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Algebraic properties

of a cryptographic primitive



Random behaviour of cryptographic primitives

Cryptographic primitives should behave like random functions.

A distinguishing property may lead to some attacks
e.g., finding the plaintext among a few possibilities.

Security proofs of many constructions assume random
building blocks

e.g., in [Bertoni et al. 08]: A padded sponge construction calling
a random transformation, 8'[F], is (tp,tg, N, €)-indistinguishable
from a random oracle, for any tp,tg = O(NZ),N < 2c and any
e With € > fT(N)

This does not mean that a non-random behaviour of the inner
transformation leads to a distinguisher for the construction .



Does Keccak-f behave like a random permutation of F16907
Algebraic normal form of a function.

f: Fg' — F9 has a unique polynomial representation

in Falz1,...,2n]/(2f — T1,...,22 — Tp).
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ANF of a random function

Uniform distribution over all functions:
equivalent to the uniform distribution over all ANFSs.

— each monomial appears with probability %

Uniform distribution over all permutations:
open problem.

e all coordinates of a permutation of F§ have degree at most (n — 1).

e almost all permutations of Fy have degree (n — 1) [Wells 69],
[Das 02], [Konyagin-Pappalardi 02]



Some attacks exploiting a non-random ANF

Algebraic attacks.
The attacker can write the equations defining the primitive and
try to solve the polynomial system.

Cube attacks [Dinur-Shamir 09].
The factor of some monomial depends linearly on the key bits.

Higher-order differential cryptanalysis [Lai 94][Knudsen 94].
If F has degree d < m, all derivatives of order (d + 1) vanish:

Dg,Dg,...Dg,, F(z) = $ F(x+v)=0.
VE(ATyeesOgy1)



Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F:F) — FY.

A zero-sum for F of size K is a subset {x1,...,zx} C Fg such

that
K K

1=1 =1



Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F:Fy — FY3.

A zero-sum for F of size K is a subset {z1,...,zx} C F§ such

that
K

K
1=1 1=1

Proposition. [Boura-Canteaut 10]

For any function F', there exists at least a zero-sum of size < 5.



Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F': Fg' — FQ’

A zero-sum for F of size K is a subset {x1,...,zx} C F§ such
that

K K
=1 1=1

Definition. Let P be a permutation from F3 into F%.

A zero-sum partition for P of size K = 2k is a collection of
27—k disjoint zero-sums.



Exploiting a low-degree [Aumasson-Meier 09]

We decompose P into P = F,._; 0 Gt_l.

Let V C F§ with dimV > max (deg(F;_¢), deg(Gy)).

Xq = (Gt(a+V))
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Algebraic properties

of Keccak-f
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Trivial bounds

24 rounds of a permutation R of degree 2 over F3690

— after r rounds, deg(R") < 2".

What is usually expected
e full degree after 11 rounds

e eXistence of zero-sum partitions up to 16 rounds:

deg(R'%) < 210 and deg((R™1)%) < 39
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Experiments on Keccak-f[25] [Daemen et al. 08]

number of rounds r» |1 2 3
trivial bound 2 4 8 16 24 24
exact value of deg R" |2 4 8

For the inverse function:

number of rounds r 1 2 3 4 5 6

trivial bound 3 9 24 24 24 24
exact value of deg(R~1)" |3 9 17 21 23 24




Using the particular form of the nonlinear layer
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Using the particular form of the nonlinear layer

Problem: Find the maximal degree of the product of d output
coordinates of the Sbox layer.
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Degree of the product w of d output coordinates

A fundamental parameter:
0. = maximal degree of the product of k coordinates of x

Example: d =13

deg ™ < 205 + d3
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Degree of the product w of d output coordinates

A fundamental parameter:
0. = maximal degree of the product of k coordinates of x

Example: d =13

deg m < 05 + 2483 + 2
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Degree of the product w of d output coordinates

A fundamental parameter:
0, = maximal degree of the product of k coordinates of x

Example: d =13

degm < max (x101+ ...+ x505)

o (iBl,...,iL'g,)

with 1 + 229 + 3x3 + 4x4 + 55 = d .
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Bound on d;

d;, = maximal degree of the product of k coordinates of x

For y:

k|12 3465
0|2 4555

Proposition. If S is a permutation of FZ,

0, =mn ifand only if k =n
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Bound on d;

d;, = maximal degree of the product of k coordinates of x

For y:

k|12 3465
0|2 4 4 45

Proposition. If S is a permutation of FZ,

0, =mn ifand only if k =n
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T heorem.
Then,

where

A new bound

Let F = (S,...,S) where S is a permutation of F5°.

n — deg G

deg(Go F) <n — ~(5)

ng — k

S) = .
v(5) 1<k<no—1 mg — 05 (S)
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We deduce

For Keccak-f

() 5 — k
= Imax
TR 5= ap(x)

k |12345
op(x)|2 4 4 45

3
719

W =~

1) < max

n — deg G
3

deg(Go F) <n —
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For Keccak-f
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degree of r rounds

Bound on the degree of r rounds of Keccak- f
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For the inverse of Keccak-f

Similar bound:

) < S
Imax
TX) =062 5 = ap(x 1)

For x :
k 12345
Sk(x 1)|3 4 4 45

Observation [Duan-Lai 11]:

52(x ") =3
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Influence of the degree of the inverse

Theorem. Let F be a permutation of F%.
Then, 6,(F) < n — k if and only if §p(F~1) < n —£.

For Keccak-f:

d1(x) =2 < 5— 2 implies d2(x 1) < 5 —1 = 4.

More generally:
S1(F1)=degF'<n—(n—1—degF 1)iff 5n—1—degF—1(F) <n-—1

i.e., the product of any (n — 1 — deg F~1) coordinates of F has
degree at most (n — 2).
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A new bound

Theorem. Let F =(S,...,S) where S is a permutation of F5°.
Then,
deg(Go F) <n — n—degG
7(5)
where
ng — k

S) = .
7(5) 1<k<no—1 ng — Ox(S)

In particular,

ng — 1 n
v ,—0—1,degS_1).
ng —deg§ 2

w$Smw(

For the inverse of Keccak-f:

v(x1) <2
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Bound on the degree of r rounds of the inverse

1600

1400

1200

1000

800

600

degree of r rounds

400

200

trivial bound ——
first bound —w—
improvement —se—

3 8 10

number of rounds r

12

14

16

28



Zero-sum partitions for Keccak- f

e 12 rounds forwards have degree at most 1536
e 11 rounds backwards have degree at most 1572

We find several zero-sum partitions of size 21°7% for Keccak- f.
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Conclusions
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Zero-sum partitions can be used to gain Belgian beers

Congratulations to the winners of the third Keccak cryptanalysis prize
16 February 2010

We are happy to announce that Christina Boura and Anne Canteaut are the winners of the third Keccak
cryptanalysis prize for their paper entitlted A zero-sum properity for the Keccax-f permutation with 18 rounds. We
are currently arranging practical details with the winners to give them the awarded Lambic-based beers and book.
Congratulations to them!

We will soon announce a new prize with a new deadline.
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Does it invalidate the proof?

Theorem. [Bertoni et al. 08] For the sponge construction with
capacity c calling an ideal permutation F of F72”" the advantage
of any distinguisher totalling at most N calls to F and F 1 is

N(N+1) N(N-1)

Adv S 20—|—1 2n—|—1

—— T his result still holds if the inner permutation has a given
c+1
structural property involving more than 2 2 input-output pairs.
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Comparison with the experiments on Keccak- f[25]

number of rounds r 1 2 3 4 5 6

trivial bound 2 4 8 16 24 24

exact value of deg R" 2 4 8 16 22 24

min (27“,25 - 25‘deg3(Rr_1)) 2 4 8 16 22 24

For the inverse function:

number of rounds r 1 2 3 4 5 6
trivial bound 3 9 24 24 24 24
exact value of deg(R~1)" 3 9 17 21 23 24
min (3’“,25 — 25‘deg((2R_1)r_1)) 3 9 17 21 23 24
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