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Outline

1. Motivations: algebraic properties of a cryptographic primitive

2. Algebraic properties of Keccak-f

• due to the use of a small Sbox

• due to the use of a quadratic Sbox

3. Conclusions
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Algebraic properties

of a cryptographic primitive
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Random behaviour of cryptographic primitives

Cryptographic primitives should behave like random functions.

A distinguishing property may lead to some attacks

e.g., finding the plaintext among a few possibilities.

Security proofs of many constructions assume random

building blocks

e.g., in [Bertoni et al. 08]: A padded sponge construction calling

a random transformation, S′[F ], is (tD, tS, N, ε)-indistinguishable

from a random oracle, for any tD, tS = O(N2), N < 2c and any

ε with ε > fT (N).

This does not mean that a non-random behaviour of the inner

transformation leads to a distinguisher for the construction .
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Does Keccak-f behave like a random permutation of F1600
2 ?

Algebraic normal form of a function.

f : Fn2 → F2 has a unique polynomial representation
in F2[x1, . . . , xn]/(x

2
1 − x1, . . . , x

2
n − xn).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1

χ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

χ(x1, . . . , x5) =


x1x3 + x2 + x3
x2x4 + x3 + x4
x3x5 + x4 + x5
x1x4 + x5 + x1
x2x5 + x1 + x2


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ANF of a random function

Uniform distribution over all functions:

equivalent to the uniform distribution over all ANFs.

→ each monomial appears with probability 1
2.

Uniform distribution over all permutations:

open problem.

• all coordinates of a permutation of Fn2 have degree at most (n− 1).

• almost all permutations of Fn2 have degree (n− 1) [Wells 69],

[Das 02], [Konyagin-Pappalardi 02]
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Some attacks exploiting a non-random ANF

Algebraic attacks.

The attacker can write the equations defining the primitive and

try to solve the polynomial system.

Cube attacks [Dinur-Shamir 09].

The factor of some monomial depends linearly on the key bits.

Higher-order differential cryptanalysis [Lai 94][Knudsen 94].

If F has degree d < n, all derivatives of order (d+ 1) vanish:

Da1Da2 . . . Dad+1F (x) =
⊕

v∈〈a1,...,ad+1〉
F (x+ v) = 0 .
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Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F : Fn2 → Fn2 .

A zero-sum for F of size K is a subset {x1, . . . , xK} ⊂ Fn2 such

that
K⊕
i=1

xi =
K⊕
i=1

F (xi) = 0.
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Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F : Fn2 → Fn2 .

A zero-sum for F of size K is a subset {x1, . . . , xK} ⊂ Fn2 such

that
K⊕
i=1

xi =
K⊕
i=1

F (xi) = 0.

Proposition. [Boura-Canteaut 10]

For any function F , there exists at least a zero-sum of size ≤ 5.
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Zero-sums [Knudsen-Rijmen 07][Aumasson-Meier 09]

Definition. Let F : Fn2 → Fn2 .

A zero-sum for F of size K is a subset {x1, . . . , xK} ⊂ Fn2 such

that
K⊕
i=1

xi =
K⊕
i=1

F (xi) = 0.

Definition. Let P be a permutation from Fn2 into Fn2 .

A zero-sum partition for P of size K = 2k is a collection of

2n−k disjoint zero-sums.
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Exploiting a low-degree [Aumasson-Meier 09]

We decompose P into P = Fr−t ◦G−1t .

Let V ⊂ Fn2 with dimV > max (deg(Fr−t), deg(Gt)).

Xa = (Gt(a+ V ))

⊕
x∈Xa

x =
⊕
z∈V

Gt(a+ z) = 0

⊕
x∈Xa

P (x) =
⊕
z∈V

Fr−t(a+ z) = 0
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Algebraic properties

of Keccak-f
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Trivial bounds

24 rounds of a permutation R of degree 2 over F1600
2

→ after r rounds, deg(Rr) ≤ 2r.

What is usually expected

• full degree after 11 rounds

• existence of zero-sum partitions up to 16 rounds:

deg(R10) ≤ 210 and deg((R−1)6) ≤ 36
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Experiments on Keccak-f[25] [Daemen et al. 08]

number of rounds r 1 2 3 4 5 6

trivial bound 2 4 8 16 24 24

exact value of degRr 2 4 8 16 22 24

For the inverse function:

number of rounds r 1 2 3 4 5 6

trivial bound 3 9 24 24 24 24

exact value of deg(R−1)r 3 9 17 21 23 24
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Using the particular form of the nonlinear layer
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Using the particular form of the nonlinear layer

????? ????? ????? ????? ?????

????? ????? ????? ????? ?????

????? ????? ????? ????? ?????

G

χ χ χ χ χ

Problem: Find the maximal degree of the product of d output

coordinates of the Sbox layer.
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Degree of the product π of d output coordinates

A fundamental parameter:

δk = maximal degree of the product of k coordinates of χ

Example: d = 13

????? ????? ????? ?????

????? ????? ????? ?????

χ χ χ χ

deg π ≤ 2δ5 + δ3
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Degree of the product π of d output coordinates

A fundamental parameter:

δk = maximal degree of the product of k coordinates of χ

Example: d = 13

????? ????? ????? ?????

????? ????? ????? ?????

χ χ χ χ

deg π ≤ δ5 + 2δ3 + δ2
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Degree of the product π of d output coordinates

A fundamental parameter:

δk = maximal degree of the product of k coordinates of χ

Example: d = 13

????? ????? ????? ?????

????? ????? ????? ?????

χ χ χ χ

deg π ≤ max
(x1,...,x5)

(x1δ1 + . . .+ x5δ5)

with x1 + 2x2 + 3x3 + 4x4 + 5x5 = d .
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Bound on δk

δk = maximal degree of the product of k coordinates of χ

For χ:

k 1 2 3 4 5

δk 2 4 5 5 5

Proposition. If S is a permutation of Fn2 ,

δk = n if and only if k = n
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Bound on δk

δk = maximal degree of the product of k coordinates of χ

For χ:

k 1 2 3 4 5

δk 2 4 4 4 5

Proposition. If S is a permutation of Fn2 ,

δk = n if and only if k = n
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A new bound

Theorem. Let F = (S, . . . , S) where S is a permutation of F
n0
2 .

Then,

deg(G ◦ F ) ≤ n−
n− degG

γ(S)

where

γ(S) = max
1≤k≤n0−1

n0 − k
n0 − δk(S)

.
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For Keccak-f

γ(χ) = max
1≤k≤4

5− k
5− δk(χ)

k 1 2 3 4 5

δk(χ) 2 4 4 4 5

γ(χ) ≤ max

(
4

3
,

3

1
,

2

1
,

1

1

)
= 3

We deduce

deg(G ◦ F ) ≤ n−
n− degG

3
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For Keccak-f

23



Bound on the degree of r rounds of Keccak-f
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For the inverse of Keccak-f

Similar bound:

γ(χ−1) ≤ max
1≤k≤4

5− k
5− δk(χ−1)

For χ−1:

k 1 2 3 4 5

δk(χ
−1) 3 4 4 4 5

Observation [Duan-Lai 11]:

δ2(χ
−1) = 3
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Influence of the degree of the inverse

Theorem. Let F be a permutation of Fn2 .

Then, δ`(F ) < n− k if and only if δk(F
−1) < n− `.

For Keccak-f :

δ1(χ) = 2 < 5− 2 implies δ2(χ
−1) < 5− 1 = 4.

More generally:

δ1(F
−1) = deg F−1 < n− (n− 1− deg F−1) iff δn−1−deg F−1(F ) < n− 1

i.e., the product of any (n− 1− deg F−1) coordinates of F has

degree at most (n− 2).
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A new bound

Theorem. Let F = (S, . . . , S) where S is a permutation of F
n0
2 .

Then,

deg(G ◦ F ) ≤ n−
n− degG

γ(S)

where

γ(S) = max
1≤k≤n0−1

n0 − k
n0 − δk(S)

.

In particular,

γ(S) ≤ max

(
n0 − 1

n0 − degS
,
n0

2
− 1 , degS−1

)
.

For the inverse of Keccak-f :

γ(χ−1) ≤ 2
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Bound on the degree of r rounds of the inverse
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Zero-sum partitions for Keccak-f

• 12 rounds forwards have degree at most 1536

• 11 rounds backwards have degree at most 1572

We find several zero-sum partitions of size 21575 for Keccak-f .
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Conclusions
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Zero-sum partitions can be used to gain Belgian beers
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Does it invalidate the proof?

Theorem. [Bertoni et al. 08] For the sponge construction with

capacity c calling an ideal permutation F of Fn2 , the advantage

of any distinguisher totalling at most N calls to F and F−1 is

Adv ≤
N(N + 1)

2c+1
−
N(N − 1)

2n+1
.

−→ This result still holds if the inner permutation has a given

structural property involving more than 2
c+1
2 input-output pairs.
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Comparison with the experiments on Keccak-f[25]

number of rounds r 1 2 3 4 5 6

trivial bound 2 4 8 16 24 24

exact value of degRr 2 4 8 16 22 24

min

(
2r, 25− 25−deg(Rr−1)

3

)
2 4 8 16 22 24

For the inverse function:

number of rounds r 1 2 3 4 5 6

trivial bound 3 9 24 24 24 24

exact value of deg(R−1)r 3 9 17 21 23 24

min

(
3r, 25− 25−deg((R−1)r−1)

2

)
3 9 17 21 23 24
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