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Abstract. We present a new theoretical generic protocol that offers
non-repudiation services. We first go through the state of the art about
non-repudiation. We will see that in order to achieve complete non-
repudiation during an information transfer a trusted third party is often
needed (even playing a low weight role), obtaining an acknowledgement
from the recipient being the current major problem. We aim to show the
possibility of achieving fair non-repudiation services without the need of
a third party. We will propose a concrete implementation inspired by
this generic protocol.

1 Introduction

Usually, when a person (a client) requests a service, he asks the salesman (the
provider) for the required service. The provider supplies the service. Eventually
the client pays. This protocol is as the following:

1. Client → Provider: Request for a service
2. Provider → Client: Service
3. Client → Provider: Payment (acknowledgement)

Although this kind of exchange does apply to human relationships, many prob-
lems appear when mapped to the “electronic world”.

In a computer network, the payment could consist in sending an acknowledge-
ment (“ack”) considered as a proof of payment. This acknowledgement is there-
fore the proof, for the service provider, that the client has received the service
and a guaranty that the client will pay.

Unfortunately, in such protocols, the client is not compelled to send the ac-
knowledgement after receiving the service. The client could get a service and
the provider will be unable to obtain a payment for it. It is said that the client
repudiates the reception of the service.



Another problem arises when the client receives the service or when the provider
receives the acknowledgement from the client. Each of them wants to be sure
that the message is actually from the expected party. Moreover, each of them
wants to be assured that nobody else can falsely allege having received a message
from them.

Solutions have been proposed to avoid these problems. These protocols are said
to offer non-repudiation services.

In this paper, we will use the inherent difference between the originator of a
requested message and the recipient to settle a protocol that implements the
non-repudiation services without the need of a third party.

The term “third party” designates an on-line third party and an in-line third
party as described in [25], as well as an off-line third party as defined in [7].
However, an adjudicator might be needed as we will see later.

This paper is organized as follow. In section 2, we define the different non-
repudiation services and investigate the previous results in this area. In section 3,
we define our probabilistic fairness. A new generic protocol is then presented pro-
viding probabilistic non-repudiation services without the need of a third party.
In the 4th section we present an instance protocol based on the generic model.
In section 5, we study the time performance of the protocol.

2 Non-repudiation services

As described in [24, 15, 9], repudiation is defined as “denial by one of the en-
tities involved in a communication of having participated in all or part of the
communication”.

Many types of repudiations are relevant to electronic transaction protocols. At
least, two services [24, 9] are needed to obtain a complete non-repudiation pro-
tocol as described below.

In the following definitions, we use originator to identify the entity sending a
message to another entity named recipient.

Definition 1 Non-repudiation of origin: to prevent the originator of a message
from denying having sent the message.

Definition 2 Non-repudiation of receipt: to prevent the recipient of a message
from denying having received the message.

In many proposals, to achieve a complete non-repudiation, a third party is in-
volved as a delivery authority. In this case, two other services can be supplied.

Definition 3 Non-repudiation of submission: to ensure that the message is sub-
mitted for delivery by the originator.

Definition 4 Non-repudiation of delivery: to ensure that the message has been
delivered to the recipient.



According to these definitions, one can easily see that the protocol described in
the introduction does not support the non-repudiation of receipt. Moreover, in
that protocol, each party has no concrete proof about the originator’s identity.

Among other solutions, a digital signature makes possible the non-repudiation
of origin (in order to establish an association between the message and the
originator’s identity).

The problem of obtaining non-repudiation of receipt service is similar to the
problem of fair exchange of a message (sent by the originator) for an acknowl-
edgement (sent by the recipient).

During the protocol in addition to the message, a non-repudiation of origin token
(NRO) and a non-repudiation of receipt token (NRR) has to be transmited as ev-
idences usable to resolve possible future disputes (by presenting these evidences
to an adjudicator).

The items expected by the recipient are the message and the NRO. The item
expected by the originator is the NRR.

We can now define the necessary properties of a non-repudiation protocol. A
non-repudiation protocol has to be:

Definition 5 Fair: at each step of the protocol run, either both parties receive
their expected items, or none of them has received any valuable information
about their expected items,

Definition 6 Time-bounded: if at least one party behaves correctly then the
protocol will be completed before a finite amount of time.

Another property could be interesting but is not required (its absence does not
interfere with the fairness): the non-repudiation protocol could be:

Definition 7 Viable: if both parties behave correctly and finish the protocol
then they receive their expected items at the end of the protocol.

We suppose, prior to the realization of the protocol, that a key exchange has
already occurred, providing also identification

The non-repudiation problem has been studied in ISO/IEC 13888, resulting in
three models (M1, M2 and M3). These models make use of a trusted third party.
But, as shown in [24], these different models do not implement correctly the non-
repudiation of receipt.

It is possible to design protocols involving no third party in fault-less scenarios,
as in [25, 3, 2, 4, 5, 7]. For example, assume the situation where the originator-
recipient communications are performed without a trusted third party. After
receiving the recipient’s request, the originator sends the message. The recipient
may not confirm the reception (i.e. does not send the NRR). In such a case, the
originator asks for the assistance of a third party who will “oblige” the recipient
to finalize the protocol. In [25] these methods are studied and a comparison
between the works of Asokan et al. and the works of Zhou and Gollman are



made. This kind of protocols is efficient when most parties do not attempt to
cheat. A third party is involved as soon as a problem occurs [25, 3, 2, 4, 5, 7].

In this paper, no assumptions are made about the behaviour of the parties.
Furthermore, in any case the message is only sent once.

In [14] is proposed a protocol without a trusted third party but using specific
secure public hardware (the pub). The pub records, as a notary, every party’s
operations when transmitting the decoding key.

Our protocol does not use such hardware (on which, as for trusted third parties,
the two parties has to be blindly confident. The risk can not be parameterized).

Recently, in [20] is proposed a protocol resolving the exchange problem, and then
some aspects of the non-repudiation problem, without a trusted third party. The
protocol uses “weakly secret bit commitments” where every commited message is
breakable within a “reasonable” quantity of time. During this iterative protocol
each party sends a message which is breakable faster than the previous one. If we
consider the problem of paid services, the author presents an interesting protocol
for low value services or for short time value services. The differences with our
protocol are that the Syverson’s protocols have to be parameterized with respect
to all participating parties computing power, moreover the exchange protocols do
not feature fairness (when the first message is sent, the recipient can recover the
original item, without emitting anything, but within an amount of time which
is “higher” than the item’s value).

3 Probabilistic non-repudiation

To achieve non-repudiation, a trusted third party is often needed, we will show
a way to obtain non-repudiation without a trusted third party. We aim here at
building a two party generic protocol where the fairness could be obtained with
a certain probability.

At each step of our protocol, except the last one, no party can take advantage
over the other party. As we will see later, the originator has no interest in stop-
ping the protocol before the end. If the recipient stops the iterative protocol
before the last step, his gain is null. The only way for the recipient to receive the
message without sending the NRR is to guess the number of protocol steps. The
number of steps of the protocol is chosen secretly by the originator. At each step
the probability for the recipient to get the message without sending the NRR is
less or equal to a quantity denoted by ε.

The iterative protocol we are presenting is :

Definition 8 ε-fair: at each step of the protocol run, either both parties receive
their expected items, or the probability that a cheating party gains any valuable
information of his expected items, while the other party gains nothing, is ≤ ε

(with ε ∈ [0, 1]),

Time-bounded (as defined before),



and in some cases the protocol is :

Definition 9 Viable: if both parties follow properly the protocol, then at its
end, the exchange of both message (and NRO) and acknowledgement (NRR)
succeeds with probability equal to 1.

To ensure non-repudiation without a third party, we have to design a protocol
where the recipient does not know when the last transmission happens. Other-
wise, it is always conceivable that he repudiates having received the message i.e.
refuses to send the NRR.

We can achieve this by using an iterative protocol. The originator (O) chooses
randomly, according to a geometric distribution for example, a number n of steps
for the protocol. This information is never unveiled to the recipient (R) during
the protocol run, neither can it be computed by the recipient.

The generic protocol is defined as follow:

The recipient determines the date D

1. R → O : SignR(request,R,O,D)

The originator: checks D
chooses n
computes the signed f1, . . ., fn

2. O → R : SignO(fn(message),O,R,D)
3. R → O : SignR(ack1)
...
2n. O → R : SignO(f1(message),O,R,D)
2n+1. R → O : SignR(ackn)

The functions fi are parts of a function composition. The required message is
that which results of this composition.

We have: fn(message) ◦ fn−1(message) ◦ . . . ◦ f1(message) = message.

In this case it is essential to use a composition operator which is not commuta-
tive. Since the originator sends the functions in reverse order (from fn to f1), if
the composition operator does not permit the commutativity, then the recipient
is not able to use previous results in order to speed up the computations. Since
fi is applied on fi−1, we need all functions to compute the whole composition.

It is also recommended that the function result does not have a size comparable
to the message size. This is motivated by the fact that after the transmissions,
the quantity of information sent may not be too important (with respect to the
message size).

The non-repudiation evidences are:

– NRO = {NROi | i = 1, . . . , n}, with NROi = SignO(fi(message), O,R,D)

– NRR = SignR(ackn)



In our protocol, if the recipient does not immediately send the expected acknowl-
edgement after receiving a function, then the originator states that he is trying
to cheat. The protocol is stopped by not sending the next function (therefore,
the recipient does not receive the message).

We have to choose functions in such a way that the composition computation
takes more time than the transmission of an acknowledgement. We have to ensure
that the recipient cannot compute the composition between two transmissions.

We must determine the deadlines after which the parties decide to stop the
protocol. We propose two different ways to manage this problem.

Firstly, a deadline, publicly known, can be used by the parties. At each step
of the protocol, each party waits, at most, until the deadline expires. After the
deadline the concerned party supposes that the other party cheats or that the
network is overloaded, and stops the protocol.

The second solution could be that we assume the use of an operational channel
between the parties. A channel between two correctly behaving players is opera-

tional if the messages inserted into it by one party are received, while respecting
the sequencing, by the other party within a known and constant time interval [1].
On the one hand, if the recipient does not receive a new function within a given
delay, he knows that the protocol ended. On the other hand, if the originator
notices that the expected acknowledgement does not arrive after the fixed time
interval, he states that the recipient tries to cheat by computing the composition
of received functions instead of sending his acknowledgement. As a result, the
originator stops the protocol.

The protocol ends up when the recipient sends to the originator the acknowl-
edgement corresponding to the last function (the NRR). An “end of protocol”
message is not mandatory (indeed, after not receiving further functions, the re-
cipient is aware of the protocol state, he is then able to compute the message by
the composition).

The ith acknowledgement message carries the following semantics: “R acknowl-
edges having received message i from O”. In order to protect the recipient against
attacks by replay, each message conveys a time stamp. The replay attack may
consist in having the originator using old acknowledgements used during a pre-
vious communication with the recipient. The value of D is sent by the recipient
with the first message. This time D is not a synchronization information, but
can be assimilated to a random value. Then we have: acki = (i, R,O,D).

Since the recipient does not know n, he is not able to determine when he will
receive the last function. This condition can be met as long as all messages sent
by the originator have the same structure. Moreover, the underlying technology
used to carry all messages may not give any hints about the protocol state.

The probability that the recipient does not send the acknowledgement and tries
to compute, precisely at the last transmission, the composition (without being
sure it is the last transmission) is according to the geometric distribution used to



choose n: θ, and then the originator sends all the needed information to compute
the message although the recipient does not send the NRR.

The range of values used by the originator has to be chosen with respect to the
importance of the message. Indeed, the probability that the recipient receives
the message for free depends on this range. This range can be parameterized
by an adequate choice of the success parameter θ of the proposed geometric
distribution.

Using this geometric distribution with a success parameter θ, the proposed pro-
tocol is:

ε-fair:

– if the originator behaves correctly, the recipient:
• can decide to stop the protocol before the nth step, then neither the orig-
inator nor the recipient have their expected items. The protocol remains
fair,

• can want to stop the protocol after the nth step and then sends the NRR
and receives the message and the NRO. The protocol is fair,

• can stop the protocol at the nth step and receives the message and the
NRO but does not send the NRR. The protocol is then unfair and this
situation happens with a probability = θ = ε

The protocol is θ-fair for the originator.
– if the recipient behaves correctly, the originator obtains the NRR only if he
has already send the message and the NRO. The exchange is then complete
and the protocol is fair for the recipient with a probability = 1 ≥ 1− θ.

The protocol is ε-fair with ε = θ. ¤

Time bounded: with an operational channel or with the use of deadlines, each
transmited information will be either received before a fixed and finite amount
of time and then the protocol continues, possibly towards his normal end, or if at
least one party behaves correctly then when the delay is exceeded the protocol
is stopped. ¤

Viable: with an operational channel, as no party wants to give up the protocol,
the expected information are sent and received at each protocol’s step until the
messagse (and the NRO) and the NRR are exchanged (with a probability = 1).

¤

By using the deadlines rather than the operational channel, we do not obtain
the viability property. Even if the emitting party is honest, the information sent
are not assured of being received. The message are not ensured to be received
within the deadlines and the protocol could be stopped because of the network
(without succeeding in carrying out the exchange).

As the probability of losing the fairness is weak, but is not exponentially low,
this protocol is suitable for low value messages (whatever the messages size).

Usually, adding a time constraint (deadlines) to a system implies the use of a
trusted third party that records the emission of a message and/or distributes the



time. But in the present case the originator gains nothing by falsely pretending
that the recipient sent the acknowledgment too late. When receiving each trans-
mission, both the recipient and the originator check the delay elapsed to receive
the message. If the originator detects a significant delay the protocol is canceled.

This process is valid because the originator has the NRR only if he posses the
last recipient’s acknowledgement. Since each signed acknowledgement contains
a sequence number, the originator cannot use duplicated acknowledgments.

If the originator stops the protocol before the nth step and claim that the protocol
is completed, then he has to present the NRR to an authority (an adjudicator).
Considering the number of steps implicitly announced by the originator (by the
sequence number present in the NRR) and the recipient’s received functions,
the authority will confirm the message cannot be computed. Unlike [25, 3, 2, 4,
5], where a third party is referred to as soon a problem occurs, the adjudicator is
used only in case of disputes (and never during the exchanges). The adjudicator,
while he is not involved in the protocol, determines, if consulted, which entity is
honest. There are no obligations to require an adjudicator if the protocol does
not succeed.

4 Concrete Proposals

In this section, we propose a protocol offering non-repudiation messages based
on the generic protocol presented in the previous section.

The protocol is inspired by the generic one in the following way: f1 = ciphering
function using a chosen key k, f2 until fn are random generators (which produce
random numbers having the same size as the key k), and fn+1 return the key k

in clear.

The concrete protocol is then:

The Recipient determines the date D

1. R → O : Sign
R
(request,R,O,D)

The originator checks D, chooses n, computes n − 1 random values, chooses a
ciphering key k and computes s = ciphering(message, k)

2. O → R : Sign
O
(s, O,R,D)

3. R → O : Sign
R
(ack1)

4. O → R : Sign
O
(random1, O,R,D)

5. R → O : Sign
R
(ack2)

...

2n. O → R : Sign
O
(randomn−1, O,R,D)

2n+1. R → O : Sign
R
(ackn)

2n+2. O → R : Sign
O
(k, O,R,D)

2n+3. R → O : Sign
R
(ackn+1)

Then the recipient computes: message = deciphering(s, k).



The non-repudiation evidences are:

– NRO = {SignO(s,O,R,D),SignO(k,O,R,D)}
– NRR = SignR(ackn+1)

The acknowledgements have the same form as those described in the section 3.

In this protocol, before the last transmission the recipient does not receive any-
thing significant. The recipient cannot be aware he receives the actual key during
the execution of the protocol, the time needed to verify a key (by deciphering
all the message) is too long in comparison with the time expected to send the
ack (choosing a cryptosystem suited in term of performance, with the message
size).

In this concrete protocol, the recipient has to receive all messages sent by the
originator in order to reconstruct the original message and to get the NRO. The
originator has to collect the n+ 1 acknowledgements to obtain the NRR..

The originator has to cipher using a mode where all the blocks are interdependent
(whatever the cryptosystem used) in order to prevent that partial decipherings
can contribute to the decision-making. For example we can have the message
made up of t blocks mi, and m′

i
= mi ⊕ mt ∀i ∈ [1, t− 1], m

′

t
= m1 ⊕ . . . ⊕

mt−1⊕mt if t is odd and m′
t
= m1⊕ . . .⊕mt−1 if t is even. The recipient receives

ei = ciphering of m
′

i
under the key k ∀i ∈ [1, t]. To retrieve the original message

the recipient has to decipher all the ei, with the m
′

i
obtained he computes mt =

m′1 ⊕ . . .⊕m′
t
and with mt he retrieves mi = m′

i
⊕mt ∀i ∈ [1, t− 1].

5 Performances

In the proposed concrete protocol, we have to ensure that the computing time of
the unique ciphering (and deciphering) is larger than the time needed to transfer
an acknowledgement.

Suppose we send a 128 bytes random message in each transaction (after the first
one). Assuming the deadlines are expressed in seconds or an operational channel
guaranteeing a transfer of data in order of seconds, the choice of the cryptosystem
has to be coherent with the message size. Suppose we have a n Kbytes message
and a cryptosystem known to cipher x Kbit per second. Then if we want the
computation does not take more than five minutes and less than twenty seconds
(for example), we have to choose a cryptosystem where x ∈

[

2n

75
, 2n

5

]

.

We can use, for example, RSA to cipher a 5 Mbytes message (the most efficient
implementations of RSA propose a ciphering of 600 Kbit per second - using a
512 bit key). For a 50 Mbytes message, IDEA is adequate. Triple-DES could be
used to cipher a 500 Mbytes message. DES is usable for a 1 Gbytes message, . . .

In this performance evaluation, we suppose that the recipient has “precomputed”
some signed acknowledgements. Therefore, the time needed to compute the ac-
knowledgements may not have to be taken into account in the protocol run



duration. This is valid since the recipient can compute the signature on the ack
and the date D as soon as D is known. This computation can be made in parallel
with the first steps of the protocol.

6 Conclusion

We have presented a generic probabilistic protocol providing non-repudiation
services without a trusted third party in the context of a originator-recipient
dialog. This iterative protocol is based on the originator’s secret knowledge of
the number of steps of the protocol. Moreover, our protocol needs the use of
deadlines at each transmission or the use of an operational channel between the
parties. Then, we propose a concrete protocol based on the generic one. This
iterative protocol realizes only one ciphering and uses a random value at each
step. Finally, theorizing on the message size, on the cryptosystem and on the
deadlines or channel quality of service, we have stressed the important difference
that could occur between the transmission delay and the computation time. This
lead to demonstrate the theorical feasibility of our system for low value messages.

This solution is proposed as an alternative to the use of a third party. Further-
more, no assumptions are made about the behaviour of the participants neither
their computing power (the protocol being tuned according to the computing
power of the recipient).

With this kind of methods, there are some communication and computation
overheads. These overheads must be put against the potential bottleneck intro-
duced by a third party in a framework where no assumptions are made about
the behaviour of the parties. Moreover, in the presented concrete protocol, the
computing overhead is reduced.

Our generic protocol features probabilistic fairness. With a probability ≥ 1− θ

(where θ is the success parameter of a geometric distribution), we are sure that
either the recipient receives the message and the originator is certain to obtain
the NRR, or the originator will not receive the NRR hence the recipient does
not receive the message.

The major goal is to be exempt from the need of a third party during the
exchanges. If such a third party does not exist, the risk of bottleneck is avoided.
Last but not least, assumptions about the third party reliability are not relevant.
This property is highly desirable, since it is not easy to evaluate the security
risk induced by a third party. In our system, the risk is known and could be
parameterized by the originator (choosing θ).
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