
A new generic 3-step protocol for authentication and key
agreement in embedded systems

Naïm Qachri and Olivier Markowitch

Département d’informatique, Université Libre de Bruxelles,
CP212, boulevard du Triomphe, 1050 Brussels

Belgium

nqachri@ulb.ac.be, olivier.markowitch@ulb.ac.be

Abstract. In this paper we propose a new generic authentication and key agreement protocol
intended to be used in wireless environments. The protocol is designed to be implemented on
devices with limited computing and storage resources.

Keywords : Authentication, Key agreement protocol, Wireless communication security

1 Introduction

Since now ten years, we have seen many developments to strengthen the security of wireless communi-
cation systems. These improvements intended to correct problems related, for example, to defective crypto-
graphic primitives or protocols [8,3] (e.g. the 4-way handshake protocol defined for the Wimedia MAC layer
standard [7] used to authenticate and generate session keys). Nowadays, the last versions of the Wifi and
Wimax standards include the use of EAP [1] declined in different versions (LEAP - EAP using a Radius
Server -, EAP-TTLS, etc...). In practice, EAP is interesting for workstations or desktop computers but does
not fit the needed security of particular systems such as handheld devices, short-range communication sys-
tems or even domestic Wireless LAN devices. The reason being that many versions of EAP use certificates,
public key encryption or exhaustive exchanges of information, that are not viable for lightweight wireless
devices.

In this paper, we propose a new generic protocol with low communication that is based exclusively on
symmetric encryptions and hashing functions in order to achieve entities authentication and session keys
generation.

The existing systems proposed in the literature do not meet all of the needed requirements; indeed, the
existing solutions either do not combine authentication and key generation [5,2], use public-key cryptography
[9,10], use a trusted entity [5,6], or combine artificially an authentication scheme [4] with a key transport
protocol [5]. The ISO/IEC 9798-2 and ISO/IEC 11770-2 protocols differ from the protocol that we are
proposing because they do not authenticate the exchanged messages. In particular, because of the lack of
messages authentications, the information exchanged during these protocols (that are used to produce the
session keys) are not protected against modifications, and are therefore more exposed to denial of services
attacks. Moreover, our protocol includes a session key confirmation procedure as well as a synchronization
mechanism (in case of repetitive establishments of sessions).

2 Assumptions and notations

We suppose that Alice and Bob (wireless devices that know each other) share a secret key that has been
secretly exchanged during an association step that happens before any exchange between the two devices. It
is assumed that this association step is secure and therefore does not leak any information about the shared
secret. Moreover, it is assumed that the secret, shared by Alice and Bob, is not already used by them with
any other devices.

It is also assumed that the devices are tamper resistant (i.e. an attacker cannot physically read or modify
the secret stored in the devices).

The notations used in our protocol are the following:
– hi(m) denotes the hash function h applied successively, i times, on a message m;
– Ek(m) denotes a symmetric bloc encryption of the message m with the secret key k;
– MAC k(m) denotes the result of a keyed hash function applied on a message m;
– s denotes the secret shared between Alice and Bob;
– rA and rB denotes the random nonces chosen and sent by Alice and Bob;
– LSBi(m) is a function that truncates m to its i least significant bits.

3 General description of the protocol

Based on the initial secret (exchanged at the association step), keys for authentication and encryption
are generated and shared between Alice and Bob.

The protocol is designed in order to avoid that an attacker, who discovers the secrets of a session of the
protocol, can deduce the secrets that will be computed during the following sessions. The secret values of
the different sessions are computed on the basis of a chain of hash values. During an initialization step (that
takes place after the association step), Alice and Bob realize the computation of n consecutive hashing on
the initial shared secret. Those hashed values will be used to authenticate Alice and Bob and to generate the
session keys as described hereafter. After the initialization step, when a session must be set, Alice invokes
the 3-step main protocol that ensures mutual authentication by the means of challenge-response techniques,
session keys generation between Alice and Bob and desynchronization resistance.

Since the produced secret hashed values are in a limited number, when it remains only three hashed
values, a new secret is computed from the three remaining hash values and this new secret key is used to
create a new chain of hash values that will be used for the next sessions of the protocol.

4 The protocol

4.1 Protocol life cycle

The life cycle of the protocol is as the following :

– association step (where a secret s is exchanged)
– initialization step (where some or all of the n hashed values are computed in order to speed up further

hash computations in the protocol and i is initialized to 1 by Alice and Bob)
– successive executions of the main protocol
and/or resynchronization protocol (if needed)

– (n− 1)th execution of the main protocol
– renewing protocol
– successive executions of the main protocol (a new cycle is launched)...

CC (for Cycle Counter) is a variable that counts the number of chains of n hashed values completely used
in the life cycle of the protocol since the initialization step (where CC is set to 1). Within a cycle, a session
of the main protocol is characterized by a number i. The concatenation CC ‖ i is a unique identifier of a
session of the protocol between Alice and Bob.

4.2 Main protocol

When Alice and Bob have to initiate a new session i, during the cycle CC, they execute the following
main protocol:

1. Alice→ Bob : IDAlice , i, Ehn−((i−1)×3)(s)(1, CC, i, rA, IDAlice , h(1, CC, i, rA, IDAlice))

2

The message contains the first challenge under the form of a message to decrypt and verify. If the two
devices share the same secret, then Bob can decrypt and verify it. The nonce, rA, sent by Alice, has to be
well chosen and contributes to the keys generation in a fair way in regards to Bob.

Once Bob has decrypted the message, he chooses a second random nonce, rB , and generates three keys
by computing the following MAC :

(kSE ‖ kSA ‖ kconf) = LSBq(MAC hn−((i−1)×3)−2(s)(CC ‖ i ‖ rA ‖ rB ‖ hn−((i−1)×3)−1(s)))

where ‖ is the concatenation operator. rA and rB are the contributions of respectively Alice and Bob in
the computation of these three keys. q denotes the sum of the sizes of the different keys generated during
the protocol. CC ‖ i is used to avoid replay attacks. kSE is the key generated to encrypt the communication
of the session that will take place between Alice and Bob and kSA is the key generated to authenticate the
packets during this communication.

The MAC algorithm has to be well dimensioned to generate enough bits for the three keys. On the basis
of kconf , Bob creates a new challenge and sends it to Alice.

2. Bob→ Alice : IDBob , i, Ehn−((i−1)×3)(s)(2, CC, i, rB , rA, IDBob ,MAC kconf
(2, CC, i, rB , rA, IDBob))

The challenge has the purpose to ensure that Alice can derive the good key and decrypt the message of
Bob. From these keys, Alice can verify that she has derived the same keys than Bob if she is able to verify
the MAC on the message. Alice can also authentify Bob, since only Bob knows the secret hashed value used
to encrypt the message and authenticate. Furthermore, Bob sends the nonce rA to give the proof that he
has made the correct decryption of the first message.

3. Alice→ Bob : IDAlice , i,MACkconf
(3, IDAlice , CC, i, rA, rB)

In this third message, Alice answers that she has well derived the keys and that the authentication of
Bob succeeds, she provides also rB to give the proof that she has made the correct decryption of the second
message. At the end of the main protocol, Alice and Bob increments i.

4.3 Renewing protocol

Within a cycle, on the basis of n hash values, we can realize n
3 − 1 sessions of the main protocol. We use

the last session of the protocol to generate a new secret value shared by Alice and Bob.
The renewing is made when only three hashed values (h3(s), h2(s) and h(s)) remain before the secret is

reached. Alice and Bob run again the protocol (see Figure 1) during which the new secret is computed from
h(s) and s.

snew = MAC sold
(CC ‖ rA ‖ rB ‖ h(sold))

The shared secret hash values and the CC are computed for the further sessions of the next cycle of the
main protocol:

h(snew), h2(snew), h3(snew),, hn(snew) and CC ← CC + 1; i← 1

4.4 Resynchronization protocol

If the two devices are desynchronized (i.e. if Alice and Bob consider a different value of i), they reveals
their session values i and i′. In that case, the current session of the main protocol is aborted and a new
session protocol is launched with a session value max(i, i′) + 1.

We make the assumption that, in case of desynchronization, the devices cannot have different CC’s,
because it would mean that one of the two devices has done the renewing protocol without having incremented
the variable CC

3

Device 1 Device 2

Alice BobIDAlice, 3, Eh3(s)(1, CC, 3, rA, IDAlice, h(1, CC, 3, rA, IDAlice))

IDBob, 3, Eh3(s)(2, CC, 3, rB , rA, IDBob, MACh2(s)(2, CC, 3, rB , rA, IDBob))

IDAlice, MACh2(s)(3, IDAlice, CC, 3, rA, rB)

Fig. 1. The renewing protocol

5 Work in progress

We are currently studying the formal security of the protocol with SVO logic. We will then study and com-
pare the performances of some possible constructions of the protocol with concrete cryptographic primitives.
We will also study the possibility to adapt our protocol in a multi-party framework.

References

1. Aboba, B., Blunk, L., Vollbrecht, J., and Carlson, J. Extensible authentication protocol (EAP). RFC
3748, June 2004.

2. Diffie, W., and Hellman, M. E. New directions in cryptography. In IEEE Transactions on Information
Theory (1976), vol. 22, pp. 644–654.

3. Fluhrer, S., Mantin, I., and Shamir, A. Weaknesses in the key scheduling algorithm of rc4. In Proceedings of
the 4th Annual Workshop on Selected Areas of Cryptography (2001), Springer Berlin / Heidelberg, Ed., pp. 1–24.

4. Lamport, L. Password authentication with insecure communication. Communications of the ACM 24, 11
(November 1981), 770–772.

5. Needham, R., and Schroeder, M. Using encryption for authentication in large networks of computers. Com-
munications of the ACM 21, 12 (December 1978), 993–999.

6. Neuman, B. C., and Ts’o, T. Kerberos: an authentication service for computer networks. IEEE Communica-
tions 32, 9 (September 1994), 33–38.

7. Qachri, N., and Roggeman, Y. The flaws and critics about the security layer for the wimedia mac standard.
In 30-th symposium on Information Theory in the Benelux (may 2009), pp. 89–96.

8. Stubblefield, A., Ioannidis, J., and Rubin, A. D. Using the fluhrer, mantin, and shamir attack to break
WEP. Tech. Rep. TD-4ZCPZZ, AT&T Labs, 2001.

9. Wang, F., and Zhang, Y. A new provably secure authentication and key agreement mechanism for sip us-
ing certificateless public-key cryptography. In 2007 International Conference on Computational Intelligence and
Security (December 2007), IEEE, Ed., pp. 809–814.

10. Zou, X., Thukral, A., and Ramamurthy, B. An authenticated key agreement protocol for mobile ad hoc
networks. In Mobile Ad-hoc and Sensor Networks. Second International Conference, MSN 2006. Proceedings
(Lecture Notes in Computer Science Vol. 4325). Springer-Verlag, January 2006.

4

