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1 Introduction

An efficient in-network data processing is a key factor to enable wireless

sensor networks (WSN) to extract insightful or critical information. There-

fore, an important amount of research has been devoted over the last years

to the development of data processing techniques suitable for sensor net-

works [16, 40]. WSN are known to be constrained by limited resources,

in terms of energy, network data throughput, and computational power.

The communication module is a particularly constrained resource since the

amount of data that can be routed out of the network is inherently limited

by the network capacity [32]. Also, wireless communication is an energy

consuming task and it is identified in many situations as the primary factor

of lifetime reduction [1]. The design of data gathering schemes that limit

the amount of transmitted data is therefore recognized as a central issue for

wireless sensor networks [16,28,32].

An attractive framework for the processing of data within a WSN is pro-

vided by data aggregation services, such as those developped at UC Berkeley

(TinyDB and TAG projects) [23, 24], Cornell University (Cougar) [39], or

EPFL (Dozer) [4]. These services aim at aggregating data within the net-

work in a time- and energy-efficient manner and are suitable for networks

connected to a base station, from which queries on sensor measurements are

issued. In TAG or TinyDB, for instance, SQL-like queries interrogate the net-

work to receive raw data or aggregates at regular time intervals. The underly-
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ing architecture is a synchronized routing tree, along which data is processed

and aggregated from the leaves to the root (i.e., the base station) [23, 24].

The interest of the approach is related to the ability of computing, within the

network, some common operators like average, min, max, or count, thereby

greatly decreasing the amount of data that needs to be transmitted over the

network.

In this chapter, we show that the aggregation service principle can be

used to implement a distributed data compression scheme based on Prin-

cipal Component Analysis (PCA) [15]. PCA is a classic, multivariate data

analysis technique which allows to represent data samples in a basis called

the principal component basis (PC basis), where data samples are uncorre-

lated. When sensor measurements are correlated, which is often the case in

sensor networks, PC basis allows to represent the sensor measurements vari-

ations with a reduced set of coordinates. This feature inspired recent work

in the domain of data processing for sensor networks where PCA is used for

tasks like approximate monitoring [22], feature prediction [3, 10], and event

detection [12, 20]. However, it is worthy noting that what is common to all

these approaches is that the transformation of the sensed data in the PC

basis takes place in a centralized manner in the base station.

What we propose here is a principal component aggregation (PCAg)

scheme where the coordinates of the measurements in the PC basis are com-

puted in a distributed fashion by means of the aggregation service. This

approach extends previous work on data aggregation operators and presents
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the following advantages. First, PCA provides varying levels of compression

accuracies, ranging from constant approximations to full recovery of original

data. It can be therefore be used to trade application accuracy for network

load, thus making the principal component aggregation scheme scalable with

the network size. Second, the PCAg scheme demands all sensors to send

exactly the same number of packets during each transmission, thereby bal-

ancing the network load among sensors. Given that network load is strongly

related to the energy consumption [30], we will show that the balanced load-

ing increases the network lifetime as well.

The PCAg procedure is implemented as a three-stage process. First, a

set of N measurements is collected at the sink from the whole set of sen-

sors. Second, a set of q principal components are computed at the sink and

distributed in the network. The third step is the sensing itself where each

node computes the principal component scores in a distributed fashion along

the routing tree. Experimental results based on a real world temperature

measurement campaign illustrate that the PCAg allows a recovery of 90% of

the data variance at the base station, while reducing the network load of up

to 20%.

The remaining of this chapter is organized as follows. Section 2 intro-

duces the notation and describes the principle of a WSN aggregation service.

Section 3 presents the PCA and details its implementation in an aggregation

service. Section 4 analyzes the tradeoffs between network load, network life-

time, and accuracy of approximations. A set of experimental results based
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on a real world data set is reported and discussed in Section 5. Related work

and possible extensions are presented in Section 6 while Section 7 concludes

the chapter.

2 Data Aggregation in Sensor Networks

2.1 Network Architecture

Let us consider a sensor network architecture of p nodes whose task is to

collect sensor measurements at regular intervals. Data is forwarded to a

destination node referred to as sink or base station, assumed to benefit from

higher resources (e.g., a desktop PC). Let t ∈ N denote the discretized time

variable and xi[t] be the measurement collected by the sensor i, 1 ≤ i ≤ p, at

time t. At each time t, the p resulting measurements form a vector x[t] ∈ Rp.

The sampling period is referred to as an epoch.

Since the communication range of the nodes is limited, the sink will gen-

erally not be in range of all the sensors. Therefore, the information has to

be relayed from sources to the sink by means of intermediate nodes. Fig. 1

presents an example of a routing tree that collects the data from a set of

sensors and forwards them to a sink.
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Fig. 1: Illustration of a routing tree connecting sensor nodes to a sink. Radio
range is 10 meters.

2.2 Data Aggregation Service

This section presents an overview of TAG, a data aggregation service devel-

oped at the University of California, Berkeley [23,24]. TAG stands for Tiny

AGgregation and is an aggregation service for sensor networks which has

been implemented in TinyOS, an operating system with a low memory foot-

print specifically designed for wireless sensors [33]. TAG aims at aggregating

the data within the network in a time- and energy-efficient manner. To that
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end, an epoch is divided into time slots, in such a way that the activities

of the sensors are synchronized as a function of their depth in the routing

tree. Any algorithm can be used to design the routing tree, as long as (i)

it allows the data to flow in both directions of the tree, and (ii) it avoids

sending duplicates [23].

The goal of TAG is to minimize the amount of time spent by sensors in

powering their different components and to maximize the time spent in the

idle mode, in which all electronical components are switched off. Indeed, the

energy consumption is several orders of magnitude lower in the idle mode

than in a mode where the CPU or the radio is active. This synchronization

allows to significantly extend the lifetime of the sensors. An illustration of

the activities of the sensors during an epoch is given in Fig. 2, for a network

of four nodes with a routing tree of depth three.

Once a routing tree is set up and the nodes synchronized, data can be

aggregated along the routing tree, from the leaves to the root. TAG relies

on a set of three primitives [23,24]:

• an initializer init which preprocesses a value measured by a sensor,

• an aggregation operator f which inserts the contribution of a node in

the data flow, and

• an evaluator e which applies a final transformation on the data.

Each node includes its contribution in a partial state record X which is prop-

agated along the routing tree. Partial state records are merged when two
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Fig. 2: Activities carried out by sensors depending of their depth in the
routing tree (adapted from [23]).

(or more) of them arrive at the same node. When the eventual partial state

record is delivered by the root node to the base station, the desired result

is obtained thanks to the evaluator. Partial state records may be any data

structures. However, when partial state records are scalars or vectors, the

three operators defined above may be seen as functions.

Example: The ’average’ aggregate can be computed with a partial state record

〈x〉 = (SUM,COUNT) consisting of the sum of sensor measurements col-

lected by nodes traversed, together with the number of nodes that contributed
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to the sum. The three generic functions would be implemented as follows:

init(xi[t]) = 〈xi[t], 1〉
f(〈S1, C1〉, 〈S2, C2〉) = 〈S1 + S2, C1 + C2〉
e(〈S,C〉) = S/C

Note that without this aggregation process, all the measurements would be

routed to the base station. The root node would therefore have to send p

packets per epoch. Instead, using this scheme, each node is required to send

only two pieces of data.

3 Principal Component Aggregation

3.1 Principal Component Analysis

The Principal Component Analysis (PCA) is a classic technique in statistical

data analysis, data compression, and image processing [18, 25]. Given q ≤ p

and a set of N centered1 multivariate measurements x[t] ∈ Rp, it aims at find-

ing a basis of q orthonormal vectors {wk}1≤k≤q of Rp, such that the mean

squared distances between x[t] and their projections x̂[t] =
∑q

k=1 wkwk
Tx[t]

on the subspace spanned by the basis {wk}1≤k≤q is minimized. The corre-
1measurements are centered so that the origin of the coordinate system coincides with

the centroid of the set of measurements. This translation is desirable to avoid a biased
estimation of the basis {wk}1≤k≤q of Rp towards the centroid of the set of measurements
[18].
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sponding optimization function can be expressed as:

Jq(x[t],wk) =
1

N

N∑
t=1

||x[t]− x̂[t]||2

=
1

N

N∑
t=1

||x[t]−
q∑

k=1

wkw
T
k x[t]||2 (1)

Under the constraint of orthonormal {wk}1≤k≤q, this expression can be min-

imized using the Lagrange multiplier technique [15]. The minimizer of (1) is

the set of the q first eigenvectors {wk} of the covariance matix, ordered for

convenience by decreasing eigenvalues λk. These eigenvectors are called the

principal components and form the principal component basis. Eigenvalues

quantify the amount of variance conserved by the eigenvectors, and their sum

equals the total variance of the original set of centered observations X, i.e.:

p∑
k=1

λk =
1

N

N∑
t=1

||x[t]||2

The proportion P of retained variance within the first q principal components

can be expressed as:

P (q) =

∑q
k=1 λk∑p
k=1 λk

(2)

Ranging columnwise the set of vectors {wk}1≤k≤q in a Wp×q matrix, the
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approximations x̂[t] of x[t] in the subspace Rp are given by:

x̂[t] = WW Tx[t] = Wz[t] (3)

where

z[t] = W Tx[t] =


∑p

i=1wi1xi

. . .∑p
i=1wiqxi

 =

p∑
i=1


wi1xi

. . .

wiqxi


denotes the column vector of the coordinates of x̂[t] in {wk}1≤k≤q, also re-

ferred to as the q principal component scores.

Example: Fig. 3 plots a set of N = 50 observations in a three dimensional

data space x1, x2, x3 where x1, x2, and x3 denote three data sources. Note

that the correlation between x1 and x2 is high, while the x3 signal is inde-

pendent of x1 and x2. The set of principal component (PC) basis vectors

{w1, w2, w3}, the two-dimensional subspace spanned by {w1, w2} and the pro-

jections (crosses) of the original measurements on this subspace are illus-

trated in the figure. We can observe that the original set of three-variate

measurements can be well approximated by the two-variate projections in the

PC space, because of the strong correlations between the values x1[t] and the

values x2[t].
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Fig. 3: Illustration of the transformation obtained by the principal compo-
nent analysis. Circles denote the original observations while crosses denote
their approximations obtained by projecting the original data on the two-
dimensional subspace {w1, w2} spanned by the two first principal compo-
nents.

3.2 Implementation in a Data Aggregation Service

The computation of the q principal component scores z[t] can be performed

by an aggregation service if each node i is aware of the elements wi1, . . . ,wiq

of the principal component basis. These elements are made available to each

sensor during an initialization stage. The initialization consists in gathering

at the sink a set of measurements from which an estimate of the covariance

matrix is computed. The first q principal components are then derived and

delivered to the network, so that each node i stores the elements wi1, . . . ,wiq.
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Note that the capacity of the principal components to properly span the

signal subspace is dependent on the stationarity of the signal, and on the

quality of the covariance matrix estimate. Failure to meet these two criteria

may lead to poor approximations.

Once the components are made available to the network, the principal

component scores are computed by the aggregation service, by summing

along the routing tree the vectors (wi1xi[t], . . . ,wiqxi[t]) available at each

node. The aggregation primitives are:

init(xi[t]) = 〈wi1xi[t]; . . . ;wiqxi[t]〉

f(〈x1; . . . ;xq〉, 〈y1; . . . ; yq〉) = 〈x1 + y1; . . . ;xq + yq〉

Partial state records are vectors of size q. The main characteristic of this

approach is that each nodes sends exactly the same amount of data, i.e., the

set of q coordinates zk[t].

3.3 Remote Approximation of the Measurements

An approximation x̂t of the measurements over the whole sensor field can

be obtained at the base station by transforming the vector of coordinates zt

back to the original basis by using (3). The evaluator function is then the
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Fig. 4: Aggregation service at work for computing the projections of the set
of measurements on the first principal component.

function

e(z1[t], . . . , zq[t]) = (x̂1[t], . . . , x̂p[t])

= W T z[t]

which returns the approximation of the p-variate sensor measurements by

using the q principal components. Note that if p = q, the evaluation steps

returns the exact set of sensor measurements. Otherwise, if the number of

coordinates q is less than p, the evaluation will return an optimal approxi-

mations to the real measurements in the mean square sense (1). Since sensor

measurements are often correlated, it is therefore likely that a number q � p

of coordinates can provide good approximations.
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It is worthy noting that a simple procedure can be set up to check the

accuracy of approximations with respect to a user defined threshold. Accord-

ing to (3) the approximation x̂i[t] of the ith (1 ≤ i ≤ p) sensor measure at

time t is given by:

x̂i[t] =

q∑
k=1

zk[t] ∗ wik

Since the terms {wik} are assumed to be available at each node, each sensor

is able to compute locally the approximation retrieved at the sink, and in

case to send a notification when the approximation error is greater some user

defined ε. This scheme, dubbed supervised compression in [21], guarantees

that all data eventually obtained at the sink are within ±ε of their actual

measurements, and provides a way to decide when to update the principal

components in case of non stationary signals.

4 Network Load and Energy Efficiency

This section presents an analysis of the impact of the principal component

aggregation on the overall network performances. More precisely, we focus

on the network traffic load, the distribution of the energy depletion among

the nodes, and the scalability of the proposed solution. The scalability is

defined as the capacity of the considered networking architecture to expand

and adapt to an increasing number of sensor nodes [11]. This notion is of

importance when considering large-scale deployments or very dense sensing

scenarios. Also, in most networking systems, it is found to be a limiting
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issue [19] and has therefore to be carefully evaluated.

We first address in Section 4.1 the tradeoff between the accuracy of the

PCAg scheme and the gain in terms of network load. Next, we analyze in

Section 4.2 the distribution of the network load in the case of the classical

approach (i.e., store-and-forward) and with the PCAg. Finally, in Section 4.3

we conduct a detailed computation of the energy consumption in a scenario

where a hierarchical routing topology [14,35] is used. A quantification of the

expected gains, in terms of network load and scalability, is also presented in

this section.

4.1 Tradeoff between Accuracy and Network Load

As discussed in Section 3.3 the data reconstruction carried out at the network

sink provides an approximation of the sensed measurements. The precision

of this approximation depends on the number q of principal components

retained. At the same time, since q is also the number of components which

needs to be transmitted over the wireless network by the aggregation service,

the value of q has a direct impact on the network load.

In quantitative terms, Equation (2) illustrates the relation between the

percentage of retained variance and the number of principal components:

P (q) =

∑q
k=1 λk∑p
k=1 λk

As eigenvalues are necessarily positive, the function P (q) varies monotoni-
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cally with the value of q. Therefore, any decrease of the number of principal

components results into a lower network load at the cost of an accuracy loss.

On the other hand, an increase of the number of principal components has a

positive effect on the amount of retained variance (and consequently on the

sensing accuracy) but demands additional data to be transmitted. Therefore,

the PCA scheme incurs a tradeoff between the reduction of the network load

and the sensing accuracy.

Before detailing further how to formulate this tradeoff, we recall that the

amount of information retained by a set of principal components depends on

the degree of correlation among the data sources. Whenever nearby sensors

collect correlated measurements, a small set of principal components is likely

to support most of the variations observed by the network. As an example, we

refer the reader to the Fig. 10 in the experimental section, which illustrates

the relation between the percentage of variance retained and the number of

principal components.

In practical settings, the benefits obtained in accuracy by adding a com-

ponent must be weighted by the cost incurred in terms of network load.

The weighting is necessarily application dependent, and can be formulated

by means of an optimization function. Its optimum may be determined for

example at the sink, by means of a cross validation procedure on the mea-

surements collected during the initialization stage.

Finally, we emphasize that the principal component aggregation scheme

is not appropriate when sensor measurements are not correlated, or if the
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number of components required by the application is too high. We detail

this aspect in the next section, and derive an upper bound on the number of

principal component above which the default scheme should be preferred.

4.2 Distribution of the Network Load

Let us consider a generic routing tree, where each node of the topology relays

the information from its children.

We begin by analyzing a classical store-and-forward (S/F) routing pro-

tocol [36] where each node receives Rx (0 ≤ Rx ≤ p − 1) packets from its

children and p is the total number of nodes in the network. In particular, if

the node is a leaf it does not receive any packet to forward (Rx = 0) while if

the node is fully connected it receives Rx = p− 1 measurements per epoch.

After the reception of Rx measurements, a node adds its own data and

forwards the whole set to its parent node. It will therefore forward Tx =

Rx + 1 packets, where 1 ≤ Tx ≤ p. It follows that the upper bound on the

network load for all nodes of the topology is given by:

L = max
i
{Rxi + Txi}

= (p− 1) + p = 2p− 1 (4)

where the subscript i refers to the i-th node in the network. The upper bound

for the network load is a network metric that characterizes the minimum

throughput required at network nodes for avoiding congestion issues [5].
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Let us consider now what happens when the PCAg is adopted. Each

node receives q components from each of its neighbours. The total number of

packets received by all nodes in the network is therefore qCmin ≤ Rx ≤ qCmax,

where Cmin and Cmax stand for the minimum and the maximum number

of children of nodes in the network. Since the data received by a node is

combined with its sensed observation into a q-sized vector, the total number

of packets forwarded by a node is equal to q. It follows that the upper bound

on the network load of a node by using the PCA is:

L(pca) = max
i
{Rxi + Txi}

= qCmax + q = q(Cmax + 1) (5)

Fig. 5 reports bar plots of the per-node network load sustained for two dif-

ferent routing trees, and compares the network load distribution entailed by

the S/F and the PCAg approaches. More precisely, Fig. 5(a) illustrates the

repartition of the network loads in the case of a linear chain, while Fig. 5(b)

refers to a more generic, hierarchical network tree. We remark that in the

S/F approach the network loads sustained by the nodes are very heteroge-

neous. In fact, the load depends on the node position in the routing tree: a

leaf node transmits only its own sensing information while the other nodes

have to relay the packets coming from their children as well. As a conse-

quence, while some nodes process a single packet, others process a number

of packets that is proportional to the number of nodes in the network.

19



Store and Forward PCA 
(1 princ. comp.)

Am
ou

nt
 o

f p
ac

ke
ts

 p
ro

ce
ss

ed
 p

er
 e

po
ch

  (
Tx

+R
x)

0
5

10
15

20

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

3

2

1

6

5

4

9

8

7
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9Store and ForwardPCA 

(1 princ. comp.)

A
m
o
u
n
t 
o
f 
p
a
c
k
e
ts
 p
ro
c
e
s
s
e
d

 p
e
r 
e
p
o
c
h
  
(T
x
+
R
x
)

0

5

1
0

1
5

2
0

SnFPCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Chain topology ! Length 9

N
u
m
b
e
r 
o
f 
p
a
c
k
e
ts
 p
ro
c
e
s
s
e
d
 (
T
x
+
R
x
) 
p
e
r 
e
p
o
c
h

0

5

1
0

1
5

2
0

Store and ForwardPCA 

(1 princ. comp.)

A
m
o
u
n
t 
o
f 
p
a
c
k
e
ts
 p
ro
c
e
s
s
e
d

 p
e
r 
e
p
o
c
h
  
(T
x
+
R
x
)

0

5

1
0

1
5

2
0

SnFPCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Chain topology ! Length 9

N
u
m
b
e
r 
o
f 
p
a
c
k
e
ts
 p
ro
c
e
s
s
e
d
 (
T
x
+
R
x
) 
p
e
r 
e
p
o
c
h

0

5

1
0

1
5

2
0

(a) Single line routing topology.

Store and Forward PCA 
(1 princ. comp.)

Am
ou

nt
 o

f p
ac

ke
ts

 p
ro

ce
ss

ed
 p

er
 e

po
ch

  (
Tx

+R
x)

0
5

10
15

20

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

Store and Forward PCA 

(1 princ. comp.)

A
m

o
u

n
t 

o
f 

p
a

c
k
e

ts
 p

ro
c
e

s
s
e

d

 p
e

r 
e

p
o

c
h

  
(T

x
+

R
x
)

0
5

1
0

1
5

2
0

SnF PCA (1 PC)

Network load incurred by SnF and PCA schemes 

 Square grid topology ! Side 3

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 p
ro

c
e
s
s
e
d
 (

T
x
+

R
x
) 

p
e
r 

e
p
o
c
h

0
5

1
0

1
5

2
0

3

2

1

6

5

4

9

8

7
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(b) Hierarchical routing topology.

Fig. 5: Histogram of the per-node load in different routing topologies. The
store-and-forward and PCAg approaches are compared.

In the PCAg approach, the network load sustained by sensors is propor-

tional to the number q of retained principal components and their number

of children in the routing tree. An interesting feature of the PCAg approach

is therefore that the network load is more uniformly distributed, and is in-

dependent of the network size.

Let us now study under which conditions the adoption of the PCA routing
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approach is convenient. From (4) and (5) we derive the following condition

on the number q of principal components:

L(pca) < L ⇔ q(Cmax + 1) < 2p− 1

⇔ q <
2p− 1

Cmax + 1
. (6)

where q ≤ p. It follows that if the network size p is sufficiently higher

than the topology dependent term Cmax, the PCAg strategy outperforms a

conventional SF strategy.

The relation (6) is relevant also if we assess the approach in terms of time

to first failure (TTFF). The time to first failure is a commonly used metric

of network lifetime [7]. It is defined [5,31] as the elapsed time before a node

in the network runs out of energy:

TTFFnetwork = min
i∈V
{TTFFi}

where V is the set of nodes in the network and TTFFi is the time at which

node i runs out of energy. TTTF is dependent on the network load since the

radio communication module in a sensor node is the most energy-consuming

element (typically at least one order2 more consumption than the CPU)
2This ratio is expressed in terms of energy consumption. More specificaly, it is worth

noting that sending one bit of data consumes as much energy as 2000 CPU cycles, and,
therefore, a packet length of 30 bytes (the average packet length in TinyOS) is equivalent
to 480000 CPU cycles [30].
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[16, 29,40].

In the store-and-forward approach, each node has to relay an amount of

information that depends on its depth in the routing tree. Therefore, TTFF

will mostly depend on the lifetime of the nodes closer to the sink since these

nodes concentrate most of the network load.

On the other hand, in a PCAg scenario, each node relays a comparable

amount of information (notably the number q of principal components times

the number of children Ci). The energy depletion is therefore better dis-

tributed in the network and the TTFF does not depend anymore on the size

of the network.

In order to better support these preliminary considerations, we detail

in the next section the distribution of the network loads on a routing tree

inspired from a hierarchical routing topology [35]. We will advocate by means

of this particular topology that the overall energy consumption with the

PCAg scheme can be reduced by up to an order of magnitude.

4.3 Scalability Analysis

Let us consider the routing topology of Fig. 1 where p sensors are uniformly

distributed over a square area of A [m2]. The nodes on a same vertical

line are chained together and all chains are connected by means of a single

horizontal chain. Moreover, a specific node on the last chain is connected to

the data collection sink. If we denote by ρ the density of the sensors (units:

[m−2]), the total number of nodes is p = ρA and the side of the grid in Fig.
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Fig. 6: Summary of the network load in a sensor using a hierarchical routing
topology and with S/F relaying of the packets.

1 contains √p nodes.

The communication costs can be obtained as follows. Each node has to (i)

relay the information originating from the previous nodes on the chain and

(ii) send its own measurement. In particular, the first node sends 1 packet,

the second one receives 1 packet and sends 2 packets, the third receives 2

packets and sends 3 packets, and so on (Fig. 6(b)). Therefore, along a chain

of length n = b√pc, the total amount of transmitted (Tx) and received (Rx)

packets are:
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
Tx =

n(n+ 1)

2

Rx =
(n− 1)n

2

(7)

Furthermore, we can denote by the value E the average energy cost to trans-

mit or receive a single packet (dimension: [J/pck]). According to [16], these

two values are about the same in wireless sensor networks. For instance, typ-

ical value for the transmission of 1 bit is of E ' 20µJ for the MicaZ board,

and of E ' 50µJ for the IMote2. Therefore, from (7), we can derive the order

of magnitude of the relaying cost (in terms of energy) on a single chain, with

respect to the length n of this transmission chain:


ETx = E n(n+ 1)

2
= O(n2)

ERx = E (n− 1)n

2
= O(n2)

Echain = ETx + ERx = O(n2) +O(n2) = O(n2).

The same approach applies to the computation of the relaying cost on the

horizontal chain in Fig. 6. Each node of this chain receives k = (n − 1)n/2

packets from the vertical chains. Thus, the first node on the horizontal chain

transmits k packets, the following one chain receives the k packets and add

its k packets, and so on. Therefore, the cumulative number of packets relayed
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on the entire horizontal chain is:
Tx(H) =

kn(n+ 1)

2
=
n(n+ 1)

2

n(n+ 1)

2
= O(n4)

Rx(H) =
kn(n− 1)

2
=
n(n+ 1)

2

n(n− 1)

2
= O(n4)

and the order of magnitude of energy cost for the relaying on the entire

horizontal chain can be expressed as:

Ehorizontal = ETx(H) + ERx(H) = O(n4)

The order of magnitude for the energy required to relay the information of

the whole network of sensors is:

Enetwork = Ehorizontal + nEchain

= O(n4) + nO(n2)

= O(n4) = O(p2). (8)

We obtain that the energy required to transport the information using a

hierarchical routing in a wireless sensors network increases as the square of

the number of nodes.

Let us now analyze the cost for the PCAg scheme. In this case each node

sends q ≤ p packets per epoch, where p is the total number of nodes. Fig. 7

shows the number of packets transferred on a hierarchical routing topology

made of p nodes and Fig. 7(b) details the path of the q components on a
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Fig. 7: Summary of the network load in a sensor grid topology and with
PCAg relaying of the packets.

specific chain. The number Tx of transmitted packets and the number Rx of

received packets along a chain of length n are:

 Tx = nq

Rx = (n− 1)q

The order of magnitude of energy consumption along a chain of length n is
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then:  ETx = Enq = O(nq)

ERx = E(n− 1)q = O(nq)

Echain = ETx + ERx = O(nq) +O(nq) = O(nq), q ≤ n2

On the horizontal chain, each node receives nq components from its cor-

responding chain. It merges its own sensing information and forwards the

packet. This packet is made of nq components and requires nq transmissions.

The numbers of transmitted and received packets are:

 Tx(H) = n(nq) = O(n2q)

Rx(H) = (n− 1)nq = O(n2q)

and, in terms of energy:

Ehorizontal = ETx(H) + ERx(H) = O(n2q)

Finally, the order of magnitude of the whole energy spent to propagate the
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values of the sensor by using the PCA compression technique is:

Enetwork = Ehorizontal + nEchain

= O(n2q) + nO(nq)

= O(n2q) = O(pq), q ≤ p. (9)

Equations (8) and (9) show that the adoption of the PCA strategy allows an

order of magnitude reduction of the energy consumption.

We can conclude this section by summarizing the added value of the adop-

tion of principal component aggregation scheme in a network architecture:

(i) the availability of a traffic control policy which guarantees the maximum

of retained information for a given traffic, (ii) an enhanced distribution of

the energy depletion, (iii) a significant reduction of the TTFF.

5 Experimental Results

This section illustrates experimentally the different tradeoffs incurred by the

principal component aggregation scheme, and compares them to the default

S/F scheme. Experiments are based on a set of real-world temperature mea-

surements, which we detail in Section 5.1. Instances of network routing trees

are generated according to a simple algorithm described in Section 5.2. Re-

sults related to the tradeoffs between approximation errors and network load
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are presented in Section 5.3. Section 5.4 then illustrates the ability of the

principal component aggregation to better distribute the network load among

the sensors.

5.1 Data

Experiments were carried out using a set of five days of temperature read-

ings obtained from a 54 Mica2Dot sensor deployment at the Intel research

laboratory at Berkeley [37]. The sensors 5 and 15 were removed as they

did not provide any measurement. The readings were originally sampled

every thirty-one seconds. A preprocessing stage where data was discretized

in thirty second intervals was applied to the dataset. After preprocessing,

the dataset contained a trace of 14400 readings from 52 different sensors.

The code associated to the preprocessing and the network simulation was

developed in R, an open source statistical language, and is available from the

authors’ website [26].

An example of temperature profile is reported in Fig. 8, and an illustration

of the dependency between sensor measurements is given in Fig. 9. The

sensors 21 and 49 were the least correlated ones over that time period, with

a correlation coefficient of 0.59. They were situated on opposite sides of the

laboratory. Temperature over the whole set of data ranged from about 15◦C

to 35◦C.
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Fig. 9: Examples of the dependen-
cies between the measurements of
sensor 21 and sensor 49.

5.2 Network Simulations

The positions of the sensors are provided in [37], and the distribution of the

sensors in the laboratory can be seen in Fig. 1. We analyzed the communi-

cation costs incurred by different routing trees which were generated in the

following way. The root node was always assumed to be the top right sensor

node in Fig. 1 (node 16 in [37]). The routing trees were generated on the

basis of the sensor positions and the radio range was varied from 6 meters

(minimum threshold such that all sensor could find a parent) to 50 meters

(all sensors in radio range of the root node). Starting from the root node,

sensors were assigned to their parent in the routing tree using a shortest path

metric, until all sensors were connected. An illustration of the routing tree

obtained for a maximum communication range of 10m is reported in Fig. 1.
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5.3 Principal Component Aggregation

The average amount of information retained by the first 25 principal com-

ponents is reported in Fig. 10. We relied on a cross-validation technique

to estimate the amount of variance that could be retained from the dataset.

Cross-validation was used to simulate the fact that only part of the data is

used to compute the principal components, and was implemented as follows.

The dataset was split in ten consecutive blocks (1440 observations – i.e., half

a day of measurements). Each of the ten blocks was used as the training set

to compute the covariance matric and its eigenvectors, and the remaining

observations, referred to as test set, were used to estimate the percentage of

retained variance.

Fig. 10 provides the average retained variance on the 10 test sets for the

first 25 principal components. The upper line gives the amount of variance

retained when principal components are computed with the test sets, while

for the lower curve the components are computed with the training set. This

figure shows that the first principal component accounts on average for al-

most 80% of the variance, while 90% and 95% of variance are retained with

4 and 10 components, respectively. The confidence level of these estimates

(not reported for clarity) was about ±5%. Additional experiments, not re-

ported for space constraints, were run using k-cross validation with k ranging

from 2 to 30. The percentages of retained variance on the test data blocks

tended to decrease with k. Gains of a few percents were observed for k lower

than five (more than one day of training data), and losses of a few percents
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were observed for k higher than 15 (less than nine hours of data). It should

be stressed however that the important point in collecting observations for

extracting the principal components is not so much in the number of ob-

servations collected, but in their ability to properly capture the covariances

between sensor measurements.

The amount of retained variance increases very fast with the first principal

component, and becomes almost linear after about ten components. A linear

increase of retained variance with the number of principal components reflects

the fact that the components obtained by PCA are actually no better than

random components [18]. From Fig. 10, it therefore seems that from 10 or

15 components onwards, the remaining variations can be considered as white

noise.

Figure 11 illustrates the approximations obtained during the first round

of the cross validation (i.e., principal components are computed from the first

12 hours of measurements) for the sensor 49, using one, five and ten principal

components. A single principal components provides rough approximations,

which cannot account for the specifities of some of the sensor’s measurements.

For example, the stabilization of the temperature around 20◦C around noon

during the second, third and fourth day (probably due to the activation of

an air conditioning system at a location close to sensor 49) are not rendered

by the approximations.

Increasing the number of principal components allows to better approx-

imate the local variations, and passing to five components provides for ex-
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Fig. 10: Minimal amount of principal components required in order to retain
a given measurement variance.

ample a much better approximation of the measurements of the sensor 49.

Note however that the quality of obtained approximations may not be the

same for each sensor. For example, for sensor 22 (results not reported due

to space constraints), the gain in approximation accuracy were much higher

when passing from five to ten components.

5.4 Communication Costs

We now compare the communication costs incurred by the default and PCAg

schemes for different types of routing trees. We illustrate the impact of the
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routing tree structure on the number of packets routed in the network by

varying the communication range of the radio (see Fig. 12). Given that

the sensors choose as their parent the sensor within radio range that is the

closest to the base station, increasing the radio communication range leads

the routing tree to have a smaller depth, and its nodes to have an average

higher number of children.

For the default scheme (Fig. 12, left), increasing the radio range reduces

the average sensor network load but does not reduce the maximum network

load. The latter is supported by the root node. A radio range of 50 meters

allows all nodes to communicate with one another. The resulting routing tree
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is of depth one, and contains 51 leaf nodes and one root node. The root node

is therefore still required to receive and forward 51 packets, and to transmit

its own measurements. The maximum network load therefore remains at 103

packets processed per epoch.

For the PCAg scheme, we first illustrate the communication costs in-

curred by the computation of one component (Fig. 12, right), and will then

generalize after to the costs incurred by the computation of several compo-

nents. It is interesting to see that increasing the radio range in the PCA

scheme tends to increase the network load. This is the opposite effect than

the one observed for the default scheme, and is a direct consequence of the

increased number of children induced by routing trees with smaller depths.

Eventually, for a fully interconnected network, we observe the same effect

than for the default scheme, where all sensors send only one packet, while

the root node sustains the higher network load due to the forwarding task.

Note however that while the root node receives 51 packets, it only has to

send one packet thanks to the aggregation process. This therefore bounds

the maximum network load to 52 packets per epoch.

The extraction of one component is therefore always beneficial for the

network load incurred at the root node, and performances increase as the

communication range diminishes. Extracting more components may however

be detrimental to the network compared to the S/F scheme. The extraction

of k components implies k times the number of receptions and transmissions

required for one component. The network load incurred by k components is
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Fig. 12: Comunication costs incurred by the default scheme (left) and the
aggregation scheme (right), as a function of the radio range.

therefore obtained by multiplying the figures in Fig. 12 by k.

This is illustrated in Fig. 13 where the number of packets processed

(received and sent) is reported as a function of the number of principal com-

ponent extracted for a radio range of 10. In this routing tree, the maximum

number of children is 6 (see Fig. 1). For the extraction of one PC, the

maximum network load will be therefore be of 7, i.e., 6 receptions and one

transmission, to be compared with the maximum network load of 101 for the

root node. However, extracting more than 15 components leads the maxi-

mum network load to be higher than in the default scheme, as the sensor

node aggregating the packets from its 6 children will sustain a network load
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of 105 packets per epoch.

6 Related Work and Extensions

The application of the PCA to extract features out of wireless sensor data

has been suggested at several occasions in the recent literature on data pro-

cessing techniques for sensor networks. In [22], authors proposed to rely on

principal component scores in order to (i) compress vibration sensor data and

(ii) to detect events in vibration patterns. Event detection based on princi-

pal components has also been adressed in [13], where the authors proposed
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to apply the PCA on network statistics, which were considered as sensors’

internal state measurements. Their approach was shown to provide a way

to detect network anomalies that would not be detected at the sensor scale.

PCA has also been suggested as a way to perform event classification in [10],

where the application was aimed at classifying vehicles on the basis of vibra-

tion sensor data. Finally, the authors in [3] proposed to rely on the PCA as

a preprocessing step in a data mining architecture for sensor networks.

Contrary to the scheme presented in this chapter, these approaches rely

on clusters of sensors. The computation of the principal component scores is

carried out at the cluster level, by means of a coordinating node that gathers

measurements in each cluster for computing the scores. The computation is

therefore only distributed at the cluster level, whereas the scheme proposed

in this chapter allows to distribute this computation at the level of wireless

sensors. The proposed scheme and cluster-based approaches are therefore

not exclusive, but open the way to hybrid systems that rely on clustered

network where the principal component aggregation is used within clusters.

The aggregation principle underlying the compression scheme proposed in

this chapter is readily extensible to any basis transformation. Related work

on the use of basis change for sensor networks has been addressed in [2, 9],

where the authors investigated the use of random bases to project sensor

measurements. The work is analyzed in the context of compressed sensing,

an emerging field in signal processing (see also [8]). Their work is however

mainly focused at the theoretical ability of random bases to retain the sensor
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measurements’ variations. The possibility of a synchronized routing tree was

mentioned, but no further analysis on the tradeoffs between the communica-

tion costs and the signal reconstruction accuracy was provided. Among other

basis transformations of interest, we stress that the independent component

analysis (ICA), also known as blind source separation [15], is particularly ap-

pealing. ICA aims at determining a basis which not only decorrelates signals,

but that also gets them independent. ICA has for example proven partic-

ularly efficient in speech processing for separating the set of independent

sources composing an audio signal.

We finally refer the reader to [23,24] for additional optimization schemes

that can be designed to improve the efficiency of aggregation services, par-

ticulary in terms of resilience to sensor failure and robustness to missing

measurements. In the proposed scheme, missing measurements entail an in-

complete computation of the principal component scores, which may lead to

unexpectedly poor approximations of the sensor measurements at the base

station. As discussed in [23, 24], a common approach for managing missing

values is to use inference models based on past observations. More specif-

ically, techniques proposed for sensor networks include caching [6, 23, 27],

where missing data is simply replaced with the latest observed value. More

complex inference models such as autoregressive models [34, 38] or Kalman

filters [17] for example have also been proposed, allowing better approxima-

tions at the price of higher computational costs.
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7 Conclusion

In this chapter we proposed a distributed data compression scheme based on

the principal component analysis. This approach, called principal component

aggregation, allows to evenly distribute among the sensor nodes the compu-

tation of the principal component coordinates. The approach was shown to

benefit from the two following properties. First, as a by-product of aggrega-

tion, the network load is distributed among the sensors and scales with the

network size. Second, thanks to the principal component analysis, the linear

redundancies between sensor measurements are removed.

A thorough analysis of the tradeoffs involved was conducted, both ana-

lytically and experimentally. It showed that, in the case of correlated mea-

surements, the PCA allows to significantly reduce the energy consumption

and the network load. Experiments based on real-world temperature mea-

surements illustrated the fact that 90% of the variance of the data could be

recovered at the base station while, at the same time, reducing the network

load of up to 20%.
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