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Abstract

In many practical applications of wireless sensor networks, the sensor nodes are required
to report approximation of their readings at regular time intervals. For these applications, it
has been shown that time series prediction techniques provide an effective way to reduce the
communication effort while guaranteeing user-specified accuracy requirements on collected
data. Achievable communication savings offered by time series prediction however strongly
depend on the type of signal sensed, and a priori choice of a prediction technique is not
trivial in practice. We propose an online and lightweight algorithm dubbed adaptive model
selection (AMS), that allows sensor nodes to autonomously determine the best performing
model among a set of candidate models. Experimental results obtained on the basis of four-
teen real-world sensor time series demonstrate the efficiency and versatility of the proposed
framework in reducing the communication effort between sensor nodes.

1. Wireless sensors networks (WSN) - Applications

In a WSN, sensor nodes self-organize and wirelessly communicate their readings to recipi-
ents such as databases or controllers.

Figure 1: Tmote Sky sensor
node [3].

Tmote Sky:
Microcontroller 8MHz
10KB RAM, 48KB Code,
512KB Data
Radio 155Kbps @ 2.4GHz

Figure 2: Goodfood project: Precision agriculture in a
vineyard. Courtesy of the Goodfood project [5].

Examples of application:
•Monitoring: Ecosystems, industry processes, battlefields, . . .
•Control: Building automation, precision agriculture, medical healthcare, . . .

2. Constraints

• Energy: Energy consumption of sensor nodes is a primary concern in WSN as it is di-
rectly related to the lifetime of the network. Radio is known to be the main factor of battery
depletion on a sensor node.

•Bandwidth: Bandwidth capacity does not scale with network size. This directly impacts
the resolution at which sensors can be deployed in the environment.

Challenges: Reduce the communication effort among sensor nodes, to both increase net-
work operation lifetime and environment network covering.

3. Dual Prediction Scheme (DPS)

In many applications, only an ε approximation to sensor readings is sufficient (e.g. ±0.5◦C,
±2% humidity, ..). The rationale of the DPS is as follows [2, 4]:

• A sensor node is provided with a time series prediction model X̂t+1 = h(Xh, θh) (e.g. au-
toregressive models) and a learning method for identifying the best set of parameters θh
(e.g. recursive least squares).

• The sensor node then sends the parameters of the model instead of the actual data to the
recipient. The recipient node then runs the models to reconstruct an approximation of the
data stream collected on the distant node.

• The sensor node also runs the prediction model. When its predictions diverges by more
than ±ε from the actual reading, a new model is sent to the recipient.

This allows to reduce the communication effort if an appropriate model is run by the sensor
node.

Figure 3: Prediction based on autoregres-
sive model of order 5.

•Data stream: Temperature on a
grape plant [5].

•Required accuracy: ±0.5◦C.
• At time instants 1262, 1274 and

1286 (vertical dashed black lines),
the prediction model diverged by
more than ±0.5◦C. A new model
(together with the correction for
the badly predicted measurement)
was therefore sent.

• About 90% communication savings
were achievable on that time se-
ries.

4. Adaptive Model Selection (AMS)

As the most appropriate model for a sensor data stream cannot be known a priori, the ra-
tionale of AMS is to run concurrently a set of different models on the sensor node, and to
discard poorly performing ones on the basis of the racing mechanism [1].
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Then h1 is statistically outperformed by h2, and can be removed from the set of concurrent
models.

5. Experimental results

We assessed the performances achievable with AMS in terms of reduction of sent packets
on a set of 14 real world time series, using as competing models the constant model and
autoregressive models of order 1 to 5.

Figure 4: Comparison of constant
model (CM), AR(5) and AMS in terms
of percentage of sent packets.

Figure 5: Percentage of sent packets
as a function of error tolerance.

• Figure 4 reports the achievable reduction in terms of number of sent packets for an accu-
racy of 0.02 ∗ r, r being the dynamic of the signal. While the proposed scheme necessarily
reduce the number of sent packets, its efficiency depends on the characteristics of the
sensor signal. For example, NDBC WSPD (Offshore wind direction, buoy data) is char-
acterized by sharp and sudden changes. The constant model performs best in this case.
NDBC WTMP data (Offshore water temperature, buoy data), are however much smoother.
Autoregressive model of order 5 was seen to perform best. In all cases, the AMS eventually
selected the best model.

• Figure 5 reports achievable reduction in terms of number of sent packets as a function of
required accuracy. Even for very high accuracy (error tolerance of 0.01 ∗ r), almost half of
communication could on average be avoided. For rough approximations (error tolerance
of 0.2 ∗ r), only 4% of communication were enough for reconstructing the signal on the
recipient side.

• The racing mechanism could in most cases reduce the number of competing models to the
best one.

6. Conclusion and future work

Given a set of candidate prediction models, the proposed AMS scheme allows to select in
a fully online manner the statistically best performing one for approximating a sensor signal.
Future work will consist in
• Assessing achievable performances with exponential smoothing models, which could lead

to greater communication savings.
• Adapting the scheme to non-stationary signals.
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