
Identity-Based Optimistic Fair Exchange with Transparent Signature Recovery

Shahrokh Saeednia, Olivier Markowitch and Yves Roggeman
Universit́e Libre de Bruxelles, {saeednia,omarkow,yrogge}@ulb.ac.be

Abstract

In this paper, we propose a new practical fair exchange pro-
tocol allowing the exchange of an electronic item against a
signature. The protocol is based on the Guillou-Quisquater
scheme and assumes the existence of a trusted third party
that is involved in the protocol only in the setup phase and
when one of the parties does not follow the protocol or some
technical problems occur during the execution of the proto-
col. The interesting feature of the protocol is the low com-
munication and computational costs required by the parties.
Moreover, in case of problems during the main protocol, the
trusted third party acts transparently.

1 Introduction

Applications implying the exchange of information be-
tween users in a fair way, become more frequent. Payment
systems, certified mail and contract signing are examples.
An exchange protocol is said to be fair if after the execution
of the protocol, either all the involved parties obtain their
expected information or none of the information to be ex-
changed against the missing information are received. In
this paper, we focus on the problem of the fair exchange of
an electronic item, issued by aprovider, against a digital
signature considered as an acknowledgement of receipt of
the item, issued by aclient.

The previous major works about fair exchange assume the
existence of a TTP in the protocol. Its role consists to pre-
vent and/or resolve the problems that may occur between
the communicating parties. In order to reduce the compu-
tation and communication overheads implied by the use of
the TTP, Asokan and Micali proposed independently that
the TTP has not to be involved in the transactions when the
parties behave correctly and when the network functions,
but to invoke the TTP to complete the protocol in case of
problems. Protocols with such a TTP are saidoptimistic
and the TTP is said to beoffline. In the classical opti-
mistic exchange protocols, in case of problems, the TTP
forwards the item awaited by the client and can either make
the client’s signature available to the provider or give its

own signature as an affidavit that has the same legal value
than the client’s signature. Our aim is to design a protocol,
where the TTP isinvisibleor transparent. This means that
at the end of the protocol, by only looking at the produced
signatures, it is impossible to distinguish between the cor-
rect execution of the protocol and the case where the TTP
completed it. As the intervention of the TTP can be due to
a network failure rather than a cheating party, transparent
TTPs are very useful in the context of electronic commerce,
in order to avoid confusing reputations for both clients and
providers. The idea of an invisible TTP was first presented
by Micali. Later, Asokan et al. [1] and Boyd and Foo [2]
proposed fair exchange protocols with transparent TTPs by
using, respectively, verifiable encryption (which however is
computationally inefficient) and designated convertible sig-
natures (requiring an additional interactive protocol, which
is not efficient).

In this paper, we propose a new optimistic fair exchange
protocol based on the Guillou-Quisquater signature scheme
that uses an offline TTP producing the same digital signa-
tures as the client and the provider would produce in a fault-
less case. Our protocol is more efficient than the previously
cited protocols. A similar protocol [3] based on the GPS
signature scheme [4] has been recently proposed and we
show here that another efficient instance of the proposed
protocol can be derived from the Guillou-Quisquater sig-
nature scheme. The particularity of the present scheme is
that it is identity-based. This implies a more efficient pro-
tocol, in the sense that no certificates on the public keys
are needed, hence reducing the communication and com-
putational cost required by the parties. The price to pay
is, however, a stronger trust requirement. In this frame-
work, the TTP is more powerful than in certificate-based
or self-certified schemes, but we propose a way to limit this
power by introducing several TTP’s in the system. We as-
sume that the communication channel between the provider
and the client is unreliable (the transmitted data may be lost
or modified), and the communication channels between the
provider and the TTP, and also between the client and the
TTP are resilient (the transmitted data is delivered after a fi-
nite, but unknown amount of time; the data may be delayed,
but will eventually arrive).

1



2 A fair exchange protocol

The proposed protocol is based on the Guillou-Quisquater
signature scheme that may be described as follows. The
TTP chooses two large random primesp andq and a rela-
tively large primev, co-prime withp− 1 andq − 1. It also
selects a collision-resistant hash functionh whose output is
< v and almost of the same size. Then, it makesh, v and
n = pq public and keepsp andq secret. The secret keyx
of a user is computed asx = I−v−1

(mod n), whereI is a
string describing the user’s identity and serves as his public
key andv−1 is computed moduloλ(n). To generate a sig-
nature on a messagem, the signer chooses a random integer
r ∈ Zn and computest = h(rv mod n, m) andT = r · xt

mod n. The signature is the pair(t, T ) and is accepted as
valid if t = h(T v · It mod n, m). In our scheme, in addi-
tion to the parameters above, the TTP selects a very small
public primee 6= v that is also co-prime withp − 1 and
q − 1.

We will use the following notations in our protocol:item is
the electronic item to be transmitted to the client anddescr
is a string containing the client’s request, the description of
the requested item and some other information allowing the
provider, the TTP and any other external party to recognize
the item. C,P,TTP identify, respectively, the client, the
provider and the trusted third party.h(X) is the output of a
one-way hash functionh applied to the messageX. SP (X)
is a “classical” provider’s digital signature (and not recover-
able) of the messageX. Ek (X) is a symmetric encryption
of the messageX with the session keyk andETTP (X) is
an asymmetric encryption of the messageX with the TTP’s
public key. fxxx are flags indicating the purpose of a mes-
sage sent.l is a label identifying the protocol run, together
with the identitiesP andC.

Main protocol

When a client and a provider agree to exchange a provider’s
item against the client’s signature, they follow this protocol.

1. The provider selects a random valuerP and com-
putestP = rev

P mod n andTP = re
P · x

h(tP ,mP )
P where

mP = (fmsg , P, C, l, descr). He also selects a random
session keyk and forms Ek (l, item) andETTP (k). The
pair (tP , TP ), being the provider’s committed signature,
is sent to the client together withfcom1 , P , C, l, descr ,
Ek (l, item), ETTP (k) and the provider’s classical signa-
ture on those information.

2. The client checks that the provider’s committed sig-
nature may be opened, if necessary, by the TTP to pro-
vide the final signature and that the provider’s signature on
the ciphered information is valid. The client formsmP

on his own side and checks whether the provider’s clas-

sical signature is valid and whethertP ≡ T v
P · I

h(tP ,mP )
P

mod n. If so, the client chooses a randomrC and computes
tC = rev

C mod n and TC = re
C · xh(tC ,mC)

C where
mC = (fack , C, P, l, descr). The client’s committed signa-
ture, composed by the pair(tC , TC), is sent to the provider
together withfcom2

, C, P andl.

3. The provider formsmC and checks whethertC ≡ T v
C ·

I
h(tC ,mC)
C mod n. If so, the provider computest′P = rv

P

mod n and sends to the client the item (or just the session
key, in order to decrease the amount of communications),
t′P , fmsg , P , C andl. The pair(t′P , TP ) being the provider’s
final signature.

4. The client verifies thatt′eP ≡ T v
P ·I

h(t′eP mod n,mP )
P mod n.

If so, after having checked the validity of the received item,
the client computest′C = rv

C mod n and sends to the
provider fack , C, P , l and t′C . The pair(t′C , TC) being
the final signature.

5. The provider verifies thatt′eC ≡ T v
C · I

h(t′eC mod n,mC)
C

mod n. If so, the provider accepts the signature, since it
will also be accepted by any external party.

Provider’s recovery protocol

If the client does not send his final signature or if the one
transmitted is not valid, the provider runs the following pro-
tocol with the TTP in order to recover the client’s final sig-
nature.

1. The provider sends to the TTP the flagfrecP
, P , C, l,

descr , item, tP , his final signature(t′P ,TP ) and the pair
(tC , TC).

2. If the protocol has already been recovered or aborted,
the TTP stops the recovery protocol. Otherwise, the TTP
makes sure that the item corresponds actually to its descrip-
tion and if so, it formsmC andmP and verifies the validity
of (tC , TC) and(t′P , TP ). If all the checks are successful
(1) the TTP sendst′C = te

−1

C mod n to the provider to-
gether withfack , C, P and l, (2) and the TTP sends also
fmsg , P , C, l, item andt′P to the client. Otherwise, it sends
an abort token to both parties.

Client’s recovery protocol

If the provider does not send the item and his final signature
to the client, or if the transmitted information is not valid,
the client runs the following protocol with the TTP.

1. The client sendsfrecC
, C, P , l, descr , Ek (l, item),

ETTP (k), SP (fcom1
, P, C, l, Ek (l, item) , ETTP (k)), the

pair (tP , TP ) (the provider’s committed signature),tC and
his final signature(t′C , TC) to the TTP.

2. If the protocol has already been recovered or aborted,
the TTP stops the recovery protocol. Otherwise, the TTP

2



first makes sure that the ciphered label and item are coher-
ent, that the received item (obtained after deciphering) cor-
responds actually todescr and that the provider’s signature
sigP is valid, if so it formsmC andmP and verifies the
validity of (tP , TP ) and(tC , TC). If the signatures are in-
valid the TTP stops the recovery protocol (but does not send
an abort token). If the other checks are not successful the
TTP sends an abort token to the provider and to the client,
as in the abort protocol. Otherwise, if the checks are suc-
cessful, the TTP sendsfmsg, P , C, l, item andt′P = tP

e−1

mod n to the client; andfack , C, P , l together with the pair
(t′C = tC

e−1
, TC) to the provider.

Abort protocol

If the client does not send his committed signature or if the
one transmitted is not valid, the provider runs the following
protocol with the TTP, in order to abort the protocol.

1. The provider sends an abort request, composed offab1 ,
C, P , l and SP (fab1 , C, P, l), to the TTP.

2. If the protocol was not already recovered or aborted,
the TTP sends an abort confirmation to the provider
and the client. The TTP sendsfab2 , P , C, l and
STTP (fab2 , P, C, l) to both the provider and the client.

Fairness

If the client stops the main protocol after receiving the first
message, either the client can run a recovery protocol with
the TTP during which the client and the provider receive
their expected information, or the provider can run an abort
protocol with the TTP, in which case neither the client nor
the provider receive their expected information. In both
cases the protocol remains fair. If the provider stops the
main protocol after receiving the client’s committed signa-
ture, then the only possible way for him to get the client’s
final signature is to run a recovery protocol with the TTP.
In this case, both the client and the provider receive their
expected information and so the protocol remains fair. If
the client stops the main protocol after receiving the item,
the provider can initiate a recovery protocol with the TTP
that sends him the client’s final signature and the item to the
client. The protocol is remaining fair, due to the resilient
channels between the TTP and respectively the provider and
the client.

3 Security analysis

The security of our protocol may be discussed around two
questions: (1) Is it possible to forge committed signatures
linked to a given user? (2) Is it possible to forge final signa-
tures linked to a given user directly (i.e., without having the
related committed signature) or by converting a committed

signature to a final one without knowingr or e−1?

Theorem 1: If the Guillou-Quisquater signature scheme is
secure then it is infeasible to forge a committed signature
without knowing the user’s secret key. Proof: A committed
signature in our scheme is exactly the same as a Guillou-
Quisquater signature in the sense that it is verified the same
way. So if it is possible to forge a committed signature on
a messagem without knowing the secret key, then it would
be possible to create a Guillou-Quisquater signature on the
same message by the same means.

Theorem 2: If the Guillou-Quisquater signature scheme is
secure then it is infeasible to forge a final signature without
knowing the user’s secret key or from the related committed
signature without knowingr or e−1. Proof: If it is possi-
ble to create a final signature(t′, T ) on a messagem just
from the user’s public key and known signatures (but with-
out having the corresponding committed signature), then it
would be possible to convert it to(t = t′

e mod n, T ), as
a committed signature that is actually a Guillou-Quisquater
signature on the same message.

On the other hand, if we have a committed signature(t, T )
on a messagem, in order to computet′, one should either
know r (to do as the real client does) ore−1 (to do like
the TTP). However, suppose that it would be possible for a
cheater to use(t, T ) to create a correct final signature of the
form (t̂′, T̂ ). This signature may be such thatT̂ 6= T (that
implies thatt̂′ 6= t′) or T̂ = T but t̂′ 6= t′, where(t′, T ) is
the real final signature derived from(t, T ). We prove that
in either case, establishing a final signature fromt andT
is equivalent to forging a Guillou-Quisquater signature. In
fact, if one generates a valid pair(t̂′, T̂ ) from (t, T ), then it
is possible to form another committed signature(t̂ = t̂′

e
, T̂ )

for the same message. However, both committed signatures
are valid Guillou-Quisquater signatures. This means that we
have an algorithm that given a valid Guillou-Quisquater sig-
nature on a messagem, outputs another Guillou-Quisquater
signature on the same message:(t, T ) : T v · Ih(t,m) = t⇒
(t̂, T̂ ) : T̂ v· Ih(t̂,m) = t̂. But, this is actually equivalent to
forging a Guillou-Quisquater signature on a new message
m′. Indeed, sinceh is, by assumption, a collision-resistant
one-way hash function, it may be considered as a random
function. This means thath(t̂, m) is random and its value is
not predictable before computinĝt. So, if the algorithm can
create a Guillou-Quisquater signature(t̂, T̂ ) on a message
m, a modification of that algorithm would create a signature
on another messagem′. As noted in the proof of theorem 1,
a committed signature is verified in the same way as a reg-
ular Guillou-Quisquater signature. So, if a client deviates
from the protocol and computes his committed signature as
tC = rC

v mod n andTC = rC · xC
h(tC ,mC) mod n, the

protocol still remains secure, because a recovery by the TTP
(requested by a provider) on this signature yields straight-

3



forwardly a correct final signature.

4 Working with several TTP’s

As is the case in all identity-based schemes, the user se-
cret keys are calculated by the TTP. This means that the
TTP can potentially do anything with these keys. So, a ba-
sic requirement in our scheme is that the authority should
be fully trusted by all the users. This assumption may be
acceptable for local applications with a reduced scale. For
many other applications covering users around the world,
however, trusting a single central authority is too strong and
surely not realistic. For this purpose, we may conceive a
system made up by several TTPs that each has its own set-
ting parameters; i.e.,p, q and consequentlyn (the public
valuesv, e and the hash functionh may remain common to
all TTPs). Each user is associated to a given TTP that is re-
sponsible of generating its pair of keys and is the only entity
(other than the user itself) that knows it. In this case, when
the users participate in a fair-exchange protocol, they have
first to ensure that the TTP of the other party exists before
the start of the main protocol. When the users follow the
predetermined protocol and if there is no problem due to the
network, then the protocol is exactly the same as in the case
with a single TTP. If the provider does not send the item and
his final signature to the client, or if the transmitted informa-
tion is not valid, (1) the client sends the received ciphered
information, the description of the item, the provider’s sig-
nature on them, the pair(tP , TP ) (the provider’s committed
signature) and his final signature(t′C , TC) to the provider’s
TTP, (2) the provider’s TTP verifies whether the protocol
has previously been recovered by the client. If not so, it
sends a request to the client’s TTP to ask if the protocol has
been recovered or aborted by the provider. Upon receiving
the reply of the client’s TTP, the provider’s TTP first makes
sure that the item is ciphered with a coherent label, that the
received item (obtained after deciphering) corresponds ac-
tually to the received description and that the provider’s sig-
naturesigP is valid, if so it formsmC andmP and verifies
the validity of (tP , TP ) and(t′C , TC). If the signatures are
invalid the TTP stops the recovery protocol (but does not
send an abort token). If the other checks are not success-
ful the TTP sends an abort token to the provider and to the
client, as in the abort protocol. Otherwise, if all the checks
are successful, the TTP sendst′P = tP

e−1
mod n and the

item to the client and(t′C , TC) to the provider. A similar
mechanism is realized if the client does not send his final
signature or if the one transmitted is not valid.

The interesting question that arises from the discussion
above is, “if the TTP knows or can compute user secret
keys, what is the advantage of our protocol”. Indeed, one
can imagine a simple protocol using classical signatures and

where the TTP, if requested, knowing the secret keys, can
produce the final signatures. Such a mechanism is always
conceivable and functions with any existing digital signa-
ture scheme. However, this way of conceiving the fair ex-
change implies that the TTP should record all the user secret
keys or at least it has to recompute them when necessary, as
well as the complete final signatures in case of problem.
This is what we wanted to avoid for free. In our protocol,
the TTP has only to save a single secret keye−1, with which
it can produce transparently the final digital signatures re-
quiring only one modular exponentiation.

5 Conclusion

We have considered a new fair exchange protocol allow-
ing the exchange of an item against a signature while as-
suring fairness. Our protocol uses an offline and invisible
trusted third party. During the protocol, committed signa-
tures are issued, giving sufficient assurance to the recipients
about the TTP’s ability of recovering the final signatures
from the committed ones. As the TTP is invisible, it is able
to produce, the same final signature as the one transmit-
ted in a faultless case, rather than an affidavit or an official
certificate. An interesting feature of our method is the low
communication and computational charges required by the
parties during the protocol. Moreover, as it is difficult to
determine whether the TTP was requested during the pro-
tocol because of a dishonest party or because of a network
problem, an invisible TTP may be particularly relevant, for
example, in an electronic commerce environment.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures. InProceedings of Eu-
rocrypt’98, volume 1403 ofLecture Notes in Computer
Science, pages 591–606.

[2] C. Boyd and E. Foo. Off-line fair payment protocols
using convertible signatures. InProceedings of Asi-
acrypt’98, volume 1514 ofLecture Notes in Computer
Science, pages 271–285.

[3] O. Markowitch and S. Saeednia. Optimistic fair-
exchange with transparent signature recovery. In
Proceedings of Financial Cryptography 2001, volume
2339 ofLecture Notes in Computer Science, pages 339–
350.

[4] G. Poupard and J. Stern. Security analysis of a practical
“on the fly” authentication and signature generation. In
Proceedings of Eurocrypt’98, volume 1403 ofLecture
Notes in Computer Science, pages 422–436.

4


