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Abstract

Many practical applications of wireless sensor networks require sensor nodes to

report approximations of their readings at regular time intervals. Time series pre-

diction techniques have been shown to effectively reduce the communication effort

for such applications, while guaranteeing user-specified accuracy requirements on

collected data. The achievable communication savings offered by time series pre-

diction, however, strongly depend on the type of signal sensed, and an inadequate

a-priori choice of a prediction model can in practice lead to poor prediction per-

formance. This paper describes our adaptive model selection (AMS) algorithm, a

lightweight online algorithm that allows sensor nodes to autonomously select the

statistically most suitable model among a set of candidate models. Experimental

results obtained on the basis of 14 real-world sensor time series demonstrate the

efficiency and versatility of the proposed framework in improving communication

savings.
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1 Introduction

In many wireless sensor network deployments, sensor nodes are distributed

at various locations over a region of interest and collect data at regular time

intervals [1–3]. Each sensor on a node captures a time series representing the

development of the sensed physical variable over space and time. Reporting

these time series to a sink 3 through the sensor nodes’ on-board radio repre-

sents a significant communication overhead. Since the radio channel has lim-

ited capacity [4] and radio communication is known to be the dominant factor

of energy consumption in wireless sensor networks [5, 6], the development of

adequate data gathering techniques able to reduce the amount of data sent

throughout the network is recognized as a key factor for allowing long-term,

unattended network operation. This topic has therefore gained increasing at-

tention in the wireless sensor network research community [7–14].

In many practical application scenarios for sensor networks, users are in-

terested in observing physical phenomena with a pre-specified, application-

dependent accuracy. Thus, gathered sensor data are usually accepted to lie

within a known error bound, say [−ε, +ε], ε ∈ R+. A sensor node regularly

collecting local measurements can fit a prediction model to the real data and

communicate it to the sink, which can then use the model to compute esti-

mates of future sensor readings [7–14]. The sensor node can then reproduce

the same readings estimations and transmit a model update to the sink only

if the current measurement differs from the predicted by more than ±ε, thus

avoiding unnecessary communication. In the absence of notification from the

3 We refer to a sink node as either the central server or as a sensor node responsible
to relay data further to the central server.
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sensor node, the sink implicitly assumes that the value obtained from the

shared prediction model is within the required error bound. This strategy,

which we will refer to as dual prediction scheme or DPS henceforth 4 , may

lead to high communication and energy savings if adequate prediction models

are used [8,9,11,13,14]. Typically, the model to use (e.g., constant or linear) is

fixed a-priori, while model parameters are estimated on the basis of incoming

data [11,13,14].

Fig. 1. The DPS acting on a temperature time series with error threshold set to
emax = 0.5oC

Figure 1 illustrates how the DPS behaves on a temperature time series ob-

tained from a real world sensor deployment [16], when the required data ac-

curacy ε is set to 0.5◦C and a simple autoregressive model is used. We can

observe that the predicted data is within ±0.5◦C of the real data up to the

1261st time step. At time t = 1262, the prediction error exceeds the tolerated

threshold ε and the sample collected at time t = 1262 is sent to the sink. The

prediction model is then updated to take into account the new acquired data

and from time t = 1263 to t = 1272, the predicted measurements are again

close enough to the real ones, making further communication between the

4 Other authors dubbed this strategy dual prediction reporting (DPR) [15].
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sensing node and the sink unnecessary. At t = 1273, the sensor node realizes

again that the sink is predicting the sensor measurements with an error big-

ger than ε and thus transmits the current reading. The procedure is repeated

again at t = 1286, when a new update is sent to the sink. In this example,

out of 35 collected readings, only 3 were effectively transmitted by the sensor

node, which amounted to about 90% of communication savings. Obviously,

the achievable communication savings depend, among others, on the particu-

lar sensed phenomenon, on the data sampling rate and, last but not least, on

the used prediction model.

Approaches to perform time series forecasting in wireless sensor networks

range from simple heuristics to sophisticated modeling frameworks [8, 9, 11,

13,14]. These methods typically allow to improve upon the simple monitoring

approach in which measurements are continuously reported at fixed time inter-

vals. However, they also overlook two relevant issues. First, complex prediction

techniques, like, e.g., Kalman filtering, rely on parameters whose identification

proves to be difficult in practical settings, particularly when no a-priori knowl-

edge on the signals is available. These difficulties increase with the flexibility

of the model, or, equivalently, with the number of parameters necessary to

specify it. Therefore, the more flexible the model, the less usable in practice.

Second, as the DPS requires the sensor node and the sink to run the same

prediction model, all the parameters of the model must be sent each time

an update is needed. There exists therefore a tradeoff between the ability of

a model to properly fit the signal, so as to lower the number of data trans-

missions and model updates, and the number of parameters that need to be

computed locally at the sensor node and that are then sent to the sink when

an update is needed.
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In this paper, we address both these issues by introducing a generic procedure

for adaptive model selection, henceforth referred to as AMS. The rationale of

our approach is to use complex prediction models only if they prove to be effi-

cient both in terms of computation and achievable communication savings, and

otherwise to rely on simpler models. We consider a set of models of increasing

complexity, and let the sensor nodes assess their performances in an online

fashion, as sensor data are collected, on the basis of a metric that weights the

number of updates by their size. It is in this way possible to select, among

a set of candidates, the model that offers the highest achievable communi-

cation savings. Supported by the literature on time series prediction [17, 18],

we propose an implementation of the AMS based on autoregressive models,

whose parameters can be updated in an on-line fashion as new observations

become available, and that are computationally thrifty to maintain. We show

on the basis of 14 publicly available time series captured by real-world sensor

nodes that gains achievable by complex prediction models quickly drop as the

number of parameters increase, and that, therefore, very few models effec-

tively need to be considered in practical settings. Finally, we propose to rely

on a statistical procedure known as racing [19], to discard over time models

that perform poorly so as to save sensor nodes’ computational and memory

resources. The obtained experimental results, presented in detail in section 5,

show that the AMS provides a lightweight and efficient implementation of the

DPS.

The remainder of this paper is organized as follows: Section 2 introduces

the general framework of the DPS and the limits of previously proposed

approaches. Section 3 describes the proposed AMS algorithm. Experimental

setup and results are reported in sections 4 and 5, respectively. Finally, limits
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and potential improvements are discussed in section 6.

2 The dual prediction scheme (DPS)

Continuously reporting sensor readings to a sink node at regular time intervals

is the most widely used data gathering mechanism in real wireless sensor

networks deployments [1, 20]. For this reason, we refer to it as the default

monitoring data collection scheme. With respect to the default monitoring

scheme, the DPS significantly reduces communication between a sensor node

and the sink, while guaranteeing the data collected to be within a user-specified

accuracy. The gains in communication offered by the DPS, however, depend on

the ability of the used prediction model to reproduce and follow the time series

captured by the sensor nodes. Providing an overview on time series forecasting

techniques is beyond the scope of this paper, and an interested reader may

refer to [18, 21–23]. In this section, we outline the particular problems and

challenges that arise when applying the DPS in wireless sensor networks.

2.1 Time series prediction models

Let Xt = 〈X0, X1, X2, . . .〉 be a time series representing the sequence of col-

lected sensor measurements Xt ∈ R for each sampling time instant t ∈ N.

Let X̂t indicate an estimation of the element Xt at time t and let X[0:t] =

〈X0, X1, X2, . . . , Xt−1, Xt〉 be the sequence of observations up to time t. The

estimate of Xt+1 returned by the prediction model h(Xh,t,θh,t) on the basis

of X[0:t] is expressed as:
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X̂t+1 = h(Xh,t,θh,t). (1)

A prediction model h(Xh,t, θh,t) for the time series Xt is a mapping that takes

as inputs a row vector of input values Xh,t (a subset of X[0:t]), together with a

row vector of parameters θh,t = (θ1, θ2, . . . , θk), with k ∈ N+, and returns an

estimate X̂t+1. We shall in the following refer to h(Xh,t,θh,t) as h for short.

Vectors Xh,t and θh,t depend on the model h. For example, a constant model

requires just one input value and no parameters, while an autoregressive model

of order 2 takes 2 input values and 2 parameters. These vectors also depend

on t if input values and parameters vary over time (see section 4.1). These

dependencies are therefore expressed for input values Xh,t and parameters

θh,t by the means of the subscript (h, t).

A variety of different prediction models can be used to perform time series fore-

casting [17,18,23]. The choice of an adequate model depends on the nature of

the time series, on the amount of available a-priori knowledge, on the required

forecasting accuracy, as well as on the available computational resources.

2.2 DPS: Overview and limits

The main task of the dual prediction scheme is to run an identical prediction

model h at both the source and the sink nodes and to use it to produce

estimates of the future sensor readings, given some of the previous samples. If

the predicted value differs from the actual sensor measurements by more than
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a given error threshold ε 5 , a model update 6 is transmitted to the sink.

The simplest implementation of the DPS uses a constant prediction model,

henceforth referred to as CM, which allows the sink to reconstruct a piecewise

constant approximation of the real sensor signal. Using a CM, no updates are

sent as long as readings collected by the sensor do not diverge by more than

±ε from the last reading sent to the sink. When this difference becomes big-

ger than ε, the current reading is sent, and this process is repeated over time.

This approach, proposed by [9] and [8], provides appealing communication

savings with respect to the default monitoring strategy. On many time series,

more complex prediction techniques may easily outperform the CM, as shown

by [11,13,14]. However, all these methods depend on a number of parameters

that are hard to fix on the sensor nodes without adequate a-priori knowl-

edge. For instance, the DPS may be implemented using a Kalman filter [11],

which is particularly attractive in this context as it allows to model a large

variety of natural phenomena. However, its use require to define a state tran-

sition matrix, which describes the underlying dynamics of the signal, and two

covariances matrices specifying the process noise and the observation noise.

In [11] these matrices are arbitrarily specified to be diagonal with all non-zero

elements being equal to 0.05. While this choice may be appropriate for a very

limited and specific class of signals, it is in general hard to properly specify

these matrices a-priori or to estimate them on the sensor nodes. To avoid

this problem, Santini and Römer [14] propose the adoption of autoregressive

5 To work properly, the DPS requires all sent data to actually reach the sink, thus
a loss-free or acknowledged communication link between the node and the sink is
required. See [14] and section 6 for a discussion of some mechanisms that allow to
relax this assumption.
6 A model update can consist in either a variation in input values and model pa-
rameters or in the choice of a brand-new model.

9



adaptive filters, updated by the means of the LMS procedure, which are able

to learn signal statistics on the fly, and can continuously and autonomously

adapt to changes. At the same time, Tulone and Madden [13] interestingly

cast the DPS in a more general framework, applying autoregressive models

and including the identification of outliers, whose appearance is not reported

to the sink. In both cases, however, neither online procedures for setting the

order of the autoregressive model nor considerations about the communication

overhead caused by the transmission of the necessary model parameters are

provided. As we will show in section 5, these issues are nevertheless of critical

importance for an efficient and effective implementation of the DPS, as they

can seriously impact the achievable communication savings.

3 Adaptive Model Selection (AMS)

In this section, we present the AMS strategy, which allows sensor nodes to

autonomously select a optimal model out of a set of possible prediction models,

without the need of any a-priori knowledge on the sensed signal. A sensor

node running the AMS maintains a set of K candidate prediction models

hi(Xhi,t,θhi,t), 1 ≤ i ≤ K. For each model hi, a given quality measure is

recursively estimated and the model that optimizes this performance indicator

is selected as the current model. The same indicators, presented in section

3.1, also allow to run the racing mechanism, which discards poorly performing

models from the set of candidate models, as we describe in section 3.2. Section

3.3 finally reports the detailed AMS algorithm.
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3.1 Performance estimates

The main goal of the DPS is to reduce the number of updates between a sen-

sor node and the sink. To measure the performance of the DPS it is therefore

meaningful to consider the relative update rate, i.e. the ratio of the number of

updates effectively sent when running the DPS to the number of updates that

would have been sent by the default monitoring scheme. Let Uhi,t be the rela-

tive update rate for the model hi at time t, where Uhi,1 = 1, 1 ≤ i ≤ K. Uhi,t

can be recursively computed as Uhi,t =
(t−1)∗Uhi,t−1+1

t
if an update is needed

at time t, or as Uhi,t =
(t−1)∗Uhi,t−1

t
otherwise. The relative update rate reflects

the percentage of transmitted packets with respect to the default monitoring

scheme. Note that the relative update rate for the default monitoring scheme

is 1 since it requires the transmission of all the collected readings, and that

any lower value indicates a gain in the number of transmitted packets.

Performance assessment in terms of update rate has been considered in several

implementations of the DPS [9,11,13,14]. However, this performance indicator

does not take into account the fact that while an update in the default moni-

toring mode only consists of the current sensor readings, updating a model hi

requires the input values Xhi,t and the model parameters θhi,t. Consequently,

performing a single update may require sending a high number of bytes to the

sink, which may become critical in settings characterized by a very limited

network bandwidth. To take into account the packet size of a single model

update we introduce an alternative performance indicator, relative data rate,

which we define as follows:

Whi,t = Uhi,t ∗ Chi
. (2)
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where Chi
(henceforth referred to as model cost) is the ratio of the number of

bytes required to send an update of model hi to the number of bytes required

to send an update in the default monitoring mode. The relative data rate Whi,t

measures the savings in terms of data rate for model hi at time t with respect

to the default monitoring mode.

3.2 Racing mechanism

Since it is likely that some {hi} will perform poorly, it would be preferable

not to maintain them in order to save computational and memory resources.

An effective approach to detecting prediction models that perform poorly out

of a set of candidate models is offered by the racing mechanism [19]. The

rationale of the racing mechanism is to determine, on the basis of hypothesis

testing [24], what models among a set of candidate models are significantly

outperformed by others. For instance, let h∗i = argminhi
Whi,t be the model

with the lowest relative data rate at time instant t among the set of candidate

models {hi}, and let ∆hi,h∗i = Whi,t − Wh∗i ,t be the difference between the

estimated relative data rates of any model hi and h∗i . Relying on the Hoeffding

bound [25], a distribution free statistical bound, the racing mechanism assumes

with probability 1− δ that h∗i truly outperforms hi if

∆hi,h∗i > R

√
ln(1/δ)

2t
, (3)

where R is the range taken by the random variable ∆hi,h∗i . Thanks to the lack

of parametric assumptions, the Hoeffding bound requires no other information

than the range of values taken by the random variables considered, which is

known in advance. As 0 ≤ Whi,t ≤ Chi
and 0 ≤ Wh∗i ,t ≤ Ch∗i , it follows that
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R = Chi
+ Ch∗i , and the bound for discarding model hi is therefore given by:

∆hi,h∗i > (Chi
+ Ch∗i )

√
ln(1/δ)

2t
. (4)

The racing mechanism discards poor performing models from the set of candi-

dates among which the AMS chooses the current model. Since the bound gets

tighter as t increases, only one model is eventually maintained on the sensor

node.

3.3 AMS algorithm

Table 1 shows the pseudocode of the AMS algorithm. It takes as inputs the

error tolerance ε, the number of candidate models K, the set of models {hi},
and their corresponding costs {Chi

} 7 . The first model sent to the sink is that

with the lowest model cost. When the sensor collects a new reading Xt, the

AMS runs the function simulateModel, which estimates the relative update

rates Uhi,t for all candidate models hi. This function first determines whether

an update is necessary or not by checking if the current reading estimation

X̂t = hi(Xhi,t−1, θ
∗
hi,t−1), computed by model hi at time t, is more than ±ε off

the actual sensor value Xt. The relative update rate Uhi,t is then computed

as described is section 3.1. Moreover, since the parameters of a candidate

model may be updated recursively as new sensor readings become available,

the function simulateModel maintains two sets of parameters for each model

hi: θhi,t and θ∗
hi,t

. Parameters θhi,t are continuously updated with incoming

data so that the model is constantly refined (e.g., using the recursive least

7 The model costs must all be set to 1 if the relative update rate is used as perfor-
mance indicator
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square procedure for autoregressive models, as detailed in section 4.1). On

the contrary, as long as no update is necessary for model hi, parameters θ∗
hi,t

remains unchanged since they represent the parameters that would be shared

by the sensor node with the sink if hi were the current model.

After running to completion, the function simulateModel returns control to

AMS, which then behaves as it were a “classical” DPS scheme. It therefore

checks wether the absolute value of the difference between the reading estima-

tion X̂t+1 = h∗(Xh∗,t, θh∗,t), computed at the sink using the current model h∗,

and the actual sensor value X̂t does not exceed the tolerated error threshold ε.

If this threshold is exceeded, the current model h∗ is assigned the model in {hi}
that minimizes the chosen performance indicator, and an update composed of

the input values Xh∗,t and the parameters θh∗,t is sent to the sink.

Table 1
Adaptive model selection algorithm

Adaptive model selection algorithm Algorithm for virtual model updates

Algorithm AMS(K, {hi}, {Chi
},ε) Algorithm simulateModel(hi, Xt)

Uhi,1 ← 1 for 1 ≤ i ≤ K X̂t+1 ← predictValue(h∗i )

h∗ ← argminhi
Chi

update(hi, Xt+1)

While True if (|X̂t −Xt| > ε)

Xt ← getNewReading() Uhi,t ←
(t−1)∗Uhi,t−1+1

t

For (i in 1 : K) θ∗
hi,t ← θhi,t

hi ← simulateModel(hi, Xt) else

endFor Uhi,t ←
(t−1)∗Uhi,t−1

t

{hi} ← racing({hi}) see Equation 3 endIf

X̂t ← predictValue(h∗) Return hi

if (|X̂t −Xt| > ε)

h∗ ← argminhi
Uhi,t ∗ Chi

sendNewModel(h∗)

endIf

endWhile
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4 Experimental Setup

In this section, we describe the setup we used to assess the performance of

the AMS algorithm. The corresponding experimental results are reported in

section 5.

4.1 Prediction models

We based the experimental evaluation of our AMS algorithm on autoregressive

(AR) models. We tested how AR models, whose parameters can be recursively

updated, can improve upon a CM when running the DPS. AR models have

been chosen for two reasons. First, they have been shown to be both theoret-

ically and experimentally good candidates for time series predictions [17, 18].

Second, model parameters can be estimated by the means of the recursive

least square (RLS) algorithm [26], which allows to adapt the parameters to

the underlying time series in an online fashion, without the need of storing

large sets of past data.

Time series forecasting using AR models is performed by regressing the value

Xt of the time series Xt at time instant t against the elements of the time

series at the previous p time instants (Xt−1, Xt−2, ..., Xt−p). The prediction at

time t + 1 is thus obtained as:

X̂t+1 = θ1Xt + θ2Xt−1 + ... + θpXt−p+1 (5)

where (θ1, θ2, ..., θp) are the autoregressive coefficients and p is the order of

the AR model, thus denoted as AR(p). Following the notations introduced in
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section 3, let θAR(p),t = (θ1(t), θ2(t), ..., θp(t)) be the row vector of parameters

and XAR(p),t = (Xt, Xt−1, Xt−p+1) be the row vector of inputs for a model

AR(p) at time instant t. Then the scalar product 8 :

X̂t+1 = θAR(p),t ·XT
AR(p),t (6)

returns the prediction at time instant t + 1. The parameters θAR(p),t can be

computed by means of the RLS algorithm, which consists in a computation-

ally thrifty set of equations that allows to recursively update the parameters

θAR(p),t as new observations Xt become available. The computational cost for

an update of the vector θAR(p),t is 3p3 + 5p2 + 4p.

4.2 Datasets

The experimental evaluation is based on a set of 14 publicly available datasets,

collected in real sensor network deployments. The datasets vary in terms of

the nature of the observed phenomenon, signal dynamic, sampling frequency

and length, and are briefly listed in Table 2.

4.3 Generic error threshold for performance comparison

To be able to compare results obtained from different datasets regardless of

the specific physical quantities being examined, the influence of the threshold

parameter ε is analyzed by considering it as proportional, through a given

factor k, to the range r of the signal. The range r was computed by taking the

8 The superscript ′T ′ stands for the transposition operator.
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Table 2
Data sets

Data set sensed quantity sampling period period number of samples source

S Heater temperature 3 seconds - 3000 [27]

I Light light 5 minutes 8 days 1584 [20]

M Hum humidity 10 minutes 30 days 4320 [16]

M Temp temperature 10 minutes 30 days 4320 [16]

NDBC WD wind direction 1 hour 1 year 7564 [28]

NDBC WSPD wind speed 1 hour 1 year 7564 [28]

NDBC DPD dominant wave period 1 hour 1 year 7562 [28]

NDBC AVP average wave period 1 hour 1 year 8639 [28]

NDBC BAR air pressure 1 hour 1 year 8639 [28]

NDBC ATMP air temperature 1 hour 1 year 8639 [28]

NDBC WTMP water temperature 1 hour 1 year 8734 [28]

NDBC DEWP dewpoint temperature 1 hour 1 year 8734 [28]

NDBC GST gust speed 1 hour 1 year 8710 [28]

NDBC WVHT wave height 1 hour 1 year 8723 [28]

difference between the maximal and minimal values in the time series. The

case k = 0.01 accounts for scenarios in which high precision is required, while

k = 0.2 corresponds to a very rough bound on the tolerated error.

5 Experimental results

In this section, we report extensive experimental results to assess the per-

formance of the AMS algorithm. First, we report the communication gains

achievable running the “classical” DPS with the constant model (CM) and

with autoregressive models of orders 1 to 5 (AR1, ... AR5), both in terms of

relative update rate (in subsection 5.1) and in terms of relative data rate (in

subsection 5.2). Along with these results we highlight the benefits of using the

AMS, which for all time series was able to select the best model. Results for

the convergence rate of the racing mechanism are reported in section 5.3, and

average gains in data rate obtained on all 14 time series as a function of the

tolerated error threshold are presented in section 5.4.
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5.1 Gains in update rate

Table 3 reports the percentage of packets sent when running the DPS with

the CM and AR models with orders from 1 to 5 (AR1, ... AR5). The error

tolerance was fixed at 0.01∗ r, and results are reported for each of the 14 time

series presented in section 4.2. Bold faced figures indicate models that are not

significantly outperformed by the model with the lowest update rate 9 .

We remark that in most cases, AR models outperformed the CM, and that

performances of AR models are statistically equivalent regardless of the model

order. However, the CM performed significantly better than AR models for

three time series, namely I Light, NDBC DPD and NDBC WSPD, and yielded

similar performances for NDBC AWP and NDBC GST. These apparent defi-

ciencies of AR models are due to the nature of those time series, qualitatively

characterized by sudden and sharp changes. These abrupt changes cause the

variance in the estimation of AR coefficients to increase, making the models

unstable and thus allowing a simple CM to provide better performances in

terms of update rates (with gains of about 15% with respect to AR models for

NDBC DPD and gains up to 8% for NDBC WPSD over a one year period).

The last column of Table 3 contains the model that yielded the lowest update

rate, and that was consequently selected by the AMS procedure.

5.2 Gains in data rate

In this section we assess the performances of the DPS in terms of the weighted

update rate Whi,t = Uhi,t ∗ Chi
, or data rate, introduced in section 3.1. Model

9 One tailed t-test with respect to best model, p < .05)
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costs Chi
were computed assuming that each data sample and parameter can

be stored in one byte. Accordingly, the constant model requires 1 byte to be

sent to the sink, while the update of an AR(p) model requires 2p bytes (p

bytes for the initial input values and p bytes for the parameters). The packet

overhead (header and footer) depends on the specific communication protocol.

For our experiments, we considered a packet overhead of Poverhead = 24 bytes,

which corresponds to the average overhead of the IEEE 802.15.4 protocol,

a potential standard for wireless sensor networks [6]. The size of a packet

carrying an update for an AR(p) model is therefore:

CAR(p) =
24 + 2p

24 + 1
. (7)

Table 4 reports the performances of the CM and AR(p) models in terms of

percentage of bytes sent to the sink with respect to the default monitoring

mode. Note that as the cost of the CM is 1, figures of the first column of

Table 3 and 4 are identical. In contrast, there is a general deterioration of per-

formances of AR models, as the cost associated with sending their parameters

lead them to lose their advantage in terms of prediction accuracy over more

simple models. Out of all tested time series, AR models only outperformed the

CM five times (on S Heater, NDBC BAR, NDBC WTMP, NDBC DEWP),

and models eventually selected by AMS were AR(2) (three times) and AR(1)

(twice). The AMS column contains the model that yielded the lowest data

rate for each time series.
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Table 3
Percentage of transmitted packets for DPS run with different time series forecasting
methods. Bold faced numbers indicate models that yielded the best performances
(one tailed t-test with respect to best model, p < .05).

CM AR1 AR2 AR3 AR4 AR5 AMS

S Heater 74 75 61 59 59 59 AR3

I Light 38 40 39 40 40 39 CM

M Hum 53 53 49 50 49 49 AR4

M Temp 48 48 45 45 44 44 AR4

NDBC DPD 65 85 80 80 80 80 CM

NDBC AWP 72 73 73 73 73 73 CM

NDBC BAR 51 50 39 39 39 37 AR5

NDBC ATMP 39 39 36 36 36 36 AR3

NDBC WTMP 27 27 21 21 21 20 AR5

NDBC DEWP 57 52 52 52 52 52 AR3

NDBC WSPD 74 84 82 83 83 83 CM

NDBC WD 85 81 81 81 81 81 AR1

NDBC GST 80 81 80 80 80 81 CM

NDBC WVHT 58 56 56 56 56 56 AR3

Table 4
Percentage of transmitted bytes for DPS run with different time series forecasting
methods. Bold faced numbers indicate models that yielded the best performances
(one tailed t-test with respect to best model, p < .05).

CM AR1 AR2 AR3 AR4 AR5 AMS

S Heater 74 78 68 70 76 81 AR2

I Light 38 42 44 48 51 53 CM

M Hum 53 55 55 60 62 66 CM

M Temp 48 50 50 54 56 60 CM

NDBC DPD 65 89 89 95 102 109 CM

NDBC AWP 72 75 81 88 93 99 CM

NDBC BAR 51 52 44 47 49 50 AR2

NDBC ATMP 39 41 40 43 46 49 CM

NDBC WTMP 27 28 23 25 27 28 AR2

NDBC DEWP 57 54 58 62 67 71 AR1

NDBC WSPD 74 87 92 99 106 113 CM

NDBC WD 85 84 91 98 104 111 AR1

NDBC GST 80 84 90 96 103 110 CM

NDBC WVHT 58 58 63 67 71 76 CM

5.3 Racing mechanism

We report in this section the convergence speed obtained when relying on the

racing mechanism. Figure 2 shows the average number of models, averaged
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over the 14 time series and the first 1000 time instants. The weighted update

rate Whi,t was used to evaluate performance of competing models (as in section

5.2), with a confidence 1 − δ = 0.95%. Efficiency of the racing in terms of

rapidity in discarding poorly performing models depends on the nature of the

time series. The convergence to the best model in less that 1000 time instants

was obtained in four cases. For other cases, subsets of two or three remaining

models were still in competition after 1000 time instants. The performances of

remaining models were in those cases ranging from less than 1% up to 5%, and

the a posteriori best model was always observed to be part of the remaining

set. AR(4) and AR(5) were discarded in all cases due to the overhead incurred

by sending their parameters to the sink. For five time series, AR(3) and AR(4)

were in the remaining candidates models, while for the other nine time series,

either CM, AR(1), or both were still competing after the 1000th time step.

Fig. 2. Number of remaining models
over time.

Fig. 3. Percentage of packet trans-
mitted as tolerance on error predic-
tion is relaxed (proportional to the
range r).
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5.4 Tolerated prediction error

This section presents the gains in data rate obtained as the accuracy threshold

ε is relaxed. Figure 3 reports the percentage of transmitted bytes for each of the

14 time series as the error tolerance is relaxed. AMS was run using the relative

data rate of competing models as performance indicator. Interestingly, for a

0.05 ∗ r accuracy threshold, which corresponds to good approximation of the

sensed phenomenon, less than 20% of data were sent to the sink in comparison

to the default monitoring scheme. This reduction decreased down to only 5%

of bytes transmitted for an error tolerance of 0.2∗r. We should also notice that

as the error tolerance increases, the predictive capacity of any method tends

to converge to that of the constant model. Thus, for error tolerance bigger

than 0.1 ∗ r, the AMS does not perform, in general, significantly better than

the CM (results not reported for space constraints).

5.5 Summary

We showed that even when relying only on the constant model, the DPS

yields significant communication savings with respect to the default monitor-

ing mode. Achievable savings range from about 50%, for a very tight error

threshold (one hundredth of the sensor signal range), to 96% for rough ap-

proximations (one fifth of the sensor signal range). The introduction of AR

models allows for further improvements in terms of communications savings,

although we observed that models with order p bigger than three are seldom

chosen by the AMS due to the additional communication overhead incurred

by transmitting their parameters. In any case, the AMS procedure always se-
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lects the best performing model, out of the set of initial candidates, without

the need of any a-priori knowledge on the underlying time series and using a

completely automated, online selection procedure.

As a general guideline for scenarios in which no a-priori knowledge on the

sensed signal is available, we therefore recommend to run the AMS with a

set of about four models, composed of the constant model and AR models up

to order three. Considerations related to the computational cost of the AMS

procedure, and to alternatives to AR models are addressed in the following

section.

6 Discussion

Before coming to our conclusions, we briefly discuss a few further relevant

issues concerning the DPS.

(1) Initial set of candidate models. In this paper, we focused on mon-

itoring scenarios in which no a-priori knowledge on the sensed signal is

available, and motivated the use of AR models on the basis of their wide

applicability and their low computational and memory costs. The AMS

procedure, however, can be readily applied to monitoring scenarios in

which some a-priori knowledge is available, by relying on more specific

modeling techniques offered in the time series prediction literature. For

example, PARIMA models could be used if the observed signal is known

to be periodic, or Kalman filters could provide an adequate framework if

the signal underlying dynamics are known.

(2) Computational overhead. Although the main goal of the AMS is to
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reduce communication among sensor nodes, its computational cost and

memory footprint should be kept low to avoid excessive energy consump-

tion. Running the AMS following the guidelines proposed in section 5.5

allows indeed to greatly limit computations on sensor nodes. Running a

CM and AR models up to order 3 requires indeed to perform about 200

operations 10 at each time step (see section 4.1). Given that the ratio of

the energy spent in sending one bit of information to the energy spent

in executing one instruction has been estimated to be around 2000 for a

variety of real sensor network platforms [29], sending a packet of 26 bytes

(208 bits) equals the energy required to perform 416000 CPU instruc-

tions, which in turn corresponds to about 2000 iterations of the AMS

algorithm. This rough estimation shows that the energy required to run

the AMS algorithm is highly compensated by the energy it allows to save

by reducing data communication.

(3) Network unreliability. The main concern about the practical applica-

bility of the DPS resides in the fact that in absence of notification from

a sensor node, the sink deems the prediction given by the shared model

to fall within the ε error tolerance. However, an absence of notification

can also derive from packet losses over the wireless communication chan-

nel or a node crash. Additional procedures must therefore be considered

to deal with such possible failures. For instance, a “watchdog” regularly

checking sensor activity and packet sequence numbers can be set up, as

already discussed in [14]. If the sink node realizes a jump in the sequence

10 The actual number of CPU instructions corresponding to an addition or multi-
plication may vary depending on the particular microprocessor. There is no loss
in generality in considering here the number of additions and multiplications to
be equal to the number of CPU instructions. The number of computations was
obtained considering the computational cost of the RLS algorithm for AR models
with orders one to three.
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number of received packets, it can notify the sensor node and require

retransmission of the missing message. Node failures may be detected by

the absence of acknowledgment from the sensor node to the watchdog

request. Choice for the watchdog period depends on the application, as

critical applications like fire detection would require low latency in being

warned about failure of a sensor node, whereas other applications, i.e.

field watering or air conditioning system, may tolerate higher latencies.

(4) Outlier detection. Outliers, i.e. erroneous readings, can appear in the

flow of collected readings. Detecting outliers on the sensor node is an

important issue if these are frequent, as they both entail useless update

packets, and jeopardize the convergence of model parameters. Detection

of outliers is however a non trivial task [30]. We mention briefly as solu-

tions to this issue the possibility of adding statistical tests on measured

readings as discussed in [13], or a-priori bounds on measured readings

(e.g., all temperature readings outside the range [−20◦C; +50◦C] should

be ignored). Note that in case outliers are detected the use of prediction

models allows to replace the erroneous (outlier) value with a more likely

value.

7 Conclusions

In this paper, we introduced and evaluated the AMS, a generic algorithm

for online model selection of time series prediction models, which allows to

reduce data communication in wireless sensor networks. Our adaptive selec-

tion scheme makes sensor nodes smart enough to be able to autonomously

and adaptively determine the optimal model to use for performing prediction-
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based data collection. In order to develop a general applicable framework, we

proposed a possible implementation relying on constant and autoregressive

models that works in a fully automated manner. Extensive evaluation on a set

of 14 time series demonstrated the ability of our algorithm to significantly re-

duce the number of data transmissions while complying with the poor available

memory and computational resources of common sensor network platforms.
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