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Abstract

We show that the Principal Component Analysis, a compression method widely used in
statistical analysis and image processing, can be efficiently implemented in a network of wire-
less sensors. The proposed scheme proves to be particularly suitable to sensor networks as
it allows to reduce the network load while retaining a maximum amount of variance from
sensor measurements. We present two operating modes, unsupervised and supervised,
allowing (i) to extract a maximum of variance while keeping the network load bounded,
and (ii) to reduce the network load while keeping the approximation error bounded, re-
spectively. We assess the efficiency of the proposed approach in a realistic wireless sensor
network deployment for temperature monitoring.

1. Principal component analysis (PCA) with sensor data

Let a set of p sensors xi, 1 ≤ i ≤ p, sampling measurements xi[t] ∈ R at regular time in-
tervals. Let x[t] = (x1[t], x2[t], ..., xp[t]) ∈ Rp be the vector of measurements collected in the
sensor field at every time instant t.

Given that measurements in x[t] are often correlated, the rationale of the approach is to de-
termine a basis {wk} for a subspace Rq of Rp, q ≤ p, that provides good approximations
x̂[t] =

∑q
k=1 wkw

T
k x[t] to the vectors x[t] over time.

• Three data sources x1[t], x2[t] and x3[t].
•N = 50 observations.
• The correlation between x1[t] and x2[t]

is high.
• x3[t] measurements are drawn inde-

pendently.

•Circles give the original observations.
• crosses their approximations on the

two-dimensional subspace spanned by
the two first principal components.
• The three blue vectors {w1, w2, w3}

form the PC basis.

The optimization function is

Jq(x[t], {wk}) = 1
N

∑N
t=1 ||x[t]− x̂[t]||2

= 1
N

∑N
t=1 ||x[t]−∑q

k=1 wkw
T
k x[t]||2

The solution is given by the principal component (PC) basis. The set {wk} is the set of the q
eigenvectors of the covariance matrix CX = E(x[t]x[t]T ) whose eigenvalues are the highest
[1].

2. Unsupervised and supervised compression
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We assume that the sensor nodes are connected
by the means of a synchronized routing layer, such
as the one proposed by the Tiny AGgregation
(TAG) framework [2].

In the unsupervised mode, only the q coordinates

zk[t] = wTk x[t]

of x[t] in the PC basis are extracted from the net-
work. The scalar product can be computed along
the routing tree if each sensor xi is aware of the
ith element wik of the q PCs. Approximations to
the sensor measurements are then obtained at the
sink by computing

x̂[t] =

q∑
k=1

wkzk[t]

The variance retained equals the sum of the eigen-
values of the q eigenvectors.

The notation z{S}k =
∑
i∈S xi[t] ∗ wik is used for de-

tailing the progression of the scalar product along
the routing tree. The set {S} is the set of sensors
whose measurements have already been aggre-
gated.

In the supervised mode, the sink reinjects the q
coordinates zk[t] in the network. Each sensor can
obtain the approximation to its measurement by
computing

x̂i[t] =

q∑
k=1

zk[t] ∗ wik

A user defined threshold ε can be used to notify the
sink if

|x̂i[t]− xi[t]| > ε

3. Experimental results

3.1 Data
Simulations were run on a subset of temperature measurements collected during a five day
period at the Intel laboratory in Berkeley [3]. Measurements were taken every 31 seconds,
at 52 different locations. See below for examples of temperature profiles and dependencies
in this dataset. The first day was used for training.
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3.2 Tradeoff network load - approximation error
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In the unsupervised mode, the shared
network load N depends on the number of
PCs computed.

N(q) = q

Few PCs can approximate the whole set of
measurements with high accuracy (95%).

P (q) = 100 ∗
∑q
k=1 λk∑p
k=1 λk

Where λk is the eigenvalue of the k-th
eigenvector.
Given that the eigenvectors are estimated,
cross validation allows to get an estimate of
the accuracy expected on new data.

In the supervised mode, the shared net-
work load for a given accuracy ε depends
on the number of PCs computed, and on
the number of updates.

N(q, ε, t) = 2q + U(q, ε, t)

where U(q, ε, t) is the number of updates
sent at time t given the required accuracy
ε and the number of PC q.

The minimization of the network load im-
plies a tradeoff between the number of PCs
relied on and the required accuracy ε.

3.3 Accuracy of reconstruction
Examples of approximations obtained at two different locations, for 1, 4 and 8 PCs:
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4. Future work

•Distribute the computation of the principal components in the network.
• Extend the compression to the temporal domain.
• Apply the coordinate extraction to event detection and event recognition tasks.

This research was supported by the European Community COMP2SYS (MEST-CT-2004-
505079) project.
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