 z = 18 z = 21 z = 34

z = 48 z = 49 z = 52 z = 53 z = 57 z = 61

weight: 24

parity and θ-effect:
z

x

odd column
affected column

43 / 49



The kernel

Outline

1 Defining Keccak

2 Differential and linear trail propagation

3 Alignment

4 Bounding differential and linear trail weights

5 The kernel

44 / 49



The kernel

Reminder: θ, the mixing layer

+ =

column parity θ effect

combine

Single-bit parity flips already 10 bits

Other linear mapping ρ and π just move bits around

45 / 49



The kernel

Reminder: θ, the mixing layer

+ =

column parity θ effect

combine

Effect collapses if parity is zero

The kernel

45 / 49



The kernel

Chains

Sequence of active bits pi with:

p2i and p2i+1 are in same column in a

p2i+1 and p2i are in same column in b

0

1

2

3

4

5

y

x

z

ρ, π

0

1

2

3

4

5

46 / 49



The kernel

An in-kernel 3-round trail with a vortex

z = 9 z = 43 z = 56

weight: 12

χ

z = 9 z = 43 z = 56

a
θ, ρ, π

z = 0 z = 6 z = 7

bweight: 12

χ

z = 0 z = 6 z = 7

c
θ, ρ, π

z = 25 z = 26 z = 28 z = 33 z = 43

dweight: 11

47 / 49



The kernel

The kernel: an undesired property?

In-kernel vs non-kernel trails

All trails (both in-kernel and non-kernel):
Scanned 3-round trails up to weight 36 (min. found: 32)
None extended to 6-round trails with weight below 74

In-kernel trails:
Scanned 3-round trails up to weight 54 (min. found: 35)
None extended to 6-round trails with weight below 82

Pessimistic view
The kernel makes θ act as the identity, clearly an undesired property

Optimistic view
Staying in the kernel constrains the attacker
Bounds are easier to prove in the kernel

48 / 49



Conclusion

Questions?

http://sponge.noekeon.org/
http://keccak.noekeon.org/

49 / 49

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	Defining Keccak
	Differential and linear trail propagation
	Alignment
	Bounding differential and linear trail weights
	The kernel

