
OPTIMISTIC NON-REPUDIABLE INFORMATION

EXCHANGE

Steve Kremer and Olivier Markowitch

Université Libre de Bruxelles, Computer Science Dept.

Bld du Triomphe C.P.212, 1050 Bruxelles, Belgium

skremer@ulb.ac.be, omarkow@ulb.ac.be

In this paper we consider the optimistic approach of the non-repudiation proto-

cols.We study the most complete non-repudiation protocol with off-line trusted

third party and we put forward some weaknesses. To fix these weaknesses we

present two solutions: one keeping a passive TTP, a second one, more appli-

cable, with an active TTP 1. We show that our protocol respects the fairness

and timeliness properties.

INTRODUCTION

The impressive growth of open networks during the last decade has created

several new security related problems. The non-repudiation problem is one of them.

Non-repudiation services must ensure that when Alice sends some information to

Bob over a network, neither Alice nor Bob can deny having participated in a part

or the whole of this communication. Therefore a non-repudiation protocol has to

generate non-repudiation of origin evidences intended to Bob, and non-repudiation

of receipt evidences destined to Alice. In case of a dispute (e.g. Alice denying

having sent a given message or Bob denying having received it) an adjudicator can

evaluate these evidences and take a decision in favor of one of the parties without any

ambiguity. In comparison to other security issues, such as privacy or authenticity of

communications, non-repudiation has not been studied intensively. However many

applications such as electronic commerce, fair exchange, certified electronic mail,

etc. are related to non-repudiation. Non-repudiation of origin can easily be provided

by signing the sent information. A digital signature provides an irrefutable non-

repudiation of origin evidence. Non-repudiation of receipt is more difficult to provide:

therefore Alice and Bob have to follow a protocol that assures both services.

The, until recently, most complete protocols providing non-repudiation have

been presented by J. Zhou [4]. His first proposal relies on a trusted third party

(TTP) that has to intervene during each protocol run. This TTP plays the role of a

low-weight notary. The TTP only has to publish an evidence in a read-only public

1A similar protocol has been published by Zhou et al. in [3]. We independently found equivalent
results.



directory, accessible to both Alice and Bob. Although the TTP is low-weight it may

create a communication bottleneck. Therefore Zhou presented a second protocol

based on the optimistic idea [1]: he assumes that in general Alice and Bob are

honest, i.e. they correctly follow the protocol, and that the TTP only intervenes,

by the mean of a recovery protocol, when a problem arises.

We shall start defining the properties of the different communication channels

and the requirements that have to be provided by non-repudiation protocols. Then

we go on describing the Zhou-Gollman protocol and put forward some of its weak-

nesses. To fix these weaknesses we present two solutions: one keeping a passive

TTP, but not entirely satisfying, a second one with an active TTP. We show that

our protocol respects the fairness and timeliness properties.

PROPERTIES

Communication channels can be divided into three classes:

• unreliable: no assumptions are made on these channels and data may be lost;

• resilient: data may be delayed but always arrives after a finite amount of time;

• operational: data always arrives after a constant known amount of time.

Note that operational channels are rather unrealistic in heterogenous networks.

Now we will have a look on the requirements a non-repudiation protocol must

fulfill. A first requirement is fairness: a non-repudiation protocol is said to be fair

if at the end of the protocol Alice has got a complete non-repudiation of receipt

evidence if and only if Bob has got the message with a complete corresponding

non-repudiation of origin evidence. A second property we require is timeliness: a

protocol must be finished after a finite amount of time for each participating entity

that is behaving correctly with respect to the protocol.

THE ZHOU-GOLLMAN OPTIMISTIC NON-REPUDIATION PROTOCOL

We use the following notation to describe the protocol:

• X → Y : transmission from entity X to entity Y

• X ↔ Y : ftp get operation performed by X at Y

• h() : a collision resistant one-way hash function

• Ek(): a symmetric-key encryption function under key k

• Dk(): a symmetric-key decryption function under key k

• SX(): the signature function of entity X

• m: the message sent from A to B

• k: the message key A uses to cipher m

• c = Ek(m): the cipher of m under the key k

• l = h(m, k): a label to identify a protocol run

• f : a flag indicating the purpose of a message

• EOO = SA(fEOO, B, l, t, c): the evidence of origin of c



• EOR = SB(fEOR, A, l, t, c): the evidence of receipt of c

• EOOk = SA(fEOOk
, B, l, t, k): the evidence of origin of k

• EORk = SB(fEORk
, A, l, t, k): the evidence of receipt of k

• Subk = SA(fSubk
, B, l, k): the evidence of submission of k

• Conk = STTP (fConk
, A,B, l, t, k): the evidence of confirmation of k issued by

the TTP

The protocol is divided into two subprotocols: the main protocol and a recov-

ery protocol. The trusted third party (TTP) does only intervene in the recovery

protocol. We shall first have a look at the main protocol.

1. A → B : fEOO, B, l, t, c, EOO

2. B → A : fEOR, A, l, EOR

3. A → B : fEOOk
, B, l, k, EOOk

4. B → A : fEORk
, A, l, EORk

Alice starts by sending the digitally signed cipher c = Ek(m) to Bob. In the

second message Bob responds with the evidence of receipt for this cipher (EOR).

If Alice does not receive the second transmission she stops the protocol, otherwise

she sends the signed decryption key k to Bob. Bob answers by sending the receipt

EORk for the key. The label l is present in each transmission in order to identify the

protocol run. The time-out t specified in message 1 is used in the recovery protocol.

Alice may initiate the recovery protocol if Bob does not send the receipt for the key.

The steps of the recovery protocol are the following:

1. A → TTP : fSubk
, l, t, k, Subk

2. B ↔ TTP : fConk
, A,B, l, t, k, Conk

3. A ↔ TTP : fConk
, A,B, l, t, k, Conk

Alice sends the signed key, together with the deadline t to the TTP. If the key

arrives after t, the TTP does not accept the recovery. Otherwise the TTP publishes

the key together with a confirmation Conk for the key in a read-only accessible

directory, where both Alice and Bob can fetch the key as well as Conk. Conk serves

to Bob as the evidence of origin of the key, and to Alice as the evidence of receipt

of the key as it is accessible to Bob. The deadline t is necessary for Bob to know

the moment when either the key is published or will not be published anymore. A

more detailed description can be found in [4].

Zhou makes the assumption that the channels between Alice and Bob are unre-

liable and that the channels between the TTP and both Alice and Bob are resilient.



There is however one scenario where fairness is lost. Imagine that Alice sends mes-

sage 3 of the main protocol. Bob now possesses a complete evidence of origin and

may stop the protocol. In that case Alice has to initiate the recovery protocol. How-

ever with resilient channels, Alice does not know the time it will take for message

1 of the recovery protocol to arrive at the TTP. As messages on a resilient chan-

nel can be delayed, message 1 may arrive after time t and hence be refused by the

TTP. At the end of this scenario Bob possesses a complete non-repudiation of origin

evidence, while Alice does not have the corresponding non-repudiation of receipt

evidence: fairness is broken. Zhou [4] proposes to choose a big enough t to react

to this problem. However on a resilient channel it is not possible to estimate the

transmission time of a message. So it is impossible to set a lower bound for t.

AN OPTIMISTIC NON-REPUDIATION PROTOCOL

We shall now have a look at the modifications we have to insert in order to

keep a low weight TTP (a TTP that only needs to maintain a public read accessible

directory), without the need of an operational channel. The channels between the

TTP and respectively Alice or Bob only need to be resilient and the channel between

Alice and Bob may be unreliable.

Only the recovery protocol needs to be changed. If, for any reason, the main

protocol of Zhou fails, Alice initiates the recovery protocol. The TTP verifies the

request for recovery and the validity of the signature, as well as the time limit t. If

the recovery request arrives before t (with respect to the clock of the TTP), the TTP

continues the protocol as it has been proposed by Zhou. However if the recovery

request arrives after t, the TTP revokes the public signature keys of both Alice and

Bob. Therefore the keys are inserted in a certificate revocation list (CRL). Thus,

each time the non-repudiation evidences are used, the CRL has to be checked to be

sure that the keys are still valid.

Now, if Bob does not reply after having received the third message or if his reply

is lost, it is not anymore crucial for Alice to contact the TTP before time t. If the

message arrives at the TTP before time t the recovery is performed and both Alice

and Bob receive their evidences. Otherwise, if the recovery request arrives after t,

the evidences are revoked by revoking the public signature keys.

This solution does only need a passive TTP (the TTP does not send messages

but only maintains a public read-only accessible directory). However, we remark

the following weaknesses. In the case Bob does not send a receipt for the key, he

can use his non-repudiation of origin evidence during the time interval between t

and the key revocation. This results in a temporary unfair situation. On the other

hand Alice has an advantageous position with respect to Bob: if the main protocol



is executed without intervention of the TTP, Alice may revoke the evidences later

by the mean of the recovery protocol.

We shall now propose a protocol that does not suffer from the here outlined

drawbacks. Our work independently ends up to a similar protocol presented by

Zhou et al. in [3]. The protocol is based on an active TTP (the TTP needs to send

messages to Alice and Bob via resilient channels, but does not need to maintain a

public directory accessible via ftp).

The following notation is used to describe the protocol:

• l = h(m, k)

• EOO = SA(fEOO, B, l, h(c))

• EOR = SB(fEOR, A, l, h(c))

• Sub = SA(fSub, B, l, ETTP (k))

• EOOk = SA(fEOOk
, B, l, k)

• EORk = SB(fEORk
, A, l, k)

• RecX = SX(fRecX
, Y, l)

• Conk = STTP (fConk
, A,B, l, k)

• Abort = SA(fAbort, B, l)

• Cona = STTP (fCona
, A,B, l)

Main protocol

1. A → B : fEOO, fSub, B, l, c, ETTP (k), EOO, Sub

2. B → A : fEOR, A, l, EOR (time-out: abort)

3. A → B : fEOOk
, B, l, k, EOOk (time-out: recovery[X := B, Y := A])

4. B → A : fEORk
, A, l, EORk (time-out: recovery[X := A, Y := B])

Alice starts the protocol by sending the cipher of the message, as well as the de-

cryption key, ciphered under the public key of the TTP, to Bob. The message does

also contain Alice’s signature on the encrypted key and the hash of the cipher. This

signatures serves as a non-repudiation of origin evidence of these ciphers.

If Bob receives the first message he replies with a receipt to confirm that he got

the first message. This receipt contains Bob’s signature on the hash of the cipher c

and serves to Alice as a non-repudiation of receipt evidence of the cipher.

In the case that Alice does not receive message 2 from Bob before a given time-

out, she initiates the abort protocol. Note that Alice cannot perform a recovery

at this moment, as the recovery protocol requires EOR, the evidence of receipt for

the cipher. If message 2 arrives to Alice before the time-out, she sends to Bob the

decryption key k, as well as a signature on this key. This signature is used as the

non-repudiation of origin evidence of the key. The non-repudiation of origin message



of the cipher c, together with the non-repudiation of origin evidence of the key k,

form together the non-repudiation of origin evidence of the message m.

Message 3 has to arrive to Bob before a given time-out. Otherwise Bob initiates

the recovery protocol with the TTP. If message 3 arrives in time, Bob sends a receipt

for the key to Alice: his signature on the key k. The signature serves as the evidence

of receipt of the key. Together with the evidence of receipt of the cipher c, they form

the non-repudiation of receipt evidence of the message m. Alice may also initiate

the recovery protocol with the TTP if this last message does not arrive in time.

Abort protocol

Alice has the possibility to run an abort protocol, if she does not receive message

2. If she decides to do so she sends a signed abort request, including label l, to the

TTP. If the TTP accepts the request (neither a recovery nor an abort has yet been

initiated), the TTP sends to both Alice and Bob a signed abort confirmation.

if recovery or abort then stop

abort=true

1. A → TTP : fAbort, l, B,Abort

2. TTP → A : fCona
, A,B, l, Cona

3. TTP → B : fCona
, A,B, l, Cona

Recovery protocol

To launch the recovery protocol Alice or Bob has to send to the TTP the hash

of c, the key k ciphered for the TTP, the non-repudiation of origin evidence for the

cipher c EOO, the non-repudiation of origin evidence for the encrypted key Sub,

the non-repudiation of receipt evidence for the cipher c EOR, as well as the non-

repudiation of origin evidence of the recovery request RecX (where X may take the

values A or B). Note that the recovery protocol can only be executed once per

protocol run.

By the mean of these evidences the TTP can be sure that Alice sent the cipher

c to Bob and that Bob really received it. Moreover the party X, that initiates the

protocol, cannot indicate a wrong identity for Y , the second participating entity, as

the TTP verifies signatures of both entities. Otherwise, X could give any wrong

identity making it impossible to Y to get the evidences as the recovery may not be

run a second time.

1. X → TTP : fRecX
, fSub, Y, l, h(c), ETTP (k), RecX , Sub, EOR,EOO

if abort then

2a. TTP → X : fCona
, A,B, l, Cona



else if recovery then stop

else recovery=true

2b. TTP → A : fConk
, A,B, l, k, Conk, EOR

3. TTP → B : fConk
, A,B, l, k, Conk

If the first message arrives and the TTP accepts to perform a recovery protocol,

the TTP sends to Alice the confirmation of submission of the key, as well as the

non-repudiation of receipt evidence for the cipher EOR. It is important to include

EOR, as Bob can initiate the recovery protocol after having received the cipher,

without having sent a receipt for it. The TTP sends to Bob the key k, as well as the

confirmation of the submission of the key, serving to Bob as an evidence of origin

for k.

If the recovery protocol is executed, the key confirmation evidence Conk will

make part of the non-repudiation evidences for the message m. It is used to replace

both the non-repudiation of origin evidence for the key as well as the non-repudiation

of receipt evidence for the key.

Dispute resolution

When Alice denies the origin of the message, Bob has to present to the judge

EOO, EOOk or Conk, l, c, m and k. The judge verifies that

• EOO = SA(fEOO, B, l, c),

• EOOk = SA(fEOOk
, B, l, k) or Conk = STTP (fConk

, A,B, l, k),

• l = h(m, k),

• c = Ek(m).

If Bob can provide all the required items and all the checks hold, the adjudicator

claims that Alice is at the origin of the message. When Bob denies receipt of m,

Alice can prove his receipt of the message by presenting EOR, EORk or Conk, l, c,

m and k to a judge. The judge verifies that

• EOR = SB(fEOR, A, l),

• EORk = SB(fEORk
, A, l, k) or Conk = STTP (fConk

, A,B, l, k),

• l = h(m, k),

• c = Ek(m).

If Alice can present all of the items and all the checks hold, the adjudicator concludes

that Bob received the message.

Fairness and timeliness

If Bob stops the protocol after having received the first message, Alice may

perform the abort protocol, in order to avoid Bob to initiate a recovery later. As

neither Bob nor Alice received complete evidences the protocol remains fair. If Bob



had already initiated the recovery protocol, the TTP sends all the missing evidences

to Alice and Bob. Note that the TTP also sends the EOR to Alice, as she has not

received it yet. Thus the protocol stays fair.

If Alice does perform step 3, Bob receives a complete non-repudiation of origin

evidence. There are two ways to finish the protocol: Bob sends message 4 of the

main protocol and Alice receives a complete non-repudiation of receipt evidence or

Alice performs the recovery protocol. As the channels between the TTP and both

Alice and Bob are resilient, all data sent by the TTP to Alice and Bob eventually

arrive. In both cases all entities receive valid evidences and the protocol finishes

providing fairness. If Alice does not send message 3 during the main protocol, Alice

and Bob may initiate the recovery protocol. Fairness is still guaranteed, as during

the recovery protocol, Alice and Bob receive all expected evidences.

When looking at the timeliness, three situations may arrive: the main protocol

ends up successfully (without any time-out); Alice aborts the protocol and the abort

confirmation signed by the TTP arrives at Alice and Bob after a finite amount of

time, as the channels between the TTP and both Alice and Bob are resilient; a

recovery protocol is performed and Alice and Bob receive the evidences after a finite

amount of time because of the resilience of the channels.

CONCLUSION

In this paper, we point out some weaknesses of the optimistic version of the

Zhou-Gollman protocol. We then show the problems that are remaining when trying

to keep a low-weight offline TTP. Therefore we present a protocol, that combines

an active, offline TTP with a resilient channel. Note that this is the first optimistic

non-repudiation protocol that succeeds to guarantee fairness and timeliness assuming

that channels are resilient.

REFERENCES

[1] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.

In T. Matsumoto, editor, 4th ACM Conference on Computer and Communica-

tions Security, pages 6, 8–17, Zurich, Switzerland, Apr. 1997. ACM Press.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied

cryptography. CRC Press series on discrete mathematics and its applications.

CRC Press, 1996. ISBN 0-8493-8523-7.

[3] J. Zhou, R. Deng, and F. Bao. Evolution of fair non-repudiation with TTP. In

ACISP: Information Security and Privacy: Australasian Conference, 1999.

[4] J. Zhou and D. Gollmann. An efficient non-repudiation protocol. In PCSFW:

Proceedings of The 10th Computer Security Foundations Workshop. IEEE Com-

puter Society Press, 1997.


