
An Optimistic Multi-party Fair Exchange

Protocol with Reduced Trust Requirements

Nicolás González-Deleito and Olivier Markowitch

Université Libre de Bruxelles
Bd. du Triomphe – CP212

1050 Bruxelles
Belgium

{ngonzale,omarkow}@ulb.ac.be

Abstract. In 1999, Bao et al. proposed [5] a multi-party fair exchange
protocol of electronic items with an offline trusted third party. In this
protocol, a coalition including the initiator of the exchange can succeed
in excluding a group of parties without the consent of the remaining
entities. We show that every participant must trust the initiator of the
protocol for not becoming a passive conspirator. We propose a new pro-
tocol in which the participants only need to trust the trusted third party.
Moreover, under certain circumstances, if there are participants excluded
from the exchange, they can prove that a problem occurred to an external
adjudicator.

1 Introduction

During the last decade, the important growth of open networks such as the Inter-
net has lead to the study of related security problems. Fair exchange of electronic
information (contract signing, certified mail, . . . ) is one of these security chal-
lenges. An exchange protocol is said to be fair if it allows two or more parties to
exchange electronic information in such a way that, at the end of the protocol,
no honest party has sent anything valuable unless he has received everything
he expected. Those protocols often use a trusted third party (TTP) helping the
participants to successfully realize the exchange.

Depending on his level of involvement in a protocol, a TTP can be said inline,
online or oÂine. Inline and online trusted third parties are both involved in
each instance of a protocol, but the first one acts as a mandatory intermediary
between the participants. An offline TTP is used when the participants in a
protocol are supposed to be honest enough to not need external help in order
to achieve fairness; the TTP will only be involved if some problem emerges.
Protocols with such a TTP are called optimistic.

Fair exchange between two parties has been extensively studied and several
solutions have been proposed in the online [8,12] as in the offline case [4,3,6,11].



The interest of [11], where an item is exchanged against a digital signature,
is that the TTP produces the same signatures as those that would have been
produced by the participants in a faultless scenario.

Fair exchange of electronic information between more than two parties may have
applications in electronic commerce. For example, we can consider a common and
generic scenario with four parties describing a ring. Let one of these parties be
a customer who wants to purchase an electronic item offered by a provider; the
payment is realized through the customer’s and the provider’s banks. This is
how each participant views the exchange:

– the provider provides the expected electronic item to the customer in ex-
change of having his bank crediting his account;

– the customer sends a payment authorization to his bank in exchange of the
desired electronic information offered by the provider;

– the customer’s bank carries out the payment to the provider’s bank in ex-
change of the payment authorization sent by the customer;

– finally, the provider’s bank credits the provider’s account in exchange of the
payment carried out by the customer’s bank.

More general topologies than the ring described above are also possible. For
example, we could consider an exchange in which each participant offers items
to a set of parties in exchange of items offered by another set of participants.
Franklin and Tsudik gave [7] a classification of multi-party exchanges, based on
the two following properties: the number of items that a participant can exchange
(one or several), and the disposition of the participants (describing a ring or a
more general topology).

In the multi-party case, Asokan et al. described [2] a generic optimistic protocol
with a general topology. This protocol, during which a participant may receive
an affidavit from the TTP instead of the expected item, achieves weak fairness.
Franklin and Tsudik presented [7] two protocols with an online TTP, and later
Bao et al. proposed [5] a protocol where the TTP is offline. Both works sup-
posed the exchange topology as being a ring, where each participant Pi offers to
participant Pi+1 message mi in exchange of message mi−1 offered by participant
Pi−1. Of course, all subscripts are mod n, where n is the number of participants
in the exchange. We will omit this hereafter.

With regard to optimistic multi-party fair exchange, it could be unrealistic to
think that all the participants in a protocol execution will be honest. Designing
optimistic protocols for this kind of exchanges might not have, at a first glance,
much sense. However, we think that even in a scenario with a dishonest partici-
pant, a protocol with an offline TTP remains more efficient than a protocol with
an online TTP.

In this paper we focus on optimistic multi-party fair exchange with a ring topol-
ogy. Section 3 describes the protocol proposed by Bao et al. in [5], and its trust
requirements are discussed. In section 4 we propose a variant of that protocol,
where trust needs are reduced.



The next section describes the concept of verifiable encryption schemes. This
technique, used by Bao et al. in their multi-party fair exchange protocol [5], will
also be used in section 4.

2 Verifiable Encryption Schemes

Suppose a scenario with two participants, Alice and Bob, and a trusted third
party. Let E and D be the encryption and the corresponding decryption algo-
rithms of a public-key cryptosystem. The TTP owns a public encryption key e

and a secret decryption key d of this cryptosystem. Moreover, let h be a homo-
morphic one-way function. Alice knows a secret message m, with h(m) being
public.

Alice enciphers m to c = Ee(m), generates a certificate certA = certify(m, c, e)
using a public algorithm certify(), and sends c and certA to Bob.

Bob checks that certA is a correct certificate by using a public algorithm verify()
such that verify(c, certA, h(m), e) = yes if and only if h(Dd(c)) = h(m). Bob is
then convinced that c is indeed the cipher of m under key e. Later, Bob will be
able to obtain m by asking the TTP to decipher c.

A verifiable encryption scheme must satisfy [5] these two properties:

– it is computationally unfeasible for Alice to generate a certificate certA such
that verify(c, certA, h(m), e) = yes , while h(Dd(c)) 6= h(m);

– and it is computationally unfeasible for Bob to get m from c without knowing
d.

Asokan et al. gave [4] some examples of verifiable encryption schemes imple-
mentations. Bao et al. used [5] an implementation of a non-interactive scheme,
corresponding to the description above.

3 A Multi-party Fair Exchange Protocol

In this section we briefly describe the optimistic multi-party fair exchange pro-
tocol proposed by Bao et al. [5]. (We use notations as close as possible to the
ones used in the original paper.) The exchange topology is a ring.

Let P0 be the participant that initiates the protocol. The status of P0 is known
by the TTP, who also knows all h(mi), for 0 ≤ i ≤ n− 1.

3.1 Main Protocol

P0 begins the main protocol by sending to P1 the cipher c0 of the message m0

along with a certificate cert0 proving that c0 is indeed the cipher of m0, as
described in the previous section.



After receiving (c0, cert0), P1 checks cert0; if this certificate is valid, he enciphers
m1 and sends (c1, cert1) to P2. For i = 2, 3, ..., n−1, participant Pi does similarly.

When P0 receives (cn−1, certn−1), he checks the certificate certn−1 and if it is
valid, he sends the message m0 to P1. For i = 1, 2, ..., n− 1, after receiving mi−1

from participant Pi−1, Pi sends mi to Pi+1.

These are the two rounds of the main protocol:

1. Pi → Pi+1 : ci, cert i for i = 0, ..., n− 1.

2. Pi → Pi+1 : mi for i = 0, ..., n− 1.

3.2 Recovery Protocol

If all parties behave correctly, after the main protocol execution each participant
should obtain his expected message. However, if some Pi does not receive mi−1,
he has to run the recovery protocol.

Pi begins this protocol by sending (ci−1, cert i−1) to the TTP. The latter checks
the certificate cert i−1, and, if it is valid, waits for the time1 it takes to P0 to
obtain mn−1 if no problem occurs, before asking P0 if he has received a valid
(cn−1, certn−1) during the first round of the main protocol. If P0 answers yes ,
the TTP will accept to decipher the corresponding ci−1.

The TTP does not contact P0 each time that some other participant runs the
recovery protocol: if P0 answered yes in the first recovery execution then the
TTP will accept further recovery requests; otherwise the TTP will reply with
an abort message.

This call to P0 prevents of having party Pi getting ci−1 deciphered without
having sent (ci, cert i).

Here are the four steps of the recovery protocol, initiated by some Pi having not
received mi−1. Steps 2 and 3 are only executed the first time that this protocol
is invoked.

1. Pi → TTP : ci−1, cert i−1.

2. TTP → P0 : call .

3. P0 → TTP : yes or abort .

4. TTP → Pi : mi−1 or abort .

3.3 Analysis

Bao et al. gave [5] the following definition of fairness: an exchange protocol is

called a fair exchange protocol if after the protocol execution no participant Pi

1 This time is estimated by the TTP.



P0

Pi

TTP

P1

Pi-1

c0, cert0

ci-1, certi-1

ci-1,

certi-1

call yes

mi-1Pi+1

Pn-1

Fig. 1. An exclusion scenario

following properly the protocol is in a state where his ci has been deciphered

without having him received mi−1.

A participant Pj (1 ≤ j ≤ n− 1) sends mj to Pj+1 only if he has received mj−1.
Pj+1 can however ask the TTP to decipher cj ; he obtains the expected mj only
if P0 received (cn−1, certn−1) in the first round of the main protocol. If so, Pj

can also ask the TTP to decipher cj−1 in order to get mj−1.

Since P0 sends m0 to P1 after receiving a valid (cn−1, certn−1) from Pn−1, it is
then also possible for P0 to recover mn−1 if he ever does not receive it later.

Assuming that the TTP behaves as described, after the protocol execution (both,
the main and, possibly, the recovery protocol) each honest Pi either has obtained
mi−1, either his ci has not been deciphered.

About Trust and Passive Conspiracies As pointed out by Bao et al., in
that protocol two or more parties can collude in order to exclude some other
participants from the exchange. This happens only if P0 belongs to this coalition.

Consider that P0 colludes with Pi (figure 1). When Pi receives (ci−1, cert i−1)
from Pi−1 in the first round of the main protocol, instead of sending (ci, cert i)
to Pi+1, Pi could run directly the recovery protocol, asking the TTP to decipher
ci−1. The TTP asks then P0 if he has received (cn−1, certn−1), P0 answers with
a false yes, and the TTP deciphers ci−1.

Pi will obtain mi−1 without having sent (ci, cert i). This causes no harm as long
as the TTP follows the protocol properly: P1 to Pi−1 will be able to run the



recovery protocol and obtain respectively m0 to mi−2, and Pi+1 to Pn−1 will
not receive nor send anything: they will be simply excluded from the exchange.

By the above definition, fairness is still guaranteed for any party following prop-
erly the protocol, including those who are excluded, even if there is a participant
Pi having received mi−1 without having sent ci. There is here a difference be-
tween this definition of fairness and the one given by Asokan et al. [2], where all

the participants must be in the same state at the end of the protocol. A similar
approach of the former definition of fairness can be found in [9,10].

We define a passive conspirator who takes part in a coalition excluding certain
participants from the exchange as someone who cannot prevent this coalition
from being done and who by his idleness contributes to keep the excluded par-
ticipants in ignorance of the exchange which takes place.

Even if the fairness property is respected, in the coalition described above, P1 to
Pi−1 become passive conspirators. They must trust P0 for not answering with a
false yes to the TTP during the recovery protocol.

Otherwise, even if P0 decides to send a false abort to the TTP during the recovery
protocol, fairness is still preserved. Once the first round of the main protocol has
been successfully completed, P0 sends m0 to P1 and participants P1 to Pi−1 do
similarly. If Pi decides to not send mi, after a certain amount of time Pi+1 will
realize that he must run the recovery protocol in order to obtain mi. However,
if P0 sends a false abort to the TTP, the protocol will be terminated without
Pi+1 receiving mi. If the TTP behaves properly, P0 will be the only participant
in a non-fair state at the end of the protocol.

It must be pointed out that every participant has to not only trust the TTP for
behaving properly, but must also trust P0 for not sending a false yes to the TTP
during the recovery protocol.

4 A Protocol with Reduced Trust Requirements

We now present a variant of the multi-party fair exchange protocol described in
the previous section. In this protocol an offline trusted third party is also used.
The exchange topology is a ring and the communication channels between the
participants and the TTP are supposed to be resilient (data is delivered after a
finite, but unknown, amount of time).

Through this section we will use the following notations:

– P is the set {P0, P1, ..., Pn−1} of all the participants in the exchange.
– A⇒ β : denotes participant A multicasting a message to the set of partici-

pants β.
– fx is a flag indicating the purpose of a message in a given protocol; x is

composed of a letter and a number corresponding respectively to the protocol
and the message number in this protocol.



– label is an information identifying a protocol run, that depends, among oth-
ers, on P.

– SA(m) denotes the digital signature of participant A over the message m.
– in a protocol message, SA(?) denotes the digital signature of A over all

information preceding this signature.
– m′i denotes the concatenation of Pi’s identity and the message mi expected

by Pi+1. h(m′i) is supposed to be public. m′i and ci = Ee(m
′

i) are used to
generate the certificate cert i.

Let P0 be the participant that initiates the protocol. We suppose that this is
known by all the participants and the TTP. Moreover, the set P is supposed to
be known by all the participants in the exchange.

4.1 Main Protocol

1. Pi → Pi+1 : fm1 , Pi+1, label , ci, cert i, SPi
(?) for i = 0, ..., n− 1.

P0 begins the main protocol by sending to P1 the cipher c0 of the message m′0,
along with a certificate cert0 proving that c0 is indeed the cipher of m′0.

After receiving (c0, cert0) from P0, if cert0 is valid, P1 enciphers m′1 and sends
(c1, cert1) to P2. For i = 2, 3, ..., n− 1, every Pi does similarly.

2. P0 ⇒ P \ P0 : SP0
(label).

P0 → P1 : fm2 , P1, label ,m0, SP0
(?).

Upon P0 receiving (cn−1, certn−1), if the certificate sent by Pn−1 is valid, P0

multicasts his signature over the label , SP0
(label), to the set P\P0 of participants,

and sends the message m0 to P1.

3. Pi ⇒ P \ Pi : SP0
(label).

Pi → Pi+1 : fm2 , Pi+1, label ,mi, SPi
(?).

}

for i = 1, ..., n− 1.

When Pi (1 ≤ i ≤ n−1) receives a valid SP0
(label) for the first time, he multicasts

this signature to P \ Pi. Upon receiving such a signature and mi−1 from Pi−1,
Pi sends mi to Pi+1.

4.2 Recovery Protocol

If some Pi does not receive mi−1 during the main protocol, he has to run the
recovery protocol.

1. Pi → TTP : fr1 ,TTP , label , h(m′i−1), SP0
(label), ci−1, cert i−1, SPi

(?).
2. TTP → Pi−1 : SP0

(label).
3. TTP → Pi : fr2 , Pi, label ,mi−1, STTP (?).

In order to get ci−1 deciphered by the TTP, Pi sends to the latter (SP0
(label),

ci−1, cert i−1). If SP0
(label) is a valid signature of P0 over the label and if the

certificate cert i−1 is correct, the TTP deciphers ci−1 and obtains m′i−1, the



concatenation of Pi−1’s identity and mi−1. He forwards SP0
(label) to Pi−1 and

sends mi−1 to Pi.

4.3 Analysis

Before that P0 multicasts SP0
(label) to P \ P0, no participant belonging to this

set is able to run the recovery protocol. If the TTP behaves as described, none
of them will get ci−1 deciphered.

P0 could do a recovery instead of multicasting his signature over the label . In
this case, the TTP will forward that signature to Pn−1 and the exchange will be
able to continue.

If during the main protocol some Pi does not receive the expected mi−1, he
can run the recovery protocol only if he provides SP0

(label) to the TTP. As no
particular assumption has been made over the communication channels between
participants, Pi could not receive the signature of P0 over the label . Even in this
case, Pi would remain in a fair state: if Pi+1 contacts the TTP, this one will send
SP0

(label) to Pi in the second step of the recovery protocol and Pi will also be
able to run this protocol.

Following the definition given by Bao et al. [5], the protocol presented above is
fair: at the end there will be no honest participant in a state where his ci has
been deciphered without having him received mi−1.

About Trust and Passive Conspiracies In the main protocol, mj (1 ≤ j ≤
n−1) is sent as soon as a valid SP0

(label) has been received. Otherwise, a coalition
between, for example, P0 and a participant Pi, excluding participants Pi+1 to
Pn−1 from the exchange without the consent of participants P1 to Pi−1, could
exist: P0 decides to not multicast his signature and Pi stops the exchange after
receiving mi−1, while P1 to Pi−1 are unable to inform the excluded participants
that the last round of the main protocol has begun. P1 to Pi−1 would become
passive conspirators; this situation is avoided by sending mj after having received
a valid SP0

(label).

During the main protocol SP0
(label) is multicasted to all the participants in the

exchange. Suppose that some Pi refuses to realize this step of the protocol. If
there exists a coalition (not including Pi) willing to exclude some participants
from the exchange, Pi will not send SP0

(label) to the excluded participants and
will become a passive conspirator. Multicasting SP0

(label) to all the others par-
ticipants in the exchange prevents such a situation.

Passive conspiracies in order to exclude participants can be avoided. Therefore,
the participants in the exchange do not longer need to trust P0.

Complaint Protocol As described above, if a participant having received the
cipher and the corresponding certificate during the first round of the main pro-



tocol receives SP0
(label), it will be possible for him to run the recovery protocol.

Otherwise, if he receives SP0
(label) without having received the cipher and the

corresponding certificate, he will be able to prove to an external party, by execut-
ing the following complaint protocol with the TTP, that something went wrong
during the exchange.

1. Pi → TTP : fc1 ,TTP , label ,P, SP0
(label), SPi

(?).
2. TTP ⇒ P \ Pi : fc2 ,P, label , SP0

(label), STTP (?).

A participant Pi (1 ≤ j ≤ n − 1) begins that protocol by sending (label , P,
SP0

(label)) to the TTP. The latter checks if P is consistent with the label , if
Pi belongs to the set P and if SP0

(label) is a valid signature. If so, the TTP
multicasts the signature of P0 over the label to the remaining participants and
asks them for the signatures obtained during the first round of the main protocol.

At this moment all the participants have received SP0
(label), and other excluded

participants (having possibly not received this signature before) can also invoke
the complaint protocol.

3. For j = 0, ..., i− 1, i+ 1, ..., n− 1:
Pj → TTP : fc3 ,TTP , fm1 , label , cj−1, certj−1,

SPj−1
(fm1 , Pj , label , cj−1, certj−1), SPj

(?).

4. TTP → Pi : fc4 , Pi, label ,P, STTP (?).

If after a deadline chosen by the TTP none of the remaining participants is able
to present Pi’s first round signature, the TTP will issue an affidavit attesting
that something wrong happened during the protocol. Two cases are possible:
either an honest entity was excluded from the exchange or a dishonest entity
ran the complaint protocol with the help of the next participant in the ring.

P has been defined as a set of participants. If all the participants in P \ Pi

reply to the second message of the complaint protocol, the TTP will know their
disposition in the ring. However, the TTP will not be able to determine where
the excluded participant Pi should be.

Otherwise, if P is defined as an ordered set according to the agreed topology, it
will be possible for the TTP to determine the identity of the nearest participant,
actively involved in the exchange, who follows Pi. At least this participant has
contributed to the coalition. The TTP may not be able to identify the dishonest
participant who precedes Pi because this dishonest entity may also realize a
complaint protocol.

5 Conclusion

We have shown that every participant in the fair exchange protocol proposed
by Bao et al. [5] must not only trust the TTP, but has to also trust P0, the
participant that initiates the protocol, for not sending a false yes to the TTP
during the recovery protocol. Such a behavior from P0 can lead to have a set



of entities to participate, without their consent, in a coalition excluding the
remaining participants. (Bao et al. also proposed [5] two modified versions of
their protocol. Participants in these modified protocols have to also trust the
initiator of the exchange.)

We have presented a new protocol in which participants must only trust the
TTP, and where passive conspiracies in order to exclude a set of participants
can be avoided. Trust requirements are reduced by increasing communication
needs. It is not easy to compare this reduction of trust requirements with the
resulting increase of communications. However, this communication increase is
measurable, unlike trust aspects.

Moreover, the proposed protocol allows excluded honest participants having re-
ceived SP0

(label) to prove to an external adjudicator that something went wrong
during the protocol.

References

1. Martín Abadi and Roger Needham. Prudent engineering practice for cryptographic
protocols. IEEE Transactions on Software Engineering, 22(1):6–15, January 1996.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for
multi-party fair exchange. Research Report RZ 2892 (# 90840), IBM Research,
December 1996.

3. N. Asokan and Victor Shoup. Asynchronous protocols for optimistic fair exchange.
In Proceedings of the 1998 Security and Privacy Symposium. IEEE, 1998.

4. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. Research Report RZ 2973 (#93019), IBM Research, November 1997.

5. Feng Bao, Robert Deng, Kanh Quoc Nguyen, and Vijay Vardharajan. Multi-party
fair exchange with an off-line trusted neutral party. In DEXA’99 Workshop on

Electronic Commerce and Security, Firenze, Italy, September 1999.
6. Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and practical fair exchange

protocols with off-line TTP. In RSP: 19th IEEE Computer Society Symposium on

Research in Security and Privacy, Washington - Brussels - Tokyo, May 1998.
7. Matt Franklin and Gene Tsudik. Secure group barter: Multi-party fair exchange

with semi-trusted neutral parties. Lecture Notes in Computer Science, 1465, 1998.
8. Matthew K. Franklin and Michael K. Reiter. Fair exchange with a semi-trusted

third party. In 4th ACM Conference on Computer and Communications Security,
Zurich, Switzerland, April 1997.

9. Steve Kremer and Olivier Markowitch. A multi-party non-repudiation protocol.
In Proceedings of SEC2000 conference, Beijing, China, August 2000.

10. Olivier Markowitch and Steve Kremer. A multi-party optimistic non-repudiation
protocol. Technical Report 443, ULB, 2001. Published in the proceedings of
The 3rd International Conference on Information Security and Cryptology (ICISC
2000).

11. Olivier Markowitch and Shahrokh Saeednia. Optimistic fair-exchange with trans-
parent signature recovery. Technical Report 452, ULB, 2001. Published in the pro-
ceedings of the 5th International Conference: Financial Cryptography 2001 (FC01).

12. Jianying Zhou and Dieter Gollmann. An efficient non-repudiation protocol. In
PCSFW: Proceedings of The 10th Computer Security Foundations Workshop. IEEE
Computer Society Press, 1997.


