On some algebraic properties of Keccak

Christina Boura, Anne Canteaut and Christophe De Cannière

DTU, Inria and Google
http://www-rocq.inria.fr/secret/Anne.Canteaut/

Keccak \& SHA-3 Day, 27 March 2013

Outline

1. Motivations: algebraic properties of a cryptographic primitive
2. Algebraic properties of Keccak-f

- due to the use of a small Sbox
- due to the use of a quadratic Sbox

3. Conclusions

Algebraic properties

of a cryptographic primitive

Random behaviour of cryptographic primitives

Cryptographic primitives should behave like random functions.
A distinguishing property may lead to some attacks e.g., finding the plaintext among a few possibilities.

Security proofs of many constructions assume random building blocks
e.g., in [Bertoni et al. 08]: A padded sponge construction calling a random transformation, $\mathcal{S}^{\prime}[\mathcal{F}]$, is $\left(\boldsymbol{t}_{\boldsymbol{D}}, t_{S}, N, \varepsilon\right)$-indistinguishable from a random oracle, for any $t_{D}, t_{S}=O\left(N^{2}\right), N<2 c$ and any ε with $\varepsilon>f_{T}(N)$.

This does not mean that a non-random behaviour of the inner transformation leads to a distinguisher for the construction.

Does Keccak- f behave like a random permutation of F_{2}^{1600} ?
Algebraic normal form of a function.
$f: \mathrm{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}$ has a unique polynomial representation
in $\mathrm{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
\chi\left(x_{1}, \ldots, x_{5}\right)=\left(\begin{array}{l}
x_{1} x_{3}+x_{2}+x_{3} \\
x_{2} x_{4}+x_{3}+x_{4} \\
x_{3} x_{5}+x_{4}+x_{5} \\
x_{1} x_{4}+x_{5}+x_{1} \\
x_{2} x_{5}+x_{1}+x_{2}
\end{array}\right)
$$

ANF of a random function

Uniform distribution over all functions:
equivalent to the uniform distribution over all ANFs.
\rightarrow each monomial appears with probability $\frac{1}{2}$.

Uniform distribution over all permutations: open problem.

- all coordinates of a permutation of \mathbf{F}_{2}^{n} have degree at most $(n-1)$.
- almost all permutations of $\mathbf{F}_{2}^{\boldsymbol{n}}$ have degree $(\boldsymbol{n}-\mathbf{1})$ [Wells 69], [Das 02], [Konyagin-Pappalardi 02]

Some attacks exploiting a non-random ANF

Algebraic attacks.
The attacker can write the equations defining the primitive and try to solve the polynomial system.

Cube attacks [Dinur-Shamir 09].
The factor of some monomial depends linearly on the key bits.

Higher-order differential cryptanalysis [Lai 94][Knudsen 94].
If \boldsymbol{F} has degree $\boldsymbol{d}<\boldsymbol{n}$, all derivatives of order $(\boldsymbol{d}+\mathbf{1})$ vanish:

$$
D_{a_{1}} D_{a_{2}} \ldots D_{a_{d+1}} F(x)=\bigoplus_{v \in\left\langle a_{1}, \ldots, a_{d+1}\right\rangle} F(x+v)=0
$$

Definition. Let $\boldsymbol{F}: \mathrm{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}^{n}$.
A zero-sum for \boldsymbol{F} of size \boldsymbol{K} is a subset $\left\{x_{1}, \ldots, x_{\boldsymbol{K}}\right\} \subset \mathrm{F}_{2}^{n}$ such that

$$
\bigoplus_{i=1}^{K} x_{i}=\bigoplus_{i=1}^{K} F\left(x_{i}\right)=0
$$

Definition. Let $\boldsymbol{F}: \mathrm{F}_{2}^{\boldsymbol{n}} \rightarrow \mathrm{F}_{2}^{n}$.
A zero-sum for \boldsymbol{F} of size \boldsymbol{K} is a subset $\left\{x_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{K}}\right\} \subset \mathrm{F}_{2}^{n}$ such that

$$
\bigoplus_{i=1}^{K} x_{i}=\bigoplus_{i=1}^{K} F\left(x_{i}\right)=0
$$

Proposition. [Boura-Canteaut 10]
For any function \boldsymbol{F}, there exists at least a zero-sum of size ≤ 5.

Definition. Let $\boldsymbol{F}: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$.
A zero-sum for \boldsymbol{F} of size \boldsymbol{K} is a subset $\left\{x_{1}, \ldots, x_{\boldsymbol{K}}\right\} \subset \mathrm{F}_{2}^{n}$ such that

$$
\bigoplus_{i=1}^{K} x_{i}=\bigoplus_{i=1}^{K} F\left(x_{i}\right)=0
$$

Definition. Let \boldsymbol{P} be a permutation from \mathbf{F}_{2}^{n} into \mathbf{F}_{2}^{n}.
A zero-sum partition for P of size $K=2^{k}$ is a collection of 2^{n-k} disjoint zero-sums.

Exploiting a low-degree [Aumasson-Meier 09]
We decompose \boldsymbol{P} into $\boldsymbol{P}=\boldsymbol{F}_{\boldsymbol{r}-\boldsymbol{t}} \circ \boldsymbol{G}_{\boldsymbol{t}}^{\boldsymbol{1}}$.
Let $V \subset F_{2}^{n}$ with $\operatorname{dim} V>\max \left(\operatorname{deg}\left(\boldsymbol{F}_{\boldsymbol{r}-t}\right), \operatorname{deg}\left(\boldsymbol{G}_{\boldsymbol{t}}\right)\right)$.

$$
X_{a}=\left(G_{t}(a+V)\right)
$$

$$
\begin{aligned}
\bigoplus_{x \in X_{a}} x & =\bigoplus_{z \in V} G_{t}(a+z)=0 \\
\bigoplus_{x \in X_{a}} P(x) & =\bigoplus_{z \in V} F_{r-t}(a+z)=0
\end{aligned}
$$

Algebraic properties

of Keccak-f

Trivial bounds

24 rounds of a permutation R of degree 2 over \mathbf{F}_{2}^{1600}
\rightarrow after r rounds, $\operatorname{deg}\left(R^{r}\right) \leq 2^{r}$.

What is usually expected

- full degree after 11 rounds
- existence of zero-sum partitions up to 16 rounds:

$$
\operatorname{deg}\left(R^{10}\right) \leq 2^{10} \text { and } \operatorname{deg}\left(\left(R^{-1}\right)^{6}\right) \leq 3^{6}
$$

Experiments on Keccak-f[25] [Daemen et al. 08]

number of rounds \boldsymbol{r}	1	2	3	4	5	6
trivial bound	2	4	8	16	24	24
exact value of $\operatorname{deg} \boldsymbol{R}^{r}$	2	4	8	16	22	24

For the inverse function:

number of rounds \boldsymbol{r}	1	2	3	4	5	6
trivial bound	3	9	24	24	24	24
exact value of $\operatorname{deg}\left(\boldsymbol{R}^{-1}\right)^{\boldsymbol{r}}$	3	9	17	21	23	24

Using the particular form of the nonlinear layer

Using the particular form of the nonlinear layer

Problem: Find the maximal degree of the product of \boldsymbol{d} output coordinates of the Sbox layer.

Degree of the product π of d output coordinates

A fundamental parameter:
$\boldsymbol{\delta}_{\boldsymbol{k}}=$ maximal degree of the product of \boldsymbol{k} coordinates of χ
Example: $d=13$

$$
\operatorname{deg} \pi \leq 2 \delta_{5}+\delta_{3}
$$

Degree of the product π of d output coordinates

A fundamental parameter:
$\delta_{k}=$ maximal degree of the product of k coordinates of χ
Example: $d=13$

$$
\operatorname{deg} \pi \leq \delta_{5}+2 \delta_{3}+\delta_{2}
$$

Degree of the product π of d output coordinates

A fundamental parameter:
$\delta_{k}=$ maximal degree of the product of k coordinates of χ
Example: $d=13$

$$
\begin{aligned}
& \quad \operatorname{deg} \pi \leq \underset{\left(x_{1}, \ldots, x_{5}\right)}{\max }\left(x_{1} \delta_{1}+\ldots+x_{5} \delta_{5}\right) \\
& \text { with } x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=d .
\end{aligned}
$$

Bound on δ_{k}

$\delta_{\boldsymbol{k}}=$ maximal degree of the product of \boldsymbol{k} coordinates of χ

For χ :

$$
\begin{array}{c|ccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline \delta_{k} & 2 & 4 & 5 & 5 & 5
\end{array}
$$

Proposition. If S is a permutation of F_{2}^{n},

$$
\boldsymbol{\delta}_{\boldsymbol{k}}=\boldsymbol{n} \text { if and only if } \boldsymbol{k}=\boldsymbol{n}
$$

Bound on δ_{k}

$\delta_{\boldsymbol{k}}=$ maximal degree of the product of \boldsymbol{k} coordinates of χ

For χ :

$$
\begin{array}{c|ccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline \delta_{k} & 2 & 4 & 4 & 4 & 5
\end{array}
$$

Proposition. If S is a permutation of F_{2}^{n},

$$
\boldsymbol{\delta}_{\boldsymbol{k}}=\boldsymbol{n} \text { if and only if } \boldsymbol{k}=\boldsymbol{n}
$$

A new bound

Theorem. Let $\boldsymbol{F}=(\boldsymbol{S}, \ldots, \boldsymbol{S})$ where \boldsymbol{S} is a permutation of $\mathrm{F}_{2}^{n_{0}}$.
Then,

$$
\operatorname{deg}(\boldsymbol{G} \circ \boldsymbol{F}) \leq \boldsymbol{n}-\frac{\boldsymbol{n}-\operatorname{deg} \boldsymbol{G}}{\gamma(S)}
$$

where

$$
\gamma(S)=\max _{1 \leq k \leq n_{0}-1} \frac{n_{0}-k}{n_{0}-\delta_{k}(S)}
$$

For Keccak-f

$$
\begin{aligned}
& \gamma(\chi)=\max _{1 \leq k \leq 4} \frac{5-k}{5-\delta_{k}(\chi)} \\
& \begin{array}{c|ccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline \delta_{k}(\chi) & 2 & 4 & 4 & 4 & 5
\end{array} \\
& \gamma(\chi) \leq \max \left(\frac{4}{3}, \frac{3}{1}, \frac{2}{1}, \frac{1}{1}\right)=3
\end{aligned}
$$

We deduce

$$
\operatorname{deg}(G \circ F) \leq n-\frac{n-\operatorname{deg} G}{3}
$$

For Keccak-f

Bound on the degree of r rounds of Keccak- f

For the inverse of Keccak- f

Similar bound:

$$
\gamma\left(\chi^{-1}\right) \leq \max _{1 \leq k \leq 4} \frac{5-k}{5-\delta_{k}\left(\chi^{-1}\right)}
$$

For χ^{-1} :

$$
\begin{array}{c|ccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline \delta_{k}\left(\chi^{-1}\right) & 3 & 4 & 4 & 4 & 5
\end{array}
$$

Observation [Duan-Lai 11]:

$$
\delta_{2}\left(\chi^{-1}\right)=3
$$

Influence of the degree of the inverse

Theorem. Let \boldsymbol{F} be a permutation of $\mathbf{F}_{2}^{\boldsymbol{n}}$.
Then, $\boldsymbol{\delta}_{\ell}(\boldsymbol{F})<\boldsymbol{n}-k$ if and only if $\boldsymbol{\delta}_{k}\left(\boldsymbol{F}^{-1}\right)<\boldsymbol{n}-\ell$.

For Keccak-f:
$\delta_{1}(\chi)=2<5-2$ implies $\delta_{2}\left(\chi^{-1}\right)<5-1=4$.

More generally:
$\boldsymbol{\delta}_{1}\left(\boldsymbol{F}^{-1}\right)=\operatorname{deg} \boldsymbol{F}^{-1}<\boldsymbol{n}-\left(n-1-\operatorname{deg} \boldsymbol{F}^{-1}\right)$ iff $\boldsymbol{\delta}_{n-1-\operatorname{deg} \boldsymbol{F}^{-1}}(\boldsymbol{F})<\boldsymbol{n}-1$
i.e., the product of any $\left(\boldsymbol{n}-1-\operatorname{deg} \boldsymbol{F}^{-1}\right)$ coordinates of \boldsymbol{F} has degree at most $(n-2)$.

A new bound

Theorem. Let $\boldsymbol{F}=(\boldsymbol{S}, \ldots, \boldsymbol{S})$ where \boldsymbol{S} is a permutation of $\mathrm{F}_{2}^{\boldsymbol{n}_{0}}$.
Then,

$$
\operatorname{deg}(G \circ F) \leq n-\frac{n-\operatorname{deg} G}{\gamma(S)}
$$

where

$$
\gamma(S)=\max _{1 \leq k \leq n_{0}-1} \frac{n_{0}-k}{n_{0}-\delta_{k}(S)}
$$

In particular,

$$
\gamma(S) \leq \max \left(\frac{n_{0}-1}{n_{0}-\operatorname{deg} S}, \frac{n_{0}}{2}-1, \operatorname{deg} S^{-1}\right)
$$

For the inverse of Keccak-f:

$$
\gamma\left(\chi^{-1}\right) \leq 2
$$

Bound on the degree of r rounds of the inverse

Zero-sum partitions for Keccak-f

- 12 rounds forwards have degree at most 1536
- 11 rounds backwards have degree at most 1572

We find several zero-sum partitions of size 2^{1575} for Keccak- \boldsymbol{f}.

Conclusions

Zero-sum partitions can be used to gain Belgian beers

Congratulations to the winners of the third Keccak cryptanalysis prize

We are happy to announce that Christina Boura and Anne Canteaut are the winners of the third KECCAK cryptanalysis prize for their paper entitled A zero-sum property for the KECCAK-f permutation with 18 rounds. We are currently arranging practical details with the winners to give them the awarded Lambic-based beers and book. Congratulations to them!

We will soon announce a new prize with a new deadline.

Does it invalidate the proof?

Theorem. [Bertoni et al. 08] For the sponge construction with capacity \boldsymbol{c} calling an ideal permutation \mathcal{F} of \mathbf{F}_{2}^{n}, the advantage of any distinguisher totalling at most N calls to \mathcal{F} and \mathcal{F}^{-1} is

$$
A d v \leq \frac{N(N+1)}{2^{c+1}}-\frac{N(N-1)}{2^{n+1}}
$$

\longrightarrow This result still holds if the inner permutation has a given structural property involving more than $2^{\frac{c+1}{2}}$ input-output pairs.

Comparison with the experiments on Keccak-f[25]

number of rounds \boldsymbol{r}	1	2	3	4	5	6
trivial bound	2	4	8	16	24	24
exact value of $\operatorname{deg} \boldsymbol{R}^{r}$	2	4	8	16	22	24
$\min \left(\mathbf{2}^{r}, \mathbf{2 5}-\frac{\mathbf{2 5 - \operatorname { d e g } (\boldsymbol { R } ^ { r - 1 })}}{\mathbf{3}}\right)$	2	4	8	16	22	24

For the inverse function:

number of rounds \boldsymbol{r}	1	2	3	4	5	6
trivial bound	3	9	24	24	24	24
exact value of $\operatorname{deg}\left(\boldsymbol{R}^{-1}\right)^{r}$	3	9	17	21	23	24
$\min \left(3^{r}, \mathbf{2 5}-\frac{\mathbf{2 5 - \operatorname { d e g } ((\boldsymbol { R } ^ { - 1 }) ^ { r - 1 })}}{\mathbf{2}}\right)$	3	9	17	21	23	24

