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ABSTRACT
This paper shows that the Principal Component Analysis, a
compression method widely used in statistical anaylsis and
image processing, can be efficiently implemented in a net-
work of wireless sensors. The proposed scheme proves to be
particularly suitable to sensor networks as it allows to re-
duce the network load while retaining a maximum amount
of variance from sensor measurements. We present two op-
erating modes, unsupervised and supervised, allowing (i) to
extract a maximum of variance while keeping the network
load bounded, and (ii) to reduce the network load while
keeping the approximation error bounded, respectively. We
assess the efficiency of the proposed approach in a realistic
wireless sensor network deployment for temperature moni-
toring.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer -
Communication Networks—Distributed applications, distributed
databases; G.1.2 [Mathematics of Computing]: Numeri-
cal analysis—Least squares approximation; G.3 [Mathematics
of Computing]: Probability and statistics—Correlation
and regression analysis

General Terms
Wireless sensor networks, Principal component analysis, In-
network compression

Keywords
WSN, PCA, compression

1. INTRODUCTION
We consider in this paper wireless sensor network (WSN)
applications where sensor measurements are collected at reg-

ular time instants, and transmitted by a routing tree to a
specific network component called the sink 1. Such applica-
tions include for example long term environmental monitor-
ing, structural monitoring, battlefield surveillance, etc.. [3,
18, 17].

The routing tree allows measurements of sensor nodes far
away from the sink to be relayed by intermediate sensor
nodes so that they eventually get delivered to the sink. Net-
works relying on routing trees are instances of multi-hop
networks, meaning that some packets are relayed by inter-
mediate network nodes [2, 4]. We assume in this paper that
there exists a routing layer suitable for data aggregation,
which synchronizes transmissions between nodes in such a
way that sensor nodes deeper in the tree sends their mea-
surements before their parents. An illustration of this rout-
ing scheme is given in Figure 1. Research projects on query
processing architectures over sensor networks, such as those
developed at UC Berkeley (TinyDB and TAG projects) [13,
14], Cornell University (COUGAR project) [19] or EPFL
(Dozer) [6], have provided the WSN community with such
routing layers. Their advantages are twofold. First, they
maximize the sleeping time of sensor nodes by synchroniz-
ing the transmissions along the routing tree. Second, they
allow to aggregate data along the tree, so as to provide the
sink with a summary of the measurements collected in the
sensor field. Schemes allowing to efficiently extract sum-
maries such as the mean, the median, the quantiles, or the
contours have been proposed using this kind of synchronized
routing layer in [20, 13, 16, 8].

In this paper, we show that the principal component analysis
(PCA) [15], a classic technique in statistical data analysis for
data approximation and compression, can be efficiently im-
plemented in a WSN relying on a synchronized routing layer.
The PCA allows to determine a coordinate system called the
principal component basis, in which sensor measurements
are uncorrelated. As in most cases there exists high spatial
correlations between sensor measurements, good approxima-
tions to sensor measurements can be obtained by relying on
few principal components.

1In the WSN literature, the sink is the network component
that gathers all sensor measurements, and is usually con-
sidered to benefit from higher computational resources than
the sensor nodes (e.g. a desktop computer)
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Figure 1: Activities carries out by sensors depend-
ing of their depth in the routing tree (adapted from
[13]). Transmissions are synchronized for optimiz-
ing energy savings. The last stage involves all sen-
sors and allows unsynchronized synchronization (for
sensor discovery e.g.).

The procedure proposed is a two-stage process, in which
a set of N measurements is first collected from the whole
set of sensors. In a second stage, a set of q principal com-
ponents are computed at the sink, and distributed in the
network. Each sensor node needs only to be aware of a vec-
tor of weights, the size of the number of retained principal
components, for the coordinates in the principal component
basis to be computed.

There exists tradeoffs between the accuracy of the mea-
surement approximations, the network load, and the net-
work lifetime. We provide an analysis of these tradeoffs
for two operating modes, involving unsupervised and super-
vised compression. In the unsupervised mode, the approx-
imations obtained at the sink are expected to retain the
maximum amount of variance from the sensor field while
keeping the network load to a user defined threshold (e.g.
the maximum number of packets per sensor per epoch must
not exceed three). In the supervised mode, an additional
feedback mechanism is set up, that allows to guarantee that
approximations to sensor measurements obtained at the sink
lie within a user defined threshold (e.g. approximated tem-
perature must lie within ±1◦C of the real measurements).
The number of principal components is estimated in such a
way that the network load is minimized.

The article is structured as follows. We introduce in sec-
tion 2 the notation and formulation of PCA, together with
the in-network aggregation scheme of sensor measurements
on principal components. Section 3 details the unsuper-
vised and supervised compression modes, together with an
analysis of the tradeoffs involved between the number of
components used, the accuracy of the measurement approx-

imations, and the network load. We provide in section 4 a
set of experimental results based on a real world data set of
temperature data that illustrate the benefits of the proposed
approach. Section 5 contains a discussion on the proposed
schemes. The conclusions are summarized in section 6.

2. PRINCIPAL COMPONENT ANALYSIS
2.1 Notations
Let X = {x1, x2, ...xp} be a set of p sensors and let T =
{1, 2, 3, ....} be a discretized time domain accounting for the
sampling period at which the sensor measurements are col-
lected. The sampling period is also referred to as epoch.

Each sensor generates a stream of data. Let xi[t], 1 ≤ i ≤ p,
be the measurement taken by sensor i at time t ∈ T and
let x[t] = (x1[t], x2[t], ..., xp[t]) ∈ R

p be the column vector
of measurements taken in the sensor field at time t. Let
Xp×N be a matrix with elements xit = xi[t], containing
columnwise N observations of the sensor field x[t], 1 ≤ t ≤

N . Finally, let x̄[t] = 1
N

∑N

t=1 x[t] be the XN×p mean vector
columnwise.

2.2 Formulation
Principal Component Analysis (PCA) is a classic technique
in statistical data analysis, data compression, and image
processing [15, 10]. Given q ≤ p and a set of N centered
multivariate measurements x[t] ∈ R

p, it aims at finding a
basis of q orthonormal vectors {wk}1≤k≤q of R

p, such that
the mean squared distances between x[t] and their projec-
tions x̂[t] =

∑q

k=1 wkwk
T x[t] on the subspace spanned by

the basis {wk}1≤k≤q is minimized2. The corresponding op-
timization function

Jq(x[t],wk) = 1
N

∑N

t=1 ||x[t] − x̂[t]||2

= 1
N

∑N

t=1 ||x[t] −
∑q

k=1 wkw
T

k x[t]||2

(1)
under the constraint of orthonormal {wk}1≤k≤q can be solved
using the Lagrange multiplier technique [9]. The minimizer
of Formula (1) is the set of the q first eigenvectors {wk} of
the correlation matix XXT , ordered for convenience by de-
creasing eigenvalues λk. Eigenvalues quantify the amount of
variance conserved by the eigenvectors, and their sum equals
the total variance of the original set of observations X, i.e.:

p∑

k=1

λk =
1

N

N∑

t=1

||x[t]||2 (2)

The proportion P of retained variance with the first q prin-
cipal components, which characterizes the accuracy of the
approximation, is expressed by:

P (q) =

∑q

k=1 λk∑p

k=1 λk

(3)

It is common practice in signal processing and data analysis
to retain the first q eigenvectors such that P (q) = 0.95, i.e.
to conserve 95% of the variance of the original signal.

2measurements are centered so that the origin of the co-
ordinate system coincides with the centroid of the set of
measurements. This translation is desirable to avoid a bi-
ased estimation of the basis {wk}1≤k≤q of R

p towards the
centroid of the set of measurements.



Ranging columnwise the set of vectors {wk}1≤k≤q in a Wp×q

matrix, approximations x̂[t] to x[t] in R
p are obtained by

x̂[t] = WW
Tx[t] = Wz[t] (4)

where

z[t] = W
Tx[t] (5)

denote the column vector of coordinates of x̂[t] in {wk}1≤k≤q ,
also referred to as principal coordinates.

Example: In figure 2 are plotted (circles) a set of N =
50 observations involving three data sources x1[t], x2[t] and
x3[t]. The correlation between x1[t] and x2[t] is high, whereas
x3[t] measurements were drawn independently. The set of
vectors {w1, w2, w3} of the principal component (PC) basis
were computed, together with the two-dimensional subspace
spanned by {w1, w2}. The projections of the original mea-
surements on the subspace are represented by crosses, and
illustrate that this set of measurements can be well approxi-
mated by the two first PCs, as there exists strong correlations
between x1 and x2.

Figure 2: Illustration of the transformation obtained
by the principal component analysis. Circles give
the original observations, and crosses their approx-
imations on the two-dimensional subspace spanned
by the two first principal components.

2.3 Compression strategies
2.3.1 Initialization stage
In a first stage, we assume that a set of N observations are
gathered at the sink from the whole sensor field. We assume
that a synchronized routing layer has been set up, and that
measurements from sensors out of communication range of
the sink have their measurements relayed by the means of
the routing layer. This data collection mode is referred to
as the default data collection mode, to denote the absence of
compression.

This stage allows to build, after N epochs, an Xp×N ma-
trix from which q principal components are extracted. The

number N of observations to gather should be chosen such
that the average correlations between sensor measurements
are well captured, in order to properly identify the principal
components. This will be discussed more in depth in section
4 and 5.3. The choice for q will be addressed in section 3.2
and 3.3.

Once computed, the Wp×q matrix of principal components is
flooded in the network by the means of the routing tree, from
the root down to the leaves. Each sensor xi, 1 ≤ i ≤ p, only
retains the i-th row of the matrix. The network can from
this moment switch to any of the two compression strategies
described hereafter.

2.3.2 Unsupervised compression
The central point of the compression strategies proposed in
this paper is that, at each epoch, the projection z[t] (For-
mula 5) can be computed as data traverses the routing tree.
Letting wik be the i-th element of the k-th principal compo-
nent, the k-th principal coordinate zk[t] at time t is obtained
by the following scalar product:

zk[t] =

p∑

i=1

xi[t] ∗ wik (6)

Assuming that sensor xi has available the set of q elements
{wik}, 1 ≤ k ≤ q, the vector of coordinates zt can be easily
computed along the routing tree. The aggregation process
is illustrated in Figure 3 (left) for a network of four nodes, in
which the coordinate of the first principal coordinate is ag-
gregated along a routing tree of depth three. The notation

z
{S}
k =

∑
i∈S xi[t] ∗ wik is used for detailing the progres-

sion of the scalar product along the routing tree. The set
{S} is the set of sensors whose measurements have already
been aggregated. The elements available at sensors xi are
reported as vectors on the side of the sensor symbol. The
root of the routing tree is the last step of the aggregation
process, where we have

z
{1,2,...,p}
k =

p∑

i=1

xi[t] ∗ wik = zk[t] (7)

The transformation of the vector of coordinates zt back to
the original basis can then be achieved at the base station
using Formula (4) to get an approximation x̂t of the mea-
surements over the whole sensor field.

The main benefit of this approach is that the set of q coordi-
nates zk[t] in the principal component basis, 1 ≤ k ≤ q, can
be delivered to the base station with a constant packet
size for each traversed node. As in most cases a good
approximation can be obtained by relying on few principal
components, the proposed scheme can allow to significantly
reduce the network load at the root of the routing tree. This
scheme is dubbed unsupervised as approximations obtained
at the sink are not checked against actual measurements col-
lected by the sensors, and will be analyzed in more details
in section 3.2.

2.3.3 Supervised compression
The computation required to get the approximation x̂i[t] for
the ith sensor, 1 ≤ i ≤ p, requires the knowledge of the q



principal coordinates zk and the q elements {wik}, 1 ≤ k ≤ q

(cf Formula 4):

x̂i[t] =

q∑

k=1

zk[t] ∗ wik (8)

The elements {wik} are already assumed to be available at
each sensor for computing the principal coordinates (cf For-
mula 6 above). Therefore, it is only sufficient to send back
to the routing tree the k principal coordinates to have each
sensor compute the approximation that was made at the
sink.

This additional stage allows to verify that the approxima-
tions are within some user defined ε of the true measure-
ments. Whenever the condition is not met for a sensor,
it sends the true measurement to the sink. This scheme
guarantees that all data eventually obtained at the
sink are within ±ε of their the true measurements.

This second scheme is dubbed supervised compression, and
will be analyzed in more details in section 3.3.
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Figure 3: Illustration of the aggregation process
where the coordinate of the first principal compo-
nent is computed along a routing tree of depth three
in network of four nodes (left) and then fed back in
the network to allow sensors to recover approxima-
tions (right).

2.3.4 A note on the mean
We assumed from section 2.2 that the sensor measurements
had zero mean, so that their centroid coincided with the
origin of the coordinate system. This assumption can be re-
laxed easily, if the mean is subtracted by the sensor prior to
the aggregation of its value (in Formula 6), add added back
after the computation of the approximation (in Formula 8).
The mean value of the measurements collected by a sensor
can be either computed at the sink after the N epochs, or
computed in a recursive manner by the sensor node.

3. TRADEOFF ANALYSIS
The previous section presented how some of the computa-
tion required by the PCA could be distributed in the net-
work, and provided two compression strategies. This section

discusses how these compression strategies can be relied on
in practice, by analyzing the tradeoffs involved between the
network lifetime, the network load, and the compression ac-
curacy.

3.1 Metrics
In the following, we assume that each node has initially
the same energy budget, and that one packet is required
to transmit a piece of information over the network (either
a single sensor measurement or a coordinate). We also as-
sume, for the sake of simplicity, that there is no sensor fail-
ure, and that all packets are delivered to the sink. Relax-
ation of these assumptions will be discussed in section 5.

We chose as metrics for the network lifetime and the network
load the time-to-first failure (TTFF) and the maxi-
mum network load, respectively. The TTFF is a com-
monly used metric for characterizing network lifetime, and
defines the duration of time before any node in the network
runs out of its battery energy. In wireless sensor networks, it
can be to a first approximation linked to the sensor that has
the maximum network load3, as the radio communication is
one of the most energy consuming task for a wireless sensor
node [?].

In the case of a routing tree, the node with the maximum
network load is the root, as it is the last node to be traversed
before the packets reach the base station 4. Note that for
a tree of size p, the root node is required to transmit p

packets per epoch, and that any additional node increases
the maximum network load, thereby decreasing the TTFF.

The accuracy metrics are the percentage of retained
variance for the unsupervised compression mode, and the
absolute error for the supervised compression mode. They
will be detailed in sections 3.2 and 3.3, respectively.

3.2 Unsupervised compression
In the unsupervised compression mode, the tradeoff between
accuracy, network load and network lifetime can be ad-
dressed by Formula 3, which relates the amount of retained
variance by the PCA to the number q of principal compo-
nents used. The network load is q, as q packets traverse the
root of the routing tree at each epoch.

The function P (q) increases monotonically with q, as in-
creasing the number of principal components necessarily in-
creases the amount of retained variance. When data sources
are uncorrelated and have the same variance, this function
increases linearly with q. Interestingly, when data sources
are correlated, the percentage of conserved variance typi-
cally first increases sharply, to reach an inflexion point after
which the gain in retained variance is much lower as q is in-
creased. The sharp increase corresponds to the components
that support the signal of interest, whereas components that
provide little gain account for the measurement noise and
can be dismissed.

3Such a node is often referred to as a hot spot in the net-
working literature
4We assume for the sake of simplicity that there is no disjoint
trees in the routing structure of the network.



Figure 6 in section 4 provides an illustration of the profile
obtained for P (q) for the temperature dataset considered in
the experimental section.

This tradeoff can be addressed in two different manners, ei-
ther by fixing the number q of principal components, or by
fixing a percentage of variance to retain. The former case is
particularly suitable if the network load is bounded. In this
case, the number of components can be fixed to the high-
est value that complies with the network load limit. The
proposed scheme is hence the optimal scheme regarding the
amount of retained variance. The latter case is more suitable
if the amount of variance to keep for the requirements of the
application is known. In this case, the proposed scheme will
be optimal with respect to the network load incurred (and
consequently optimal in maximizing the network lifetime).
In practice, the amount of variance required for an applica-
tion is however rarely known, and is usually arbitrarily set
between 90% and 99%.

3.3 Supervised compression
In the supervised compression mode, the tradeoff between
accuracy, network load and network lifetime cannot be an-
alytically addressed as in the previous section.

First, at time t, all sensors whose aprroximations are not
within the ε error tolerance fixed by the user (cf. Formula 8)
are required to send their actual measurements to the sink.
Their number therefore depends on the time, on the number
q of principal components, and also on the user defined error
tolerance ε. Letting U(q, ε, t) denote for this quantity, we
have

U(q, ε, t) =

N∑

i=1

1(|xi−x̂i|>ε)(xi) (9)

where 1() is the binary indicator function. The network load
at each time instant is therefore given by

L(q, ε, t) = 2q + U(q, ε, t) (10)

Additionally, a minimum number of 2q packets will be trans-
mitted through the root of the tree at each epoch: q packets
as the q principal coordinates are computed along the tree,
and q packets as the principal coordinates are routed back
from the sink to the tree.

The tradeoff involved in the supervised compression mode
is as follows. For ε fixed, the number of updates decreases
as q increases, given that the approximations are necessar-
ily closer to the true measurements as was pointed out in
the previous section. As the number of updates is typically
high for low q, the cost given by Formula 10 may therefore
show a decreasing stage before monotonically increasing as
q increses.

For q fixed, the number of updates clearly monotonically
decreases with the error tolerance ε as the higher the error
tolerance, the lower the number of updates, and conversely.

Example of profiles for this tradeoff are reported in Figure
9 (right) in section 4.

4. EXPERIMENTAL RESULTS

4.1 Data
Experiments were carried out using a set of temperature
readings obtained from a 54 Mica2Dot sensor deployment
at the Intel research laboratory at Berkeley [1]. Data was
originally sampled every thirty-one seconds, and the dataset
available from the data webpage associates each measure-
ment collected at the base station to a sensor node ID and
a timestamp. We selected temperature data from a set of
eight consecutive days, where measurements had few miss-
ing values. Using principal components aggregation, missing
values need to be handled with special care, as is discussed in
section 5. In the present case, missing values were linearly
interpolated from other data during a preprocessing stage
where data was discretized in thirty second intervals. We
mention that this interpolation does not affect the results
presented hereafter. The sensors 5 and 15 were removed as
they did not provide any measurement. After preprocess-
ing, the dataset contained a trace of 23040 readings from 52
different sensors.

Examples of temperature profiles and dependencies between
measurements are reported in Figures 4 and 5, respectively.
The sensors 21 and 49 were the least correlated ones over
that time period, with a correlation coefficient of 0.59. They
were situated on opposite sides of the laboratory. Sensors
49 and 47 were side by side, and their measurements exhib-
ited a particularly high level of dependency (the correlation
coefficient is 0.99). Temperature over the whole set of data
ranged from about 15◦C to 35◦C.
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Figure 4: Temperature measurements collected by
sensors 21 and 49 over an eight day period. Sensors
21 and 49 were the least correlated ones during that
period.

4.2 Training and testing
Let us recall that unsupervised and supervised compression
modes are two-stage processes implying (i) a default data
collection stage over N time instants that fills a matrix of ob-
servation Xp×N whose principal components are computed,
and (ii) an approximate data collection stage where new
measurements, that were not used for the computation of
the principal components (PCs), are approximated.

To account for this two-stage process, the set of observations
was partitioned in two parts. The first four days of observa-
tions (i.e. 11520 epochs) were used to compute the measure-
ment mean and principal components. The last four days



16 20 24 28

16
18

20
22

24
26

28
30

Correlation coefficient: 0.99

Temperature − Sensor 49

Te
mp

er
atu

re
 − 

Se
ns

or
 47

16 20 24 28

15
20

25
30

35

Correlation coefficient: 0.59

Temperature − Sensor 49

Te
mp

er
atu

re
 − 

Se
ns

or
 21

Figure 5: Profiles of the dependencies between sen-
sor measurements for (nearly) the most correlated
(left) and least correlated (right) pairs of sensors.

of observations were used to test the compression schemes.
These two subsets are referred to as training and test sets
in the following.

As reported in Table 4.2, it is actually not necessary to use
the full set of observations gathered during the first four
days to get satisfying estimates for the principal compo-
nents. Table 4.2 reports the percentage of variance retained
on the test set for different number of principal components
(PCs), and different sizes of training sets.

The accuracy of the compression neatly increases as the size
of the training sets grows from 6 hours of observations to 12
hours. Augmenting further the training set to one day up
to four days allows to get slightly more accurate approxima-
tions.

These results stem from the fact the temperature measure-
ments exhibit daily cyclic patterns. A set of temperature
measurements spanning a one day period therefore provides
a representative set for extracting the correlations existing
among the sensors, and all the results reported in section 4.3
and 4.4 were obtained using one day of data (2880 epochs).

Table 1: Percentage of variance retained on the test
set for different number of principal components
(PCs) and different sizes of training sets (%).

4 days 3 days 2 days 1 day 12 hrs 6 hrs
1 PC 82 81 81 81 81 69
4 PCs 95 93 92 90 91 76
8 PCs 98 97 97 96 95 87

4.3 Unsupervised compression
4.3.1 Tradeoff network load - Accuracy
An important practical issue in running the unsupervised
compression mode is to properly estimate the amount of re-
tained variance by the principal components. We pointed
out that the retained variance could be estimated by the
means of the training set using Formula 3. However, such es-
timate is in practice optimistic as it is based on the data from

which the principal components were computed. The perfor-
mances obtained on new data, independent of the training
set, are usually lower.
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Figure 6: estimated and actual percentages of re-
tained variance on the test set for an increasing
number of principal components, using different es-
timation methods.

The assessment of the accuracy of a learning process on new
data is a typical machine learning issue, which can be ad-
dressed by relying on K-cross-validation (K-CV). The ratio-
nale of K-CV is to divide a training set in K subsets, to use
K-1 subsets for the learning, and to estimate the accuracy
on the remaining subset of data.

After simulating K times the learning process, K-CV pro-
vides an estimate of the mean of the accuracy criterion con-
sidered, together with its standard deviation. A probabilis-
tic bound on the accuracy expected on new data can be
derived by computing a confidence interval around the ex-
pected mean accuracy.

We suggest to rely on this technique to properly estimate
the percentage of retained variance. We report in Figure 6
the estimated and actual percentages of retained variance
on the test set for an increasing number of principal com-
ponents, using different estimation methods. The actual re-
tained variance on the test set is given by the dashed curve
(third from the top, referred to as test).

The upper continuous curve (referred to as empirical) re-
ports the percentage of retained variance 100 ∗ P (q) us-
ing Formula 3, and is particularly optimistic. The second
curve from the top (CV-mean) is the estimated mean ac-
curacy obtained by 10-CV. Finally the bottom curve (CV-
lower bound) is the lower bound of a 95% confidence interval
around the 10-CV estimated mean, obtained by relying on
the 10-CV estimated variance and a student distribution ta-
ble.

The CV-lower bound curve provides a good estimate of the



actual accuracy obtained on the test, despite underestimat-
ing the accuracy for low numbers of principal components.

From Figure 6, we observe that the percentage of retained
variance increases very quickly as the number of principal
components used increases. The first principal component
retains about 80% of the variance, and 4 principal compo-
nents increase this amount to 90%. The conservation of 95%
of the variance require relying on the first eight principal
components.

These results shows that appealing accuracies can be ob-
tained with very few components, and illustrate the effi-
ciency of relying on the principal components when collect-
ing spatially correlated data.

4.3.2 Approximations to original data
Fig. 7 and 8 illustrate the approximations obtained on the
test set for the sensors 21 and 49, using one, four and eight
principal components.

These sensors, as mentioned in section 4.1, are the least cor-
related, and follow different patterns during the day. More
particularly, the temperature obtained for sensor 49 seems
to be artificially stabilized around 20 Celsius degrees during
the first three days. We conjecture that the air conditioning
was switched on during these periods.

We notice that a single principal components provide a rough
approximation, which cannot account for the specifities of
some sensor variations. For example, the stabilization of the
temperature in the area close to sensor 49 is not rendered
after the compression.

We also note that increasing the number of principal com-
ponents may not improve approximations in the same man-
ner. For example, while passing from one to four PCs does
not improve the approximations obtained for sensor 21, it
provides significant improvements for sensor 49. Contrarily,
passing from four to eight PCs clearly improves approxima-
tions for sensor 21, whereas it is of less benefit for approxi-
mations obtained for sensor 49.

4.4 Supervised compression
4.4.1 Absolute error over time
We reported in Figure 9 (left) the absolute error obtained
on the test set for the sensor 49 for different number of
PCs. Note that this figure are dual to Figure 8, but provides
a better illustrative support to the supervised compression
mode.

Given a sensor and a user-defined error tolerance ε, all epochs
at which the absolute error is larger than ε will require an
additional transmission to correct the approximation made
at the sink. Here, an ε = 1◦C was set (horizontal line).

The overall number of errors is reported in Figure 9 (center)
for different numbers of principal components, as boxplots.
It can be observed that these numbers decrease very quickly
as the the number of PCs increases. In the case of the tem-
perature data studied in this section, we observe that these
updates are however not well spread out over time (from Fig-
ure 9 (left) and may cause punctually high network loads at
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Figure 7: Approximations obtained on the test set
for the sensor 21, using one, four and eight principal
components.
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the routing tree (but still less or equal to the default data
collection mode).

4.4.2 Tradeoff network load - accuracy
We varied the error tolerance ε from 0◦C to 10◦C, and re-
ported in Figure 9 (right) the number of packets transmitted
at the root of the routing tree as the number of solicited PCs
increases.

Two extreme cases can be observed. First, when the error
tolerance is set to zero, meaning no tolerance for approxima-
tions (upper line), the optimal number of PCs is 0, and the
associated network load 52. This comes down to the default
data collection mode.

The second extreme case happens if the error tolerance is
wider than the measurement range (lower line), in which
case the network of sensors need not be used. The optimal
number of PCs is therefore also zero.

In between these two extremes, the optimal number of prin-
cipal components for the temperature data considered is
around two and eight.

As for the supervised compression mode, an important prac-
tical issue is to determine, from a training set, the optimal
number q of components to use. We relied for this purpose
on the K-cross validation scheme described in the previous
section. Table 4.4.2 reports in its second column (CV best)
the number of components retained with the 10-CV for vary-
ing ε, together with the estimated average network load at
the root of the routing tree. The first column (Test best)
reports the true optimal number of PCs for the test set,
with the network loads incurred. The third column (Test
obtained) reports the network load incurred on the test set
using the number of PCs estimated by the 10-CV. These re-
sults show that 10-CV proved to be suitable in finding near
optimal solutions.

Test best CV best Test obtained
ε = 0◦C 0 - 52.00 0 - 52.00 0 - 52.00
ε = 0.1◦C 1 - 48.57 1 - 49.35 1 - 48.57
ε = 0.25◦C 2 - 39.44 4 - 39.47 4 - 40.64
ε = 0.5◦C 2 - 27.83 4 - 23.81 4 - 28.12
ε = 1◦C 2 - 15.63 4 - 13.21 4 - 17.89
ε = 3◦C 1 - 5.10 1 - 3.20 1 - 5.10
ε = 10◦C 0 - 0.38 0 - 0.02 0 - 0.38

5. DISCUSSION AND RESEARCH TRACKS
The two PCA based compression modes proposed in this
paper were shown to be well suited to the wireless sensor
network framework. We discuss in this section issues that
have been so far left aside, and open the approach to possible
extensions.

5.1 Packet losses
Packet losses entail an incomplete computation of the pro-
jections on principal components. This may corrupt the re-
construction of the whole sensor field measurements at the
base station. Therefore, while a packet loss in the default
data collection mode merely causes a missing measurement,

it can jeopardize the whole set of measurements in principal
components aggregation.

Packet loss is therefore an important issue that must be
handled with care. The most straightforward solution is to
notify the base station, upon the delivery of the coordinates,
of sensors ID whose contributions were not received. This
allows the base station to properly reconstruct the sensor
field measurements, except for those that where missing (as
in the default data collection mode). Note that this incurs
additional network load. At the same time, it provides the
base station with the IDs of malfunctioning nodes or network
links, which could be desirable for maintenance purposes.

5.2 Erroneous measurements
Erroneous measurements are caused by sensor malfunction-
ing, and are measurements that do not reflect the physical
quantity monitored. As for packet losses, they corrupt the
computation of the projections on the principal components.
Unlike packet losses however, they may be difficult to detect,
depending on the dynamic of the phenomenon monitored.

Simple rules may be set up to prevent their integration into
the computation of the princpal coordinates (such as tem-
perature outside the range [−20; 60] should be reported as
missing data). More sophisticated rules for predicting mea-
surements on the basis of expected temporal or spatial cor-
relations could be considered.

In the case of supervised compression, incorrect computa-
tion of the principal coordinates would eventually be de-
tected as approximations are checked against the real mea-
surements. However, it may be that a single erroneous or
missing value cause the whole set of sensors to send an up-
date. In a general manner, we believe that the addition
of erroneous or missing measurement strategies could pro-
vide interesting improvements to the proposed compression
schemes.

5.3 Training set size
An important parameter of the proposed approach is the
number of observations N that are required to be collected
from the sensor network before proceeding to the principal
component analysis. This number should be as low as pos-
sible, in order to switch from the default monitoring mode
to the approximate one. At the same time, too few obser-
vations will provide poor estimates of the principal compo-
nents, leading to larger errors of approximation. This was
illustrated in section 4.1 (cf Table 4.2), with the difference
observed in the modelling accuracy between 6 hours and 12
hours of measurements.

It should be stressed however that the important point in
collecting observations for extracting the principal compo-
nents is not so much in the number of observations collected,
but in the concordance of the distribution of the measure-
ments collected with that of the future measurements. An
important issue is therefore raised by non stationary signals,
where the amount of correlation between sensor signals may
change over time. Changes in the signal correlation matrix
directly affect the directions of the principal components,
leading to potentially high and unexpected error rate in the
compression. The proposed approaches are not well suited
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to non stationary signals. A possible research direction to
handle non stationarity could be to rely on adaptive PCA
techniques [9, 7].

5.4 Extension of the aggregation principle
The first research direction to investigate is to extend the
proposed framework to the compression of (i) the variations
of a signal over time and (ii) different correlated physical
quantities captured by a wireless sensor module. The for-
mer extension would consist in applying the PCA over space
and time, to capture the temporal linear redundancies exist-
ing among sensor measurements. Such compression would
imply a tradeoff between the network load reduction (due
to the compression of measurement over time) and the la-
tency in measurement delivery (as the principal coordinates
would be sent every T epochs, T > 1). The latter could
fusion different types of sensor measurements, typically cor-
related, such as temperature and humidity. Extending the
PCA framework to different physical quantities requires to
study how the PCA can be weighted to account for the dif-
ferent amount of variances generated by different physical
quantities (e.g. how to combine Celsius degrees with per-
centages of humidity).

The aggregation principle underlying the compression schemes
proposed in this paper are also readily extensible to any ba-
sis transformation. Among the basis transformations of in-
terest, we stress that the independant component analysis
(ICA), also known as blind source separation, [9] is partic-
ularly appealing. ICA aims at determining a basis which
not only decorrelates signals, but that also gets them inde-
pendent. ICA has for example proven particularly efficient
in speech processing in separating the set of independent
sources composing an audio signal.

Another research track lie in the application of random bases
for compressing signal. Of particular interest is the work
proposed by [11] where pseudo random bases generated in
a distributed manner are shown to probabilistically retain

appealing amount of information.

Finally, we mention that measurement transformations pro-
vided by PCA or other transformation schemes could also
be used as inputs to classification or prediction problems at
the network scale. Given the task of recognizing the type
of vehicle or the number of heat sources from a network of
sensors collecting vibration or temperature measurements,
such transformations could be driven to provide dense and
informative summaries of the phenomenon monitored. Pre-
liminary work in this direction was discussed in [12, 5].

6. CONCLUSION
In this paper, we proposed two compression schemes based
on the removal of spatial linear dependencies between sensor
measurements. The paper covered the underlying theoret-
ical elements, showed their straightforward integration in
a synchronized routing layer, and illustrate experimentally
the benefits of the approach. The proposed schemes were
shown to be well suited to multi-hop sensor networks col-
lecting spatially correlated measurements. Some issues were
pointed out, and potential solutions addressed. Extensions
of the approaches discussed are promising, particularly from
the distributed data mining and collaborative signal process-
ing perspectives.
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