
A New Key-Insulated Signature Scheme
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Abstract In this paper we propose a new strong and perfectly key-insulated
signature scheme, more efficient than previous proposals and whose key length
is constant and independent of the number of insulated time periods. Moreover,
unlike previous schemes, it becomes forward-secure when all the existing secrets
at a given time period are compromised. We also present a variant forward-
secure scheme in which an adversary needs to compromise a user at a second
time period before being able to compute future secret keys.
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1 Introduction

Classical digital signature schemes make use of a secret signing key only held
by a signer and of a related public key allowing to verify the correctness of
a signer’s signature on a given document. Compromise of a secret key lets an
attacker produce signatures on behalf of the corresponding signer and forces
the latter to revoke its public key and generate a new pair of keys. Therefore,
before accepting a signature as valid, one also has to verify that the public key
has not been revoked. In that case, such a verification prevents an attacker to
convince a third entity that a forged signature is correct. Unfortunately, this
does not always suffice as even valid signatures having been produced before
the compromise become invalid, unless a time-stamping authority has attested
that they were produced before the corresponding public key was revoked.

Getting rid of the revocation and time-stamping mechanisms in order to
simplify key management is an active research topic. It is particularly important
for online non-repudiation services, where the validity of digital signatures has to
be guaranteed during a long period of time in order to resolve possible disputes.

A first approach to this problem merely aims to complicate the task of an
adversary by sharing the knowledge about a secret key among a set of entities. In
threshold signature schemes [5], when signing a document each entity belonging
to a predetermined subset of the entities sharing the corresponding secret key
computes a partial signature on that document with the help of its share. Those
partial signatures are combined into one final and verifiable signature which is
given to the verifier. An adversary has therefore to compromise a threshold
number of entities in order to forge signatures. Proactive schemes [10] go a step
further by forcing entities to periodically refresh their secret share, but without
modifying the value of the secret key. These updates are done in such a way



that an adversary has to compromise a threshold number of entities before the
next refresh in order to be able to produce signatures for a given secret key.

More practical approaches try to limit the damages arising when secret
keys are exposed. In the forward-secure model [2, 4], secret keys are not shared
among some servers, but their lifetime is divided into discrete time periods. At
the beginning of each period, users compute a new secret key by applying a
public one-way function to the secret key used during the previous time period,
while public keys remain unchanged. An adversary compromising the secret
key at a given time period will be unable to produce signatures for previous
periods, but will still be able to sign messages during the current and future time
periods. Unlike classical schemes, the validity of previously produced signatures
is therefore assured1, but public keys have to be revoked.

The notion of key-insulated cryptosystems, which was introduced by Dodis
et al. [6], generalises the concept of forward-secure cryptography. In this model,
lifetime of secret keys is also divided into discrete periods and, as in previous
models, signatures are supposed to be generated by relatively insecure devices.
However, the secret associated with a public key is here shared between the
user and a physically secure device. At the beginning of each time period the
user obtains from the device a partial secret key for the current time period. By
combining this partial secret key with the secret key for the previous period, the
user derives the secret key for the current time period. Exposure of the secret
key at a given period will not enable an adversary to derive secret keys for the
remaining time periods. More precisely, in a (t, N)-key-insulated scheme the
compromise of the secret key for up to t time periods does not expose the secret
key for any of the remaining N − t time periods. Therefore, public keys do not
need to be revoked unless t periods have been exposed.

Additionally, strong key-insulated schemes guarantee that the physically
secure device (or an attacker compromising the partial secrets held by this de-
vice) is unable to derive the secret key for any time period. This is an extremely
important property if the physically secure device serves several different users.

As Dodis et al. already noted [7], key-insulated signatures schemes can be
used for signature delegation. In this context, a user grants to another user the
right to sign messages on his behalf during a limited amount of time. This kind
of delegation can be simply achieved by giving to this second user a secret key
for the corresponding time period. Indeed, the user who receives the signing
power will be unable to derive a secret key for another time period and, by
using a time-stamping service, will only produce valid signatures during the
delegated time period.

Finally, Itkis and Reyzin [12] introduced the notion of intrusion-resilient
signatures, which strengthens the one of key-insulation by allowing an arbitrary
number of non-simultaneous compromises of both the user and the device, while
preserving security of prior and future time periods. However, as pointed out by
Zhou et al. [16], a simple loss of synchronisation between the user and the device

1 Time-stamping services can still be useful in some contexts to avoid backdating of docu-
ments.



is not recoverable. This forces the corresponding public key to be revoked, which
seems to be to us in contradiction with the goals of key-insulation.

1.1 Contributions

In their first paper [6], Dodis et al. focused exclusively on public-key encryption
schemes. Recently, they proposed [7] three different key-insulated digital signa-
ture schemes. The first one is a generic and strong (N − 1, N)-key-insulated
scheme with public and secret keys of constant length, but whose signatures
are composed of two signatures from the scheme upon which the key-insulated
scheme is built. In their second construction, which is based on the discrete log-
arithm assumption, the length of the public key and of the device’s secret key
depends linearly on the number of insulated time periods. Finally, they describe
a generic and strong (N − 1, N)-key-insulated scheme that can be efficiently
instantiated by additively sharing a secret RSA exponent between the user and
the physically secure device.

We propose in this paper a new strong (N − 1, N)-key-insulated signature
scheme. Before presenting this system, we describe a variant scheme (also using
a physically secure device) which is forward-secure. Its main advantage with
respect to forward-secure schemes is that an adversary will need to compromise
a user at a second time period before being able to compute future secret keys.
This offers better protection against adversaries at a very acceptable price (the
physically secure device can be implemented and deployed by means of a smart
card).

The new key-insulated scheme appears to be more efficient than previous
proposals. Its key length is constant and independent of the number of insulated
time periods. Updates mainly consist in performing modular squarings. As for
[13], this confers to our scheme very fast refreshes and enables therefore more
frequent key updates. Finally, signing and verifying, which are based on the
Guillou-Quisquater signature scheme [9], remain also very efficient.

Unlike the schemes proposed by Dodis et al. [7], our key-insulated scheme
becomes forward-secure when all the existing secrets at a given time period are
compromised. In that sense, it respects one of the most interesting properties
of intrusion-resilient schemes [12], without suffering from the synchronisation
drawback stated above.

The remaining of this paper is organised as follows. Section 2 is devoted
to formally define key-insulated signature schemes. The scheme respecting the
forward-secure property is presented in section 3. By doing so, we will be able
to better describe in section 4 the new key-insulated scheme. This section in-
cludes a proof of security in the random oracle model under the strong RSA
assumption, that can be easily adapted to the first scheme. Finally, section 5
provides a detailed performance comparison between existing key-insulated sig-
nature schemes.

2 Definitions

In this section we formally define key-insulated signature schemes and the prop-
erties that those schemes may respect. The following definition of key-updating



signature schemes is based on the definition given by Dodis et al. [7] and tries
to be more generic than theirs.

Definition 1 A key-updating signature scheme is a 5-tuple of polynomial time
algorithms (KGen, UpdD, UpdU, Sig, Ver) such that:

– KGen, the key generation algorithm, is a probabilistic algorithm taking as
input one or several security parameters sp and (possibly) the total number
of periods N , and returning a public key PK , a master secret key MSK and
a user’s initial secret key USK 0.

– UpdD, the device key-update algorithm, is a (possibly) probabilistic algo-
rithm which takes as input the index i of the next time period, the master
secret key MSK and (possibly) the total number of periods N , and returns
a partial secret key PSK i for the i-th time period.

– UpdU, the user key-update algorithm, is a deterministic algorithm which
takes as input the index i of the next time period, the user’s secret key
USK i−1 for the current time period and the partial secret key PSK i. It
returns the user’s secret key USK i and the secret key SK i for the next time
period2.

– Sig, the signing algorithm, is a probabilistic algorithm which takes as input
the index i of the current time period, a message M and the secret key SK i

for the time period i; it returns a pair 〈i, s〉 composed of the time period i

and a signature s.
– Ver, the verification algorithm, is a deterministic algorithm which takes as

input a message M , a candidate signature 〈i, s〉 on M , the public key PK

and (possibly) the total number of periods N ; it returns true if 〈i, s〉 is a
valid signature on M for period i, and false otherwise.

Moreover, the following property has to be respected:

VerPK (M,SigSK i
(i,M)) = true ∀ i,M, (PK ,SK i).

�

The life cycle of keys in a key-updating scheme can be described as follows.
A user begins by running the KGen algorithm, obtaining a public key PK , as
well as the corresponding master secret key MSK and user’s initial secret key
USK 0. The public key PK is certified through a certification authority (CA)
and made publicly available, while MSK is stored on the physically secure device
and USK 0 is stored by the user himself. For each time period i, 1 ≤ i ≤ N ,
the user is now able to obtain a partial secret key PSK i by asking the device
to run the UpdD algorithm. By executing UpdU, the user transforms, with the
help of USK i−1, the partial secret key received from the device into a secret
key SK i for time period i which may be used to sign messages during this time
period. Furthermore, the user updates USK i−1 to USK i and erases USK i−1

and SK i−1.
As Dodis et al. [6, 7], we also assume that users authenticate themselves

to the physically secure devices during key updates and that the keys used for

2 In the schemes proposed in [7], the secret key and the user’s secret key are the same key.



achieving authentication are not stored on the insecure devices used for signing
documents.

The above description corresponds to the normal scenario where updates
are performed sequentially, from time period i to time period i+1. Dodis et al.
[6, 7] allow updates to be done randomly, i.e. from a given time period to any
other period. However, although being an interesting feature from a theoretical
point of view, we prefer to discourage users from backdating documents and
only support sequential updates in our schemes.

In the same way as Dodis et al. [7], we suppose that an adversary may

– ask for signatures on adaptively chosen messages for adaptively chosen time
periods;

– either expose the insecure signing device for up to t adaptively chosen time
periods or expose once the physically secure device;

– compromise the insecure signing device during an update.

He succeeds if he forges a valid signature 〈i, s〉 on a message M for which he
never requested a signature for time period i and if he never exposed the insecure
device at this time period.

We model a signature request by giving the adversary access to a signing
oracle SigMSK ,USK 0

(·, ·), that on input (i, M) returns the result of SigSK i
(i,M).

Key exposures are modelled by a key exposure oracle ExpMSK ,USK 0
(·), which on

input i returns the values USK i and SK i stored on the insecure device during
the i-th time period.

Definition 2 [7] Let Π = (KGen,UpdD,UpdU,Sig,Ver) be a key-updating sig-
nature scheme. The success probability SuccA,Π(sp) of an adversary A is defined
as follows:

P

[

VerPK (M, 〈i, s〉) = true

∣

∣

∣

∣

(PK ,MSK ,USK 0)← KGen(sp, N),

(M, 〈i, s〉)← A
Sig

MSK ,USK0
(·,·),Exp

MSK ,USK0
(·)(PK )

]

,

where (i, M) was never submitted to the signing oracle and i was never sub-
mitted to the key exposure oracle.

Π is said to be (t,N)-key-insulated if for any probabilistic polynomial time
adversary A submitting at most t key exposure requests, SuccA,Π(sp) is negli-
gible. When t = N − 1, Π is said to be perfectly key-insulated. �

It is also possible for an adversary to compromise the physically secure device
or to have a dishonest physically secure device forging signatures on behalf of
the user. The following definition deals with this problem. The adversary does
not query the key exposure oracle here, but the master secret key is simply
given to him.

Definition 3 [7] Let Π = (KGen,UpdD,UpdU,Sig,Ver) be a (t, N)-key-insu-
lated signature scheme. The success probability SuccB,Π(sp) of an adversary B

is defined as follows:

P

[

VerPK (M, 〈i, s〉) = true

∣

∣

∣

∣

(PK ,MSK ,USK 0)← KGen(sp, N),

(M, 〈i, s〉)← B
Sig

MSK ,USK0
(·,·)(PK ,MSK )

]

,



where (i, M) was never submitted to the signing oracle.

Π is said to be strong (t, N)-key-insulated if for any probabilistic polynomial
time adversary B, SuccB,Π(sp) is negligible. �

Finally, we address exposures of the insecure device during an update phase.
We adapt thus the definition of secure key updates of Dodis et al. [7] to the
sequential updates context of our schemes.

Definition 4 A key-insulated signature scheme has secure key updates if the
view of an adversary A making a key exposure during an update from time
period i to time period i + 1 can be perfectly simulated by an adversary A′

making a key exposure at periods i and i + 1. �

3 A First Scheme

We describe here a first signature scheme inspired from the forward-secure sig-
nature scheme of Zhou et al. [15] and respecting a slightly stronger definition of
forward-security. The new scheme is not completely key-insulated because an
attacker compromising the user at time periods i and j, with i < j, is able to
deduce all the secret keys used between these two time periods. However, as an
attacker will need to compromise the user at a second time period before obtain-
ing future secret keys, a user detecting having been compromised can revoke his
public key and prevent meanwhile the attacker from forging signatures for time
periods comprised between the exposure and revocation instants. This differs
from classical forward-secure schemes, in which valid forged signatures can be
produced for the time periods comprised between exposure and revocation.

The signature and verification algorithms of our scheme are based on the
Guillou-Quisquater signature scheme [9]. In the next section we will show how
the scheme presented hereafter can be modified in order to achieve perfect key-
insulation.

KGen(k, l)

k and l are two security parameters. Let n = pq be a k-bit modulus, where
p = 2p′ + 1 and q = 2p′ + 1 are safe primes numbers such that p′ and q′

are also safe primes. Let v be an (l + 1)-bit prime number. And let h be a
one-way hash function h : {0, 1}∗ → {0, 1}l (in the following we will note
by h(a, b) the result of applying to h the concatenation of a value a with
a value b).
The user randomly chooses t, u ∈ Z

∗

n, such that s2 6= s28+1

mod n and
t2 6= t2

8+1

mod n. The public key PK is composed of PK 1 = t−v mod n

and PK 2 = u−v mod n. The master secret key is MSK = t2 mod n and
the user’s initial secret key is USK 0 = u2 mod n.

UpdD(i,N,MSK )

The physically secure device computes the partial secret key

PSK i = (MSK )2
N−i

mod n = t2
N+1−i

mod n.



UpdU(i,USK i−1,PSK i)

The user computes the user’s secret key for the time period i

USK i = (USK i−1)
2 mod n = u2i+1

mod n

and the corresponding secret key

SK i = PSK i ·USK i mod n = t2
N+1−i

· u2i+1

mod n.

SigSK i
(i,M)

In order to sign a message M during the time period i, the user randomly
chooses a value x ∈ Z

∗

n, computes y = xv mod n, d = h(i,M, y) and
D = x·(SK i)

d mod n. The signature of M for the time period i is (i, d,D).

VerPK (M, (i, d,D), N)

For verifying if (i, d,D) is a valid signature on M for the time period i,
an entity computes

h(i,M,Dv · ((PK 1)
2N+1−i

· (PK 2)
2i+1

)
d

mod n)

and accepts the signature only if the result is equal to d. If the signature
is valid then this equality holds:

h(i,M,Dv · ((PK 1)
2N+1−i

· (PK 2)
2i+1

)
d

mod n)

= h(i,M, (x · (SK i)
d)

v
· ((

1

tv
)
2N+1−i

· (
1

uv
)
2i+1

)

d

mod n)

= h(i,M, xv · (t2
N+1−i

· u2i+1

)
d·v
· (

1

t2
N+1−i

·
1

u2i+1
)
d·v

mod n)

= h(i,M, xv mod n)

= d

3.1 Analysis

In this section we show that the above scheme is forward-secure but not key-
insulated. Indeed, the scheme is built in such a way that it is easy to compute
past partial secret keys when knowing a current value of this secret:

PSK i−j = (PSK i)
2j

mod n ∀ j > 0.

Moreover, the user’s secret key is computed in a forward-secure fashion:

USK i+j = (USK i)
2j

mod n ∀ j > 0.

Therefore, in the improbable case of a user’s compromise at two different
time periods i and j, with i < j, an opponent will obtain SK i and USK i on
period i, as well as SK j and USK j on period j. By deriving PSK j from the



latter two secrets and appropriately combining it with USK i, he will be able to
compute any secret signing key

SK r = (USK i)
2ℓ

· (PSK j)
2j−i−ℓ

mod n ∀ ℓ ∈ [1, j − i− 1] ,

comprised between time periods i and j.

However, other secret signing key values are kept secret since for r < i the
value of USK r can not be easily derived and for r > j the value of PSK r can
neither be easily computed.

Consequently, the scheme is not key-insulated, but following this scenario it
may be considered more robust than traditional forward-secure schemes since
an opponent needs to compromise the user at a second time period before
being able to compute future secret keys. This robustness is achieved thanks
to the physically secure update device, which is not used in classical forward-
secure signature schemes. Note that this scheme can be proven forward-secure,
according to its usual definition [4, 1, 11, 13], in a similar way than in the
security proof for the key-insulated scheme presented in the next section.

4 A Strong and Perfectly Key-Insulated Scheme

We present now our perfectly key-insulated scheme. Basically, it remains quite
similar to the scheme described above. The main difference is that the partial
secret keys output by the physically secure device are based on the product be-
tween a value belonging to an increasing series of powers of 2 and its counterpart
in a decreasing series of powers of 2, as the secret keys of the first scheme.

KGen(k, l)

k and l are two security parameters. Let n = pq be a k-bit modulus, where
p = 2p′ + 1 and q = 2p′ + 1 are safe primes numbers such that p′ and q′

are also safe primes. Let v be an (l + 1)-bit prime number. And let h be
a one-way hash function h : {0, 1}∗ → {0, 1}l.
The user randomly chooses s, t, u ∈ Z

∗

n, such that s2 6= s28+1

mod n,
t2 6= t2

8+1

mod n and u2 6= u28+1

mod n. The public key PK is composed
of PK 1 = s−v mod n, PK 2 = t−v mod n and PK 3 = u−v mod n. The
master secret key MSK is composed of MSK 1 = s2 mod n and MSK 2 =
t2 mod n, and the user’s initial secret key is USK 0 = u2 mod n.

UpdD(i,N,MSK )

The device computes the partial secret key for the i-th time period as
follows:

PSK i = (MSK 1)
2i

· (MSK 2)
2N−i

mod n = s2i+1

· t2
N+1−i

mod n.

Note that in order to compute the next partial secret key, the device only

needs to store (MSK 1)
2i

and MSK 2.



UpdU(i,USK i−1,PSK i)

The user computes the user’s secret key for the time period i

USK i = (USK i−1)
2 mod n = u2i+1

mod n

and the corresponding secret key

SK i = PSK i ·USK i mod n = s2i+1

· t2
N+1−i

· u2i+1

mod n.

SigSK i
(i,M)

In order to sign a message M during the time period i, the user randomly
chooses a value x ∈ Z

∗

n, computes y = xv mod n, d = h(i,M, y) and
D = x·(SK i)

d mod n. The signature of M for the time period i is (i, d,D).

VerPK (M, (i, d,D), N)

For verifying if (i, d,D) is a valid signature on M for the time period i,
an entity computes

h(i,M,Dv · ((PK 1)
2i+1

· (PK 2)
2N+1−i

· (PK 3)
2i+1

)
d

mod n)

and accepts the signature only if the result is equal to d. If the signature
is valid then this equality holds:

h(i,M,Dv · ((PK 1)
2i+1

· (PK 2)
2N+1−i

· (PK 3)
2i+1

)
d

mod n)

= h(i,M, (x · (SK i)
d)

v
· ((

1

sv
)
2i+1

· (
1

tv
)
2N+1−i

· (
1

uv
)
2i+1

)

d

mod n)

=
h(i,M, xv · (s2i+1

· t2
N+1−i

· u2i+1

)
d·v

· (
1

s2i+1
·

1

t2
N+1−i

·
1

u2i+1
)
d·v

mod n)

= h(i,M, xv mod n)

= d

4.1 Analysis

We begin by proving that the keys take a large number of values before cycling.
This avoids the possibility for an attacker to merely wait for a new occurrence
of the cycle in order to obtain the secret key for a future time period.

Since n has been defined as the product of two prime numbers p and q such
that:

{

p = 2p′ + 1, with p′ = 2p′′ + 1 and p′′ prime

q = 2q′ + 1, with q′ = 2q′′ + 1 and q′′ prime,

we have that φ(n) = 4p′q′.

The secret keys of our scheme are the product of three terms of the form a2ℓ

.
The length of a cycle for this product is the least common multiple of the cycle



lengths for each of these three terms. Notice that the probability to compute a
previously computed secret key before cycling is negligible (less than φ(n)−1).

We can hence work on one of these cycles. Looking for the smallest possible
cycle then reduces to find i and j such that i < j and j is the smallest number
such that a2i

= a2j
mod n. The length of a cycle is therefore j − i.

By testing beforehand, it is easy to prohibit cycles of length 2 or 4. We can
then deduce that 2i = 2j mod z, where z is a divisor of 4p′q′, distinct of 2 and
4. Again, this lead us to the fact that i = j mod z′, where z′ is a divisor of φ(z).
The only possible values for z′ which are smaller than p′′ and q′′ are 2, 4 and 8.
As above, we can avoid these three particular cases by doing a small quantity
of tests before using the key. This implies that j − i ≥ min(p′′, q′′).

We will now prove that the scheme described above is strong and perfectly key-
insulated and that it has secure key updates. Security is proven in the random
oracle model and is based on the strong RSA assumption [3, 8], which states
that, given a number n that is the product of two prime numbers and a value
α ∈ Z

∗

n, it is computationally infeasible to find β ∈ Z
∗

n and r > 1 such that
βr = α mod n.

Theorem 1 The scheme described in section 4 is strong and perfectly key-
insulated and has secure key updates.

Proof: Suppose we are given a forger F (a probabilistic polynomial time Turing
machine) that after a polynomial amount of time and after querying a finite
number of times a signing oracle and, possibly, a key exposure oracle (as de-
scribed in definitions 2 and 3) as well as a random oracle (allowing us to model
the hash function), produces with non-negligible probability a valid signature
for a message and a time period never submitted to the signing oracle and a
time period never submitted to the key exposure oracle. We will show how to
use F in order to solve a particular instance of the strong RSA problem.

In order to answer oracle queries, we maintain a hash query table and a
signature query table. Each time F queries the random oracle on (ij ,Mj , yj) we
check if h(ij ,Mj , yj) has already been defined. If so, we answer with h(ij ,Mj , yj),

otherwise we answer with a new randomly chosen value dj ∈ {0, 1}
l and record

(ij ,Mj , yj , dj) in the hash query table.
Every time F queries the signing oracle on a new (ij ,Mj) pair, we randomly

chose dj ∈ {0, 1}
l and Dj ∈ Z

∗

n such that h(ij ,Mj ,Dj
v · (PK ij)

dj mod n)

has not already been defined, where PK ij equals (PK 1)
2ij+1

· (PK 2)
2N+1−ij

·

(PK 3)
2ij+1

mod n. We set h(ij ,Mj ,Dj
v ·(PK ij)

dj mod n) to dj , record (ij , Mj ,
dj , Dj) in the signature query table and output (ij , dj ,Dj) as signature.

Finally, when answering a key exposure oracle query ij, we simply compute
USK ij and SK ij from MSK and USK 0 and give the former two keys to F .

We run F by giving it a random tape, n, v, PK and, possibly, MSK . After
a polynomial amount of time, F outputs a signature (i1, d1,D1) on a message
M1. Let y1 be D1

v · (PK i1)
d1 mod n. Note that the entry (i1,M1, y1) has to be

present in the hash query table and that (i1,M1) must not exist in the signature
query table.



Furthermore, if F is given access to a key exposure oracle, we have, by
definition 2, that this oracle can give to F the secret keys stored on the insecure
device for up to N − 1 time periods, obtaining therefore {USK ij ,SK ij} ∀ 1 ≤
ij ≤ N , with ij 6= i1. From USK i1−1, F would be able to compute USK i1 by
simply performing a modular squaring. However, it will be unable to compute
PSK i1 from any other PSK ij since the factors of each PSK ij are unknown to
him. (The property of secure key updates follows directly from this fact.)

On the other hand, by definition 3, we would have given to F the keys used
by the physically secure device, that is to say MSK 1 and MSK 2, from which
F is able to compute PSK i1 . However, it will not be able to find by itself the
corresponding USK i1 value allowing him to compute SK i1 , since it can not
query now a key exposure oracle.

We reset F and run it again by giving it the same random tape as before,
n, v, PK and, possibly, MSK . We give the same answers to F ’s oracle queries
as during its first execution until (i1,M1, y1) is queried to the random oracle,
in which case we reply with a new randomly chosen value d′1 6= d1. From that
moment we reply to F ’s oracle queries with new randomly chosen answers.

Again, after a polynomial amount of time F outputs a forged signature
(i2, d2,D2) on a message M2. Let y2 be D2

v · (PK i2)
d2 mod n. With non-

negligible probability [14], we have that (i1,M1, y1) = (i2,M2, y2) and therefore
d′1 = d2. From this we have that D1

v · (PK i1)
d1 = D2

v · (PK i2)
d2 , with d1 6= d2.

Consequently, we have that

(

D1

D2

)v

= (PK i1)
d2−d1 .

As v is a prime number, we have that v and d2−d1 are relatively prime. Note
that these two values are not equal since v is an (l + 1)-bit number and d2− d1

has at most l bits. By applying Bézout’s theorem, we can find two integers a

and b such that av + b(d2 − d1) = 1 and compute

PK i1 = (PK i1)
av · (PK i1)

b(d2−d1) mod n

= (PK i1)
av ·

(

D1

D2

)bv

mod n

=

(

(PK i1)
a ·

(

D1

D2

)b
)v

mod n

By letting β = (PK i1)
a ·
(

D1

D2

)b

and r = v, we solve the strong RSA problem

for α = PK i1. Note that by guessing the time period i1 during which F will
forge a signature, it would be possible to compute the appropriate values for
the secret and public keys in order to solve the strong RSA problem for any
other value of α. As the algorithm solving the strong RSA problem that we have
constructed runs in polynomial time, contradicting therefore the intractability
assumption, we have that the success probability of F has to be negligible. By
definitions 2 and 3 we can therefore conclude that the scheme is strong and
perfectly key-insulated. �



5 Comparison

In this section we look at the performances of our key-insulated scheme and
compare it with the other existing schemes, namely those described in [7].

Dodis et al. propose [7] three strong key-insulated schemes. The first one is
generic and therefore not suitable for precise comparisons. Moreover, the pro-
duced signatures are composed of two signatures from the scheme upon which
the key-insulated scheme is based, what implies computation and transmission
overheads.

We will therefore compare our scheme with the remaining schemes they
propose. Their second scheme, named DKXY2 in the following, is an interesting
and practical scheme based on the Okamoto-Schnorr signature. However, it has
the drawback to have keys size which grow linearly with the number of insulated
time periods, whereas our scheme has key length independent of the number
of time periods. For this comparison, we consider the perfectly key-insulated
version of this scheme, i.e. where the number of insulated time periods equals
N − 1.

Finally, their the third scheme, called hereafter DKXY3, is an efficient and
generic perfectly key-insulated signature scheme. For the sake of comparison,
we study it in its RSA-based version (for the one-way trapdoor function).

We set that n is a 512 bits modulus and that the size of v is 160 bits. For
the comparison to be effective, we only consider the number of modular mul-
tiplications, which are the most time-consuming operations of those schemes,
and neglect other computations such as hashing. We assume, as usual, that a
modular exponentiation is equivalent to 1.5 · ℓ modular multiplications, where
ℓ is the size in bits of the exponent.

The most consuming step of the key generation part of DKXY2 is the com-
putation of 2N modular exponentiations with 160 bits exponents, as well as
one modular multiplication. The update device needs to compute twice N − 1
modular multiplications during UpdD. The update step for the user is negligible.

The complete key generation part of DKXY3 cannot be detailed since no
precise signature implementation is proposed (the original paper only describes
the setup of RSA keys needed to implement the trapdoor function). However,
the update procedures are completely described. Both updates correspond to a
modular exponentiation with a 512 bits exponent. The user key-update algo-
rithm requiring moreover a modular multiplication.

Our key generation phase implies three modular exponentiations with 160
bits exponents, three modular inverses and 27 modular squarings, 24 of them,
in the best case, in order to avoid small cycles. Our updates need two modu-
lar multiplications, two modular squarings that are performed from previously
computed squarings and one modular exponentiation where the size of the ex-
ponent corresponds, in the worst case, to the number of time periods.

In table 1 we indicate the complexity of the update stages for each of these
three schemes in terms of modular multiplications. We can see that our scheme
is at least as efficient or much more efficient than the ones of Dodis et al. for
each algorithm.



Table1. Performances of the update phases

DKXY2 DKXY3 New scheme

UpdD 2(N − 1) 768 2 + N

UpdU 0 769 2

The signature process of DKXY2 counts for two modular exponentiations
with 160 bits exponents and three modular multiplications. Their verification
process needs, in the one hand, the computation of N − 1 modular multiplica-
tions and N modular exponentiations with small exponents, that we simplify in
N modular multiplications. In the other hand, three modular exponentiations
with 160 bits exponents and two modular multiplications are performed.

Our signature process is similar to the Guillou-Quisquater scheme, and our
verification algorithm requires two modular squarings, two modular exponenti-
ations with 160 bits exponents, one modular exponentiation with an exponent
whose size corresponds, in the worst case, to the number of time periods and
three modular multiplications.

As no practical underlying signature scheme is detailed for DKXY3, table 2
only indicates the complexity of the key generation, signature and verification
algorithms for DKXY2 and our scheme in terms of modular multiplications.
Anew, we can see that our scheme is more efficient than the one of Dodis et al.

Table2. Performances of the key generation, signature and verification algorithms

DKXY2 New scheme

KGen 481N 750

Sig 483 481

Ver 2N + 721 485 + N

Our scheme’s computations are partially dependent on the number of time
periods, in contrary to DKXY3. However, we may consider that in our scheme
the key generation step may be realised periodically (one time each year for
example). This way of doing allows to keep better performances at a very ac-
ceptable price (a price which is diluted within the price of computations achieved
on a long period of time).

Unlike DKXY2, where the key size depends on the number of time periods,
our scheme makes use of constant length keys. The secret keys used by the user
and the update device, i.e. MSK 1, MSK 2 and USK 0, counts for 1536 bits in
our scheme. The public keys used when verifying signatures, i.e. PK 1, PK 2 and
PK 3, count also for 1536 bits in our scheme. We may notice that the size of
our scheme’s public keys is not critical since it is not required to store them in
a not very powerful tamper-proof device. The size of our scheme’s secret keys
remains reasonable, particularly when considering the efficiency of the secret



keys update procedure which may be performed regularly within a short period
of time (e.g. daily).

6 Conclusion

We have proposed in this paper a new strong and perfectly key-insulated signa-
ture scheme, inspired from the forward-secure scheme of Zhou et al. [15], more
efficient than other previously known key-insulated signature schemes. Its key
length is constant and does not depend on the number of insulated time periods.
Although being considerably fast, updates for the physically secure device con-
sist in performing a certain number of modular squarings that depends linearly
on the total number of time periods. However, this number becomes smaller as
the number of elapsed time periods grows. On the other side, updates for users
require only two modular multiplications.

The signature and verifications algorithms of our key-insulated signature
scheme are based on the Guillou-Quisquater scheme [9]. As for the update
algorithm for the physically secure device, the verification algorithm performs
a certain number of modular multiplications that depends linearly on the total
number of time periods, but that decreases as the number of elapsed time
periods grows.

Moreover, the way how updates are done allows this scheme to become
forward-secure when all the existing secrets at a given time period are compro-
mised. This property, not respected in other key-insulated schemes, provides
increased security to signatures having been produced at previous time periods
without additional infrastructure.
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