
Integrity issues in a Grid environment

RACHEL AKIMANA AND OLIVIER MARKOWITCH
Département d’Informatique
Université Libre de Bruxelles

Bd. du Triomphe – CP212, 1050 Bruxelles
BELGIUM

{rakimana, omarkow}@ulb.ac.be

Abstract: - Grids are large distributed systems composed of resourcesof many computing systems used to resolve
problems that require heavy computations on large amount ofdata. In such a large distributed system, ensuring infor-
mation integrity is of particular importance. Honest usersand possible malicious entities live together in this network,
the risks of unauthorized alterations of data and information cannot be ignored. Since large amount of data are stored
on Grid’s resources, insurance has to be given that data are not altered by unauthorized hands. This insurance is given
by the security service calledintegrity of passive data. A guarantee must also be given that the asked computation are
executed in the right way, in order to produce output data that are trustworthy. This guarantee is given by the security
service calledintegrity of active data. We analyze in this paper these integrity concerns and, in particular, we identify
the needs when considering privacy aspects of passive data.The second part of the paper is dedicated to the integrity of
active data where we propose a Grid’s adapted framework to ensure the integrity of these active data.

Key-Words:- Grid security, integrity, privacy

1 Introduction

A Grid is a (widely) distributed system composed of re-
sources of many computing systems. It is usually used to
resolve scientific or technical problems that require a large
amount of resources. Grids perform heavy computations
on large amount of data, by breaking them down into many
smaller pieces, or provide the ability to process many com-
putations in parallel. Therefore, a Grid is a parallel and
distributed system that allows to share and aggregate geo-
graphically distributed resources.

In such a large distributed system, it is of particular
importance to ensure data integrity. Since a Grid is usu-
ally a huge system, a lot of different users are using its
resources. Some of these users may be malicious entities.
Therefore, the risks of unauthorized alterations of data and
information that are stored or processed on Grid resources,
or even that are traveling on the Grid’s network, cannot be
disregarded.

Large amount of data are stored on Grid’s resources.
These data are used as input for distributed executions
and/or are the results of these executions. It is crucial
that these data are not illegitimately altered. Therefore,we
have to ensure the integrity of these data. We are dealing
here with theintegrity of passive data.

On another hand, the users need to have the guarantee
that the asked executions are correctly processed. The jobs
submitted on a Grid have to be executed in the right way
with the proper input data. And in consequence, the result-
ing output data have to be reliable. This is also a kind of
integrity that we callintegrity of active data.

In this paper we consider these two kinds of integrity
concerns. In section 2 we examine the problem of the
integrity of passive data, consider existing integrity tech-
niques and propose a protocol that ensures the integrity of
stored data and that also preserves the privacy of the en-
tities related to the information carried by these data. In
section 3, we consider the problem of integrity of active
data. We look at the existing results proposed to design
fault-tolerant distributed systems, and we propose a new
scheme that fits the particular framework of the Grid.

2 Integrity of passive data

When considering the context of the Grid, passive data
may refer to data resulting from experiments and simu-
lations. These data are generally organized in databases
accessible to Grid users. Such data may either belong to
known Grid users or may remain anonymous. In both
cases, Grid users want to get the assurance that the con-
sulted data has not been altered by unauthorized hands.
Usually, hashing functions and/or digital signatures are
used to ensure data integrity.

For example, keyed hash functions (MAC) may be
used on database contents when the corresponding secret
keys are securely shared. However, the secret key man-
agement in a large distributed system like a Grid is not
straightforward. Digital signature schemes can be used to
guarantee the integrity of data whose owner is known (to
allow the public key-based signature verification). How-
ever, using digital signatures in a classical way are not an
appropriate tool when we deal with the integrity of anony-



mous data.
This last point can be illustrated by considering the ex-

ample of a medical database accessible to patients and their
physicians in which the patients’ privacy is ensured by re-
placing their name by a code number. Therefore, a patient
cannot sign his own data in order to guarantee their authen-
ticity without breaking its privacy at the time of the signa-
ture verification. Even, if a physician signs these data, the
patient’s identity could be possibly established by consid-
ering the set of patients of the related physician.

On the basis of this situation, we propose, in the
next subsection, a protocol that ensures the integrity of a
database while preserving the privacy of the related enti-
ties concerned by the stored information.

2.1 Integrity and privacy

When looking at privacy concerns in addition to the in-
tegrity service, we may consider that each entity autho-
rized to access to an information and possibly to change it
must be able to sign the new version of this information in
such a way that its identity has to be indistinguishable from
the identities of all the user entitled to access the database
in writing.

Group signature schemes [3] allow each entity that be-
longs to a group to sign an information in such a way that
at the time of a signature’s verification it appears that the
signature comes from the group without indicating which
member of the group actually generated the signature.
Moreover, in case of problem (when an authorized entity
makes an dishonest modification of the database for ex-
ample) group signature schemes allow a designated group
authority to reveal the identity of the signer.

Another kind of group signatures is ring signatures [8],
that have the advantage, in comparison to classical group
signatures, to allow a member of a group to sign an in-
formation knowing only its own signature secret key and
the verification public key of all the other members of the
group. Therefore, there is no group setup nor any need for
a group manager.

However, ring signatures do not offer, in case of prob-
lem, a mechanism to reveal the identity of the entity who
generated a signature. In group signatures the management
of the keys is sometimes heavy. Moreover, in our Grid’s
framework it may be problematic that the access control
authority is not able to check if the identity of the entity
who gained access to an information is the same that the
identity of the entity who, afterwards, made a modification
and signed it.

Therefore, we propose here a protocol that allows gen-
uine users to make modifications on anonymous data in
such a way that the identity of the corresponding data own-
ers as well as the identity of the user who makes the mod-
ifications remain secret. The protocol uses a trusted third

party (TTP), associated to the database(s) in which these
anonymous data is stored, that realizes the access control
and that ensures indirectly the integrity of the database.

When considering our previous medical context, the
data owner is a patient and the entity allowed to modify
these data (the user) is his physician.

2.1.1 The protocol

We consider data stored on Grid resources that have to be
accessible and modifiable by authorized users in an anony-
mous way. We present a protocol that takes into consider-
ation the privacy of the entities that may be related to the
stored data, while ensuring the integrity of these data.

Since the data are stored on Grid resources managed
by a database administrator that realizes the access control,
we can use this particular framework to propose a proto-
col based on the existence of a trusted third party (TTP),
that may be the database administrator, in order to issue
integrity tokens. When an information is modified, the
TTP delivers the corresponding integrity token, based on
its digital signature, at the place of the authorized user that
made the modification. Using a TTP allows to be exempted
from the management of a group and from the correspond-
ing group signature key. Moreover, the protocol allows the
TTP to reveal the identity of an authorized user that made
a dishonest modification in the database.

We use the following notations:

• signuser (m) means that the user signs the hash of
the messagem with his private key;

• ETTP (x): asymmetric encryption of the informa-
tion x with the TTP’s public key;

• Ek(y): symmetric encryption of the informationy
with the secret keyk;

• h(x): collision resistant one way hash function of
the informationx.

At the first step of the protocol, a user that wishes to
make a modification on an information stored in a Grid re-
source provides to the corresponding database administra-
tor his credentials, which prove that he is entitled to access
and modify the database. We suppose here that the TTP
and the database administrator are a unique entity. The
user also sends the current date (and time), a randomly
chosen session keyk as well as his digital signature on
these information. All these information are sent to the
TTP ciphered with the TTP’s public key. User→ TTP:
ETTP (user ′s credentials , date , k, signuser (date , k)).

If the access is granted by the TTP (thanks to appro-
priate credentials and date), at the second step, the user



transmits to the TTP the ciphered description of the mod-
ifications that have to be made on the database and his
digital signature on this description. The description of
the modifications are the position in the database where
the modifications have to be made and the updated data
that have to replace those that appear in the indicated po-
sition. Since the description of the modifications (and
more precisely the updated data) may be of important
size, in order to be efficient, it is ciphered symmetrically
with the secret session keyk provided at the first step
of the protocol. User→ TTP: Ek(modifications , date ,
signuser (modifications , date)).

The TTP deciphers the received message and verifies

• if the date indicated in the first and second step are
the same;

• if the two steps were both made in a time close to
that date;

• user’s digital signature on the description of the
modification.

If these checks are correct, the TTP:

• makes the expected modifications in the database;

• produces its signature on the modified data
(signTTP (updated data)) and stores it in the
database;

• stores in a private place the evidence that
proves that the user asked for the modifica-
tions that were done: signuser (date , k)) and
signuser (modifications , date).

Integrity is ensured due to the presence of the TTP’s
digital signature on the data. Any entity that accesses the
database is then able to check whether these stored data
were not modified in an unauthorized way. Only the TTP’s
signatures appear in the database.

Therefore, if the stored data are anonymized, no in-
formation about the identity of the entities concerned by
the data may be inferred from the data or from the in-
tegrity token that are the digital signatures of the TTP.
However, if a modification made in the database is liti-
gious, the TTP may be asked to reveal the identity of
the user that made the given modification. If the TTP
considers the revelation request as legitimate, it discloses
the user’s identity, by publishingsignuser (date , k)) and
signuser (modifications , date).

2.2 Integrity and plagiarism

In the previous section, we assume that stored data are ac-
cessible by other Grid users. If these data are, for example,
the results of experiments, some malicious users may want
to copy these data on their own node and publish them as
their own results.

We suggest here a protocol that uses a TTP that will act
as a timestamping authority. This TTP may be the one al-
ready envisaged in the previous section, since we are deal-
ing with (two different flavors of) integrity.

In this framework, the TTP will produce timestamping
evidences that will help an external adjudicator to resolve
plagiarism complaints.

At the beginning of the protocol, a userA sends se-
curely its data, as well as his digital signature on the
data, to the TTP:A → TTP : Ek(data , signA(data)),
ETTP (k).

If the signature is correct, the TTP provides
the corresponding timestamping: TTP → A:
signTTP (h(data), timestamp), whereh() is a publicly
known secure one-way hash function, and where the times-
tamp contains sufficiently precise time information.

When the userA obtains a correct timestamp, he pub-
lishes his data on the grid’s storage resources.

Rather than sending the data to the TTP, we may also
envisage that the userA publishes the data directly on the
storage resource but granting only the TTP to access them.
Then the userA will ask the TTP to get these data on the
resource and to provide him with a corresponding times-
tamp. When the userA obtains this timestamp, he gives
access to the data to all the legitimate users.

After this protocol, all plagiarism complaints have to
be resolved during another protocol, called the complaint
protocol, that is realized with an adjudicator that will eval-
uate the signed timestamp evidences provided to him by
the users in conflict. The adjudicator will consider the ear-
lier timestamp as the valid one.

3 Integrity of active data

In this section, we investigate mechanisms that allow to de-
tect whether a job has been executed correctly or whether
its code has been modified by a malicious hand.

Usually, it is hard to prevent such modifications since a
malicious system manager is always able to reach and act
on a job that is executed on his node. Providing digitally
signed information about the job to be executed allows to
check if the information about the job were not altered dur-
ing its travel on the network but does not prevent the target
node owner to execute something else.

Traditionally, the mechanisms that allow to ensure a
correct distant execution of jobs are related to fault-tolerant



distributed systems.

3.1 Terminology

Distributed systemsare made up of processes, located on
one or more sites, that communicate with one another to
offer services to upper layer applications [5].

Synchronous distributed computing modelprovides
processes with bounds on processing time whereasasyn-
chronous computingare characterized by the absence of
time bounds [5].

The termfault is usually used to name a defect at the
lowest level of abstraction. A fault may cause an error that
leads to a system failure. There are three fault models ac-
cording to the system behaviors that they induce:

1. thecrash failure modelin which processors simply
stop executing at a specific point in time;

2. the fail-stop modelwhere a processor crashes in
such a way that its neighbors can detect it;

3. and thebyzantine fault modelin which processors
may behave arbitrarily, even in a malevolent way.

The alteration of code enters in the category of byzan-
tine faults. When processors can experience byzantine fail-
ures, a set of processors implementing at-fault-tolerant
state machine must have at least2t + 1 replicas and the
output of the set is the output produced by the majority of
the replicas.

If processors experience only fail-stop failures, then a
set containingt + 1 replicas suffice and the output of the
set can be the outputs produced by any of its members. A
system correctness is always proved with respect to a spe-
cific fault model.Fault-toleranceis the ability of a system
to behave in a well-defined manner once faults occur.

3.2 Previous works

Many existing solutions to fault-tolerant distributed sys-
tems impose that (part of) the jobs are executed many
times. In case of such jobs replication, the strategy used
by the user to find good results among the set of results
that he has received is calledvoting. This is done under
the assumption that, among nodes that have executed one
job, there is at least one honest node that has returned a
good result.

Server replication, also known as state machine ap-
proach has been used up now as a popular mechanism
for building fault-tolerant distributed services. A statema-
chine consists of state variables that represent the different
states in which the machine can be as well as the com-
mands allowing to change from one state to another possi-
ble one.

A t-fault-tolerant version of a state machine can be im-
plemented by replicating that state machine and running a
replica on each oft processors in a distributed system. It is
assumed that replicas being run by non-faulty processors
start in the same initial state and execute the same requests
in the same order, so each replica will perform the same
operations and produce the same output [10]. Replication
is also used as a solution for improving the scalability of a
distributed service.

In [5], an overview on fundamental techniques that
implement replicated services is presented. This work
emphasizes on the relationship between replication tech-
niques and group communication and considers that the
correctness criterion is the linearizability that gives the il-
lusion of non-replicated servers.

To ensure linearizability, invocations to replica servers
must satisfy two properties:order (requests to replicated
servers must be handled in the same order) andatomicity
(each request is handled at the same time by the different
replicated servers).

Two fundamental replication techniques ensure lin-
earizability:

1. theprimary-backup replicationwhere oneprimary
replica plays a special role of interacting directly
with clients who address requests, whereas the other
replicas arebackupsthat interact only with the pri-
mary (in case of the primary fails, one of the back-
ups can become the primary), this technique is im-
plemented in [1];

2. active replication, also called state machine ap-
proach, gives to all replicas the same role without the
centralized control of the primary-backup technique.
Invocations are sent to all replicas that process the
invocations. The client waits until it receives the first
response or a majority of identical responses.

In [10], Schneider presents a detailed model of the
state machine approach for implementing fault-tolerant
services. The paper discusses fault-tolerance in the frame-
work of the byzantine fault and fail-stop models. Sys-
tem reconfiguration techniques for removing faulty com-
ponents and integrating repaired components are also con-
sidered. A fault is tolerated ift replicas are faulty among
2t + 1 replicas that execute the same service. It assumed
that each service is implemented on one processor.

In [1], a new programming abstraction calledresilient
object is introduced. Each resilient object provides some
services to a set of sites where it is represented by com-
ponents to which requests can be issued using remote pro-
cedure calls in the way of the primary-backups replication
system. The resulting distributed system gives behavior in-
distinguishable from a single-site instantiation of the orig-
inal specification.



In [7], Reiter proposes protocols to facilitate the de-
velopment of high-integrity services that retain their avail-
ability and correctness despite the malicious penetrationof
some component servers by an attacker. These protocols
were developed to facilitate reliable communications be-
tween a given number of servers that implement the same
service. The paper emphasized on the replication of some
critical services like authentication services or certification
authorities.

Reiter develops four main protocols:

1. the group membership protocol, that supposes the
existence of a group of servers that implement a
given service and provide the abstraction of a group
of operational servers. The group members may
change to reflect the perceived failure, recovery
of servers as well as the addition of new servers.
The membership protocol ensures that if sufficiently
many members of a group request that a member
be removed, then that server will eventually be re-
moved from the group;

2. the reliable group multicast protocol, that provides
an interface through which group members can mul-
ticast messages to other group members. The proto-
col assumes that fewer than one third of servers in a
group are faulty;

3. the atomic multicast protocol, that is similar to the
reliable group multicast protocol. Moreover, it of-
fers an additional functionality that determines the
order in which messages are delivered to group
servers. These messages may come either from
clients, servers or from group members. The mes-
sage ordering is done by the sequencer;

4. the outvoting protocol, that ensures that the replies
delivered to clients are only those sent by correct
servers. The voting can be done either by the client
or by one group member server.

In [6], Krishnamurthy et al. evoke the server replica-
tion approach in order to tolerate timing faults. Clients
have specific response time requirements and require that
these be met with certain probabilities. Based on per-
formance measurements regularly disseminated by the
replica, an online model uses these measurements to esti-
mate the probabilities with which the replica can prevent
a timing failure. Only the first response received for a
request is delivered to the client. Thus, a timing failure
occurs only if no response was received from any of the
replicas withint time units after the request was sent.

In [2], the authors investigate the case of a state ma-
chine replication system that tolerates byzantine faults
which can be caused by malicious attacks or software er-
rors. This approach emphasizes on faulty replicas recovery

by refreshing state automatically. Because of the recovery,
the system can tolerate any number of faults over the life-
time of the system.

In [9], the framework of redundancy and voting is pre-
sented in the area of Volunteer Computing. The authors
show how voting and redundancy systems are inefficient
to reduce the error rate in accepted results when the ratio
of faulty hosts on average of all hosts is not small in a given
system. The mechanism of spot-checking is proposed as a
solution.

Spot-checking consists in that the master node gives to
worker nodes jobs whose results are known in advance or
can be easily verified afterwards. If a worker is caught giv-
ing a bad result, the master backtracks through all the re-
ceived results from that worker so far and invalidates them.
The master node may also blacklist the caught saboteur.

The spot-checking reduces the redundancy in such a
way that if one assumes that each worker is spot-checked
with a probabilityq then the redundancy shrinks fromm

1−f

to 1

1−q
, where f is the fraction of faulty nodes of the

worker population andm the results’ redundancy.
The concept of credibility is also introduced in [9] and

implies that if one can compute the conditional probability
of a work’s best results are correct, thus one can mathemat-
ically guarantee that the error rate will be less than some
desired acceptable error rate. A worker has more cred-
itability if he has passed more spots-checks or matching
results are received for the same work from the worker and
other group of workers whose credibility is high. The au-
thor showed how the combination of voting, spot-checking
and credibility can be used to shrink the error rate in ac-
cepted results.

In [4], the authors introduce on the Grid the concept of
nodes’ reputation, which is not too different from the con-
cept of worker’s credibility introduced in [9]. Reputation
information are stored in nodes in a referral.

In our work, the state machine approach has been also
used in the purpose of ensuring data integrity. The dif-
ferences of our approach and the others in the framework
of server replication are the strategy used in tasks’ distri-
bution on computing nodes, the voting strategy as well as
the subsequent actions like the removal of faulty nodes and
their re-integration.

The primary-backups system of [5] and [1] is not suit-
able with byzantine faults since the primary may be a ma-
licious node. In our work, we rather use the concept of ac-
tive replications of [5] enriched with hints that guide user’s
decisions in case where all the replicas answers are differ-
ent

Our work considers byzantine faults in Grid comput-
ing environment. The removal of a faulty node is based on
the faulty replies it returns on clients’ requests. However,
contrary to [10], we distinguish faulty replies induced by



malicious actions from these induced by involuntary fail-
ure in the system

The group membership protocol proposed in [7] con-
siders fail-stop failures since it is assumed that when one of
the replica services is faulty the other replica services can
detect it and request the removal of the faulty service. In
Grid computing, the different nodes that execute the same
task ignore each other, unless they are dishonest members
of a coalition.

In [6] it is only considered that right replies are those
returned in time. In our work, we consider also faulty
nodes providing a wrong result in the required time. We
cannot either proceed like in [2] where an automatic state
refreshing is considered, in our case the re-integration ofa
node that was faulty is done after a given number of suc-
cessful tests.

In the next subsection we present our protocol that en-
sures active data integrity that uses at the same time repli-
cation techniques and spot-cheching mechanisms.

3.3 Active data integrity on the Grid

Thek-resilient scheme that we propose, that fits the frame-
work of the Grid, uses replications to achieve active data
integrity but tries to reduce this redundancy by using spot-
checkings.

The degree of replication depends on the credibilityc

(0 ≤ c ≤ 1) that each user gives to the Grid (the more a
user is confident in the Grid, the higherc will be and the
smaller the redundancy will be).

The protocol considers that there is no coalition (in or-
der to organize the wrong execution of a task) of more than
k − 1 hosts (k-resilient).

Let us consider a user who has to launch a jobJ com-
posed byn tasksti: J = (t1, . . . , tn). At the first round
of execution, the resource broker launches then tasksti.
Tasks are distributed randomly over the computing nodes
according to the number of nodes offered by the Grid for
the job and their corresponding computing power (some
nodes may receive many different tasks).

At the end of the first round, the user assumes that
np = c · n tasks have been executed correctly. Conse-
quently, n′ = n − np tasks have to be executed again.
The user does not wait the end of the first round to execute
againn′ tasks.

At the beginning of the first round, the user chooses
randomly then′ tasks that will have to be replicatedk
times and launches them.

For each taskti, after a delaydi the user considers that
the corresponding results have to be available. Therefore,
he makes the following checks:

• if ti was planned to be executed only once and if
results are obtained for it, then the user stores the re-

sults and considers that the host that has executedti
behaved correctly.

• if ti was planned to be executed only once and if
no results are obtained for it, then the user launches
againti k times. We assume that the probability that
a same task is assigned on the same host for two dif-
ferent rounds of execution is arbitrary small. The
user considers that the node that has executedti did
not behave correctly and contacts the TTP to record
a complaint about this node.

• if ti was executed more than once and if at most
k′ < k obtained results, acquired over all already ex-
ecuted rounds, are the same, then the user launches
againti k times (assuming that the probability that a
same task is assigned on the same host for two dif-
ferent rounds of execution is arbitrary small).

• if ti was executed more than once and if at leastk

obtained results, acquired over all already executed
rounds, are the same, the user stores these results,
considers that the hosts that produced these iden-
tical results behave correctly and considers that all
the other hosts that provided different results for this
taskti did not behave correctly. He contacts the TTP
to record a complaint about these hosts.

We assume the use of a TTP that will manage a list,
calledbanned list, containing a reference to the hosts that
do not behave correctly. When a user launches a task, the
resource broker selects a node to execute it that is not listed
in the banned list.

A computing node is said to behave incorrectly if the
TTP attests that the results that the node provides, after
the execution of given tasks, are erroneous or are not made
available in the expected time.

The TTP records all the complaints provided by the
users about the hosts. The TTP begins to secretly spot-
check these nodes by sendingε tasks execution requests
for which the TTP knows the correct corresponding an-
swers. The computing nodes have to ignore that they are
spot-checked (for example, the TTP may use the identity
of an arbitrary Grid user and may launch tasks that are in-
distinguishable from real usual tasks).

If several spot-checked nodes provide, even once, an
identical incorrect answer, they are supposed to be collud-
ing malicious nodes, and all of them are registered on the
banned list. If a checked node is not considered as a col-
luding node, then if it answers incorrectly or does not an-
swer more than once, it is supposed to be an independent
malicious node or to be a node that experiences a failure
that is not yet corrected. In both cases the node is regis-
tered on the banned list. Otherwise, if the spot-checked
node answers incorrectly or does not answer only once, it



is supposed to be an honest node that experienced a tem-
porary failure. In that case, the node is not registered in the
banned list.

Note that since a faulty node may provide sometimes
correct results, ifq is the probability that a faulty node an-
swers wrong results on a given task, the binomial proba-
bility that only one fault occurs throughε spot-checks is
(1 − q)ε

A node does not remain on the banned list forever, the
TTP spot-checks regularly the banned nodes and if a node
provides correct answersε times in a row, the TTP removes
it from the banned list.

We assumed, reasonably, that a same task is not sent
for k different rounds to the same, possibly faulty, node.
Otherwise, the latter may send the same wrong response
and when evaluating the result for the task, the user may
think that the task has been executed correctly since there
arek similar responses.

Note that if a user is fully confident in the behavior of
all the hosts,c = 1, no redundancy appears in the execu-
tion of the tasks. In contrary, if the user does not trust any
of the hosts,c = 0, all the tasks composing his jobs will be
replicated. Between these two extreme views, the user may
dynamically (since the user may change the value ofc, for
example, on the basis of the current content of the banned
list) parametrize the number of tasks that have to be repli-
cated. Moreover, each user can also choose an appropriate
valuek depending on the supposed maximum size of the
possible coalitions of dishonest nodes.

The choice ofk depends onc: the greaterc is, the
smallerk should be. For example, if one Grid user is not
used to work on the Grid, he may be only a little confident
in the Grid. Therefore, the credibilityc that he gives to
the Grid may be small. In the same way, if someone ex-
perienced malicious actions from Grid’s elements (on his
passive or active data), he will give, in the same way, a
small credibility to the Grid.

The value ofc andk may also depend on the kind of
jobs that the user has submitted. Indeed, if some task’s re-
sults are predictable, the user who submitted the job can
accept a smallk since he attaches more credibility not on
Grid’s status but on the corresponding results. Therefore,
an error in the result may be detected when considering
the obtained results, for example if some predictions are
not fulfilled.

4 Conclusion

In this paper, we consider data integrity issues in a Grid en-
vironment, while distinguishing passive and active data. In
the framework of the integrity of passive data, we propose
a first protocol that ensures anonymity and data integrity.

In the same context of this first protocol we propose
another protocol that protects against plagiarism.

We consider also active data integrity by using tasks
replication mechanisms to guarantee the correctness of
the results. In order to manage the computing and com-
munication overheads induced by classical replication ap-
proaches, we combine this redundancy technique with the
use of spot-checkings. Therefore, a corresponding new
voting strategy is presented. Our protocol allows the users
to parameterize the communication and computation over-
heads induced by the integrity mechanisms.

Acknowledgment

The authors express their gratitude to Nicolás González-
Deleito for the help he gave to accomplish this work, as
well in the content than in the form.

References

[1] K. Birman. Replication and fault-tolerance in the isis
system. InProceedings of the 10th ACM Symposium
on Operating Systems Principles, pages 79–86, Dec.
1985.

[2] M. Castro and B. Liskov. Proactive recovery in a
byzantine-fault-tolerant system. InProceedings of
the 4th Symposium on Operating Systems Design and
Implementation (OSDI ’00), pages 273–288, Oct.
2000.

[3] D. Chaum and E. van Heijst. Group signatures. In
Proceedings of Advances in Cryptology – Eurocrypt
’91, volume 547 ofLecture Notes in Computer Sci-
ence, pages 257–265. Springer-Verlag, 1992.

[4] A. Gilbert, A. Abraham, and M. Paprzycki. A
system for ensuring data integrity in grid environ-
ments. InProceedings of the International Confer-
ence on Information Technology: Coding and Com-
puting (ITCC’04), volume 1, pages 435–439. IEEE
Computer Society, Apr. 2004.

[5] R. Guerraoui and A. Schiper. Software-based repli-
cation for fault tolerance.IEEE Computer – Special
Issue on Fault Tolerance, 30(4):68–74, Apr. 1997.

[6] S. Krishnamurthy, W. H. Sanders, and M. Cukier.
A dynamic replica selection algorithm for tolerating
timing faults. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN-2001), pages 107–116, July 2001.

[7] M. K. Reiter. The rampart toolkit for building
high-integrity services. InProceedings of Theory



and Practice in Distributed Systems, volume 938 of
Lecture Notes in Computer Science, pages 99–110.
Springer-Verlag, 1995.

[8] R. Rivest, A. Shamir, and Y. Tauman. How to leak
a secret. InProceedings of Advances in Cryptology
– Asiacrypt 2001, volume 2248 ofLecture Notes in
Computer Science, pages 552–565. Springer-Verlag,
2001.

[9] L. Sarmenta. Sabotage-tolerance mechanisms for
volunteer computing systems. InProceedings of
IEEE International Symposium on Cluster Comput-
ing and the Grid, May 2001.

[10] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial.ACM
Computing Surveys, 22(4):299–319, Dec. 1990.


