### On some algebraic properties of Keccak

Christina Boura, Anne Canteaut and Christophe De Cannière

DTU, Inria and Google http://www-rocq.inria.fr/secret/Anne.Canteaut/

Keccak & SHA-3 Day, 27 March 2013

#### Outline

- 1. Motivations: algebraic properties of a cryptographic primitive
- 2. Algebraic properties of Keccak-f
  - due to the use of a small Sbox
  - due to the use of a quadratic Sbox
- 3. Conclusions

### **Algebraic properties**

## of a cryptographic primitive

#### Random behaviour of cryptographic primitives

Cryptographic primitives should behave like random functions.

A distinguishing property may lead to some attacks e.g., finding the plaintext among a few possibilities.

# Security proofs of many constructions assume random building blocks

e.g., in [Bertoni et al. 08]: A padded sponge construction calling a random transformation,  $\mathcal{S}'[\mathcal{F}]$ , is  $(t_D, t_S, N, \varepsilon)$ -indistinguishable from a random oracle, for any  $t_D, t_S = O(N^2), N < 2c$  and any  $\varepsilon$  with  $\varepsilon > f_T(N)$ .

This does not mean that a non-random behaviour of the inner transformation leads to a distinguisher for the construction .

Does Keccak-f behave like a random permutation of  $F_2^{1600}$ ?

#### Algebraic normal form of a function.

 $f: \mathbf{F}_2^n \to \mathbf{F}_2$  has a unique polynomial representation in  $\mathbf{F}_2[x_1, \dots, x_n]/(x_1^2 - x_1, \dots, x_n^2 - x_n).$ 

| x        | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | С | d | е | f | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1a | 1b | 1c | 1d | 1e | 1f |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|          | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  |
|          | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 1  | 1  |
| $ \chi $ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  |
|          | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|          | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  |

$$\chi(x_1,\ldots,x_5) = egin{pmatrix} x_1x_3+x_2+x_3\ x_2x_4+x_3+x_4\ x_3x_5+x_4+x_5\ x_1x_4+x_5+x_1\ x_2x_5+x_1+x_2 \end{pmatrix}$$

#### **ANF** of a random function

#### Uniform distribution over all functions:

equivalent to the uniform distribution over all ANFs.

 $\rightarrow$  each monomial appears with probability  $\frac{1}{2}$ .

#### Uniform distribution over all permutations:

open problem.

- all coordinates of a permutation of  $\mathbf{F}_2^n$  have degree at most (n-1).
- almost all permutations of  $\mathbf{F}_2^n$  have degree (n-1) [Wells 69], [Das 02], [Konyagin-Pappalardi 02]

#### Algebraic attacks.

The attacker can write the equations defining the primitive and try to solve the polynomial system.

#### Cube attacks [Dinur-Shamir 09].

The factor of some monomial depends linearly on the key bits.

**Higher-order differential cryptanalysis** [Lai 94][Knudsen 94]. If *F* has degree d < n, all derivatives of order (d + 1) vanish:

$$D_{a_1}D_{a_2}\dots D_{a_{d+1}}F(x) = igoplus_{v\in\langle a_1,...,a_{d+1}
angle} F(x+v) = 0 \; .$$

**Definition.** Let  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ .

A zero-sum for F of size K is a subset  $\{x_1,\ldots,x_K\}\subset \mathrm{F}_2^n$  such that

$$\bigoplus_{i=1}^{K} x_i = \bigoplus_{i=1}^{K} F(x_i) = 0.$$

**Definition.** Let  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ .

A zero-sum for F of size K is a subset  $\{x_1,\ldots,x_K\}\subset \mathrm{F}_2^n$  such that

$$\bigoplus_{i=1}^{K} x_i = \bigoplus_{i=1}^{K} F(x_i) = 0.$$

**Proposition.** [Boura-Canteaut 10]

For any function F, there exists at least a zero-sum of size  $\leq 5$ .

**Definition.** Let  $F: \mathbf{F}_2^n \to \mathbf{F}_2^n$ .

A zero-sum for F of size K is a subset  $\{x_1,\ldots,x_K\}\subset \mathrm{F}_2^n$  such that

$$\bigoplus_{i=1}^{K} x_i = \bigoplus_{i=1}^{K} F(x_i) = 0.$$

**Definition.** Let P be a permutation from  $F_2^n$  into  $F_2^n$ .

A zero-sum partition for P of size  $K = 2^k$  is a collection of  $2^{n-k}$  disjoint zero-sums.

#### Exploiting a low-degree [Aumasson-Meier 09]

We decompose P into  $P = F_{r-t} \circ G_t^{-1}$ . Let  $V \subset F_2^n$  with dim  $V > \max(\deg(F_{r-t}), \deg(G_t))$ .  $X_a = (G_t(a+V))$ 



$$igoplus_{x\in X_a} x \; = \; igoplus_{z\in V} G_t(a+z) = 0 \ igoplus_{x\in X_a} P(x) \; = \; igoplus_{z\in V} F_{r-t}(a+z) = 0 \ z\in V$$

## **Algebraic properties**

### of Keccak-f

#### **Trivial bounds**

24 rounds of a permutation R of degree 2 over  $\mathrm{F}_2^{1600}$ 

 $\rightarrow$  after r rounds,  $\deg(R^r) \leq 2^r$ .

What is usually expected

- full degree after 11 rounds
- existence of zero-sum partitions up to 16 rounds:

$$\deg(R^{10}) \leq 2^{10} \text{ and } \deg((R^{-1})^6) \leq 3^6$$



Experiments on Keccak-f[25] [Daemen et al. 08]

| number of rounds $m{r}$   | 1 | 2 | 3 | 4  | 5  | 6  |
|---------------------------|---|---|---|----|----|----|
| trivial bound             | 2 | 4 | 8 | 16 | 24 | 24 |
| exact value of $\deg R^r$ | 2 | 4 | 8 | 16 | 22 | 24 |

#### For the inverse function:

| number of rounds r              | 1 | 2 | 3  | 4  | 5  | 6  |  |
|---------------------------------|---|---|----|----|----|----|--|
| trivial bound                   | 3 | 9 | 24 | 24 | 24 | 24 |  |
| exact value of $\deg(R^{-1})^r$ | 3 | 9 | 17 | 21 | 23 | 24 |  |

#### Using the particular form of the nonlinear layer



#### Using the particular form of the nonlinear layer



**Problem:** Find the maximal degree of the product of d output coordinates of the Sbox layer.

Degree of the product  $\pi$  of d output coordinates

#### A fundamental parameter:

 $\delta_k =$  maximal degree of the product of k coordinates of  $\chi$ 

Example: d = 13



$$\deg \pi \leq 2\delta_5 + \delta_3$$

Degree of the product  $\pi$  of d output coordinates

#### A fundamental parameter:

 $\delta_k =$  maximal degree of the product of k coordinates of  $\chi$ 

Example: d = 13



$$\deg \pi \leq \delta_5 + 2\delta_3 + \delta_2$$

#### Degree of the product $\pi$ of d output coordinates

#### A fundamental parameter:

 $\delta_k =$  maximal degree of the product of k coordinates of  $\chi$ 

Example: d = 13



$$\deg \pi \leq \max_{(x_1,...,x_5)} (x_1\delta_1 + \ldots + x_5\delta_5)$$

with  $x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = d$  .

### Bound on $\delta_k$

 $\delta_k =$  maximal degree of the product of k coordinates of  $\chi$ 

For  $\chi$ :

**Proposition.** If S is a permutation of  $\mathbf{F}_2^n$ ,

 $\delta_k = n$  if and only if k = n

### Bound on $\delta_k$

 $\delta_k =$  maximal degree of the product of k coordinates of  $\chi$ 

For  $\chi$ :

**Proposition.** If S is a permutation of  $\mathbf{F}_2^n$ ,

 $\delta_k = n$  if and only if k = n

#### A new bound

Theorem. Let  $F = (S, \ldots, S)$  where S is a permutation of  $\mathbf{F}_2^{n_0}$ . Then,

$$\deg(G\circ F)\leq n-rac{n-\deg G}{\gamma(S)}$$

where

$$oldsymbol{\gamma}(S) = \max_{1 \leq k \leq n_0 - 1} \;\; rac{n_0 - k}{n_0 - \delta_k(S)} \; .$$

#### For Keccak-f

$$egin{aligned} &\gamma(\chi) = \max_{1 \leq k \leq 4} & rac{5-k}{5-\delta_k(\chi)} \ &rac{k}{\delta_k(\chi)} &rac{1}{2} &rac{2}{3} &rac{4}{5} &rac{5}{\delta_k(\chi)} &2 &4 &4 &5 \end{aligned}$$
 $\gamma(\chi) \leq \max\left(rac{4}{3}, &rac{3}{1}, &rac{2}{1}, &rac{1}{1}
ight) = 3 \end{aligned}$ 

We deduce

$$\deg(G \circ F) \le n - \frac{n - \deg G}{3}$$

22

### For Keccak-f



#### Bound on the degree of r rounds of Keccak-f



#### For the inverse of Keccak-f

Similar bound:

$$\gamma(\chi^{-1}) \leq \max_{1 \leq k \leq 4} \;\; rac{5-k}{5-\delta_k(\chi^{-1})}$$

For  $\chi^{-1}$ :

| ${m k}$               | 1 | <b>2</b> | 3 | 4 | <b>5</b> |
|-----------------------|---|----------|---|---|----------|
| $\delta_k(\chi^{-1})$ | 3 | 4        | 4 | 4 | <b>5</b> |

**Observation** [Duan-Lai 11]:

$$\delta_2(\chi^{-1}) = 3$$

#### Influence of the degree of the inverse

**Theorem.** Let F be a permutation of  $F_2^n$ . Then,  $\delta_{\ell}(F) < n-k$  if and only if  $\delta_k(F^{-1}) < n-\ell$ .

For Keccak-*f*:

$$\delta_1(\chi) = 2 < 5 - 2$$
 implies  $\delta_2(\chi^{-1}) < 5 - 1 = 4$ .

#### More generally:

 $\delta_1(F^{-1}) = \deg F^{-1} < n - (n - 1 - \deg F^{-1}) \text{ iff } \delta_{n - 1 - \deg F^{-1}}(F) < n - 1$ 

i.e., the product of any  $(n - 1 - \deg F^{-1})$  coordinates of F has degree at most (n - 2).

#### A new bound

Theorem. Let  $F = (S, \ldots, S)$  where S is a permutation of  $\mathbf{F}_2^{n_0}$ . Then,

$$\deg(G\circ F)\leq n-rac{n-\deg G}{\gamma(S)}$$

where

$$\gamma(S) = \max_{1 \leq k \leq n_0-1} \;\; rac{n_0-k}{n_0-\delta_k(S)} \,.$$

In particular,

$$\gamma(S) \leq \max\left(rac{n_0-1}{n_0-\deg S}\,,\,rac{n_0}{2}-1\,,\,\deg S^{-1}
ight).$$

For the inverse of Keccak-*f*:

$$\gamma(\chi^{-1}) \leq 2$$

#### Bound on the degree of r rounds of the inverse



28

#### Zero-sum partitions for Keccak-f

- $\bullet~12$  rounds forwards have degree at most 1536
- 11 rounds backwards have degree at most 1572

We find several zero-sum partitions of size  $2^{1575}$  for Keccak-f.

## Conclusions

#### Zero-sum partitions can be used to gain Belgian beers



#### Congratulations to the winners of the third KECCAK cryptanalysis prize

16 February 2010

We are happy to announce that **Christina Boura** and **Anne Canteaut** are the winners of the third KECCAK cryptanalysis prize for their paper entitled *A zero-sum property for the KECCAK-f permutation with 18 rounds*. We are currently arranging practical details with the winners to give them the awarded Lambic-based beers and book. *Congratulations to them!* 

We will soon announce a new prize with a new deadline.

**Theorem.** [Bertoni et al. 08] For the sponge construction with capacity c calling an ideal permutation  $\mathcal{F}$  of  $\mathbf{F}_2^n$ , the advantage of any distinguisher totalling at most N calls to  $\mathcal{F}$  and  $\mathcal{F}^{-1}$  is

$$Adv \leq rac{N(N+1)}{2^{c+1}} - rac{N(N-1)}{2^{n+1}} \, .$$

 $\longrightarrow$  This result still holds if the inner permutation has a given structural property involving more than  $2^{rac{c+1}{2}}$  input-output pairs.

Comparison with the experiments on Keccak-f[25]

| number of rounds $r$                               | 1 | 2 | 3 | 4  | 5  | 6  |
|----------------------------------------------------|---|---|---|----|----|----|
| trivial bound                                      | 2 | 4 | 8 | 16 | 24 | 24 |
| exact value of $\deg R^r$                          | 2 | 4 | 8 | 16 | 22 | 24 |
| $\min\left(2^r,25-rac{25-\deg(R^{r-1})}{3} ight)$ | 2 | 4 | 8 | 16 | 22 | 24 |

#### For the inverse function:

| number of rounds $r$                                           | 1 | 2 | 3  | 4  | 5  | 6  |
|----------------------------------------------------------------|---|---|----|----|----|----|
| trivial bound                                                  | 3 | 9 | 24 | 24 | 24 | 24 |
| exact value of $\deg(R^{-1})^r$                                | 3 | 9 | 17 | 21 | 23 | 24 |
| $\min\left(3^r, 25 - rac{25 - \deg((R^{-1})^{r-1})}{2} ight)$ | 3 | 9 | 17 | 21 | 23 | 24 |