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Local learning techniques, for each query, extract a predic-
tion interpolating locally the neighboring examples which
are considered relevant according to a distance measure. As
other learning approaches, the local learning procedure can
be conveniently decomposed into a parametric identification
and a structural identification. While parametric identifi-
cation is reduced to a linear regression, structural identifi-
cation requires that the designer perform a certain number
of choices. In this paper we focus on an automatic query-
by-query selection of the bandwidth, a structural parameter
which plays a major role in the final performance. We pro-
pose a local method where, for each query, different model
candidates are first generated, then assessed and finally se-
lected. We introduce in the context of local learning the re-
cursive least squares algorithm as an efficient way to gen-
erate local models. Moreover, local cross-validation is used
as an economic way to validate different alternatives. As far
as model selection is concerned, the winner-takes-all strat-
egy and a local combination of the most promising models
are explored. The method proposed is tested on six different
datasets and compared with state-of-the-art approaches.

1. Introduction

Supervised learning can be conveniently decom-
posed into a parametric identification and a structure
identification procedure. Once the model structure is
given, the parametric identification selects the parame-
ters which minimize on the training set the discrepancy
between the target values and the predictions. On the
other hand, structural identification aims to select in
the space of possible model structures, the one which
minimizes the generalization error. The search for the
best parameters and the search for the best structure
are instances of an optimization problem which is typ-
ically addressed in three stages: generation of differ-

ent solutions, assessment of each solution and selec-
tion among the solutions assessed.
This paper will focus on the particular case of lo-

cal methods for supervised learning. These methods
perform function approximation by interpolating lo-
cally the training samples considered relevant accord-
ing to a distance measure [1, 2]. The parametric iden-
tification procedure is, therefore, quite simple and can
be done through consolidated statistical methods. On
the other side, it is commonly known that the per-
formance of the local approximator is quite sensitive
to the structural identification choices performed by
the designer. Structural identification involves, among
other things, the selection of a family of local approx-
imators, the selection of a metric to evaluate which
examples are more relevant, and the selection of the
bandwidth which indicates the size of the region in
which the data are correctly modeled by members of
the chosen family of approximators. Although the pre-
diction depends on the whole set of these structural pa-
rameters, it is common belief in local learning litera-
ture that the final performance is more sensitive to the
bandwidth and to the distance metric [2]. As far as the
problem of bandwidth selection is concerned, different
approaches exist in literature. The choice of the band-
width may be performed either based on some a priori
assumption or on the data themselves. A further sub-
classification of data-driven approaches is of interest
here. On the one hand, a constant bandwidth may be
used; in this case it is set by a global optimization that
minimizes an error criterion over the available dataset.
On the other hand, the bandwidth may be selected lo-
cally and tailored for each query point.
In the present work, we propose a method that be-

longs to the latter class of local data-driven approaches
and that, given a global distance metric, selects the
bandwidth on a query-by-query basis. The main rea-
son to favor a query-by-query bandwidth selection is
that it allows better adaptation to the local characteris-
tics of the problem at hand. Moreover, this approach is
able to handle directly the case in which the database
is updated on-line [5, 6]. On the other hand, a globally
optimized bandwidth approach would, in principle, re-
quire the global optimization to be repeated each time
the distribution of the examples changes.
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The method we propose is a local and query-based
instance of the general structural identification proce-
dure.
The model generation is based on the recursive least

squares algorithm. This is an appealing and efficient
solution to the intrinsically incremental problem of
identifying and validating a sequence of local linear
models centered in the query point, and each includ-
ing a growing number of neighbors. The problem of
bandwidth selection is reduced to the selection of the
number of neighboring examples which are given a
non-zeroweight in the local modeling procedure. Each
time a prediction is required for a specific query point,
a set of local models is identified, each including a dif-
ferent number of neighbors.
Once the candidate models have been generated,

the generalization ability of each of them is assessed
through a local cross-validation procedure. Here we
use the PRESS statistic [9] which is a simple, well-
founded and economical way to perform leave-one-out
cross validation [7] and to assess the performance in
generalization of local linear models. It is worth notic-
ing here that leave-one-out does not involve any signif-
icant computational overload, since the PRESS statis-
tic uses partial results returned by the recursive least
squares algorithm.
Finally, the paper explores a competitive and a co-

operative approach to model selection on the basis of
some statistics of their cross-validation errors. In this
local learning setting, we propose a comparison be-
tween a winner-takes-all strategy and a strategy based
on the combination of estimators [12].
An experimental analysis of the recursive algorithm

for local identification and validation is presented. The
algorithm proposed is experimentally compared with
other local bandwidth selection approaches, and with
state-of-the-art methods as feedforward neural net-
works and Cubist, the rule-based tool developed by
Ross Quinlan for generating piecewise-linear models.

2. Local Weighted Regression

Given two variables and , let us con-
sider the mapping , known only through a
set of examples obtained as follows:

(1)

where , is a random variable such that
and , , and such that

, , where is the unknown th

moment of the distribution of and is defined as a
function of . In particular for , the last of the
abovementioned properties implies that no assumption
of global homoscedasticity is made.
The problem of local regression can be stated as

the problem of estimating the value that the regression
function assumes for a specific query
point , using information pertaining only to a neigh-
borhood of .
Given a query point , and under the hypothesis of

a local homoscedasticity of , the parameter of a
local linear approximation of in a neighborhood
of can be obtained solving the local polynomial re-
gression:

(2)

where, given a metric on the space , is the
distance from the query point to the example,
is a weight function, is the bandwidth, and where a
constant value has been appended to each vector
in order to consider a constant term in the regression.
In matrix notation, the solution of the above stated

weighted least squares problem is given by:

(3)

where is a matrix whose row is , is a vector
whose element is , is a diagonal matrix whose
diagonal element is ,
, , and the matrix

is assumed to be non-singular so that its inverse
is defined.

Once obtained the local linear polynomial approx-
imation, a prediction of , is finally given
by:

(4)

Moreover, exploiting the linearity of the local approx-
imator, a leave-one-out cross-validation estimation of
the error variance can be obtained with-
out any significant overload. In fact, using the PRESS
statistic [9], it is possible to calculate the error cv

, without explicitly identifying the param-
eters from the examples available with the th re-
moved. The formulation of the PRESS statistic for the
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case at hand is the following:

cv

(5)

where is the th row of and therefore ,
and where is the th diagonal element of the Hat
matrix .

3. Recursive model generation

In what follows, for the sake of simplicity, we will
focus on linear approximators. An extension to generic
polynomial approximators of any degree is straightfor-
ward. We will assume also that a metric on the space

is given. All the attention will be thus centered on
the problem of bandwidth selection.
If as a weight function the indicator function

if ,
otherwise;

(6)

is adopted, the optimization of the parameter can be
conveniently reduced to the optimization of the num-
ber of neighbors to which a unitary weight is as-
signed in the local regression evaluation. In other
words, we reduce the problem of bandwidth selection
to a search in the space of , where

is the th nearest neighbor of the query point.
The main advantage deriving from the adoption of

the weight function defined in Eq. 6, is that, simply
by updating the parameter of the model identi-
fied using the nearest neighbors, it is straightforward
and inexpensive to obtain . In fact, perform-
ing a step of the standard recursive least squares algo-
rithm [3], we have:

(7)

where when , and where
is the th nearest neighbor of the query

point.

Once an initialization and
is given, Eq. 7 and Eq. 8 recursively evaluate for dif-
ferent values of a local approximation of the regres-
sion function , a prediction of the value of the re-
gression function in the query point, and the vector of
leave-one-out errors fromwhich it is possible to extract
an estimate of the variance of the prediction error. No-
tice that is an a priori estimate of the parameter and
is the covariance matrix that reflects the reliability

of [3]. For non-reliable initialization, the following
is usually adopted: with large, and where
is the identity matrix.

4. Local model validation

In the previous section we introduced recursive
least-squares as an effective method for generating lo-
cal model candidates. These models have now to be
validated in order to proceed to the final model selec-
tion. Once the leave-one-out is adopted as validation
criterion, it follows that the model generation proce-
dure returns as a by-product all the elements necessary
for the PRESS computation.
Matrix is returned by Eq. 7 and thus the

leave-one-out cross-validation errors can be directly
calculated without the need of any further model iden-
tification:

cv

(8)

It will be useful in the following to define for each
value of the vector cv that contains all the
leave-one-out errors associated to the model .

5. Local Model Selection and Combination

Once a set of candidate models have been generated
through Eq. 7 and validated through Eq. 8, we proceed
to model selection. The recursive algorithm described
by Eq. 7 and Eq. 8 returns for a given query point , a
set of predictions , together with a set
of associated leave-one-out error vectors cv .
From the information available, a final prediction

of the value of the regression function can be obtained
in different ways. Two main paradigms deserve to be
considered: the first is based on the selection of the best
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approximator according to a given criterion, while the
second returns a prediction as a combination of more
local models.
If the selection paradigm, frequently called winner-

takes-all, is adopted, the most natural way to extract a
final prediction , consists in comparing the predic-
tion obtained for each value of on the basis of the
classical mean square error criterion:

(9)

with

MSE
cv

(10)

where are weights than can be conveniently used
to discount each error according to the distance from
the query point to the point to which the error corre-
sponds [2].
As an alternative to the winner-takes-all paradigm,

we explored also the effectiveness of local combina-
tions of estimates [12]. Adopting also in this case the
mean square error criterion, the final prediction of the
value is obtained as a weighted average of the best
models, where is a parameter of the algorithm. Sup-
pose the predictions and the error vectors cv

have been ordered creating a sequence of integers
so that MSE MSE , . The prediction
of is given by

(11)

where the weights are the inverse of the mean square
errors: MSE . This is an example of the
generalized ensemble method [10].

6. Experiments and Results

The experimental evaluation of the incremental local
identification and validation algorithm was performed
on six datasets. The first five, described by Quin-
lan [11], were obtained from the UCI Repository of
machine learning databases [4], while the last one was
provided by Leo Breiman. A summary of the charac-
teristics of each dataset is presented in Table 1.
The methods compared adopt the recursive identifi-

cation and validation algorithm, combined with differ-
ent strategies for model selection or combination. We
considered also two approaches in which is selected
globally:

Table 1
A summary of the characteristics of the datasets considered.

Dataset Housing Cpu Prices Mpg Servo Ozone
Number of
examples 506 209 159 392 167 330

Number of
regressors 13 6 16 7 8 8

Table 2
Mean absolute error on unseen cases.

Method Housing Cpu Prices Mpg Servo Ozone
lb1 2.21 28.38 1509 1.94 0.48 3.52
lb0 2.60 31.54 1627 1.97 0.32 3.33
lbC 2.12 26.79 1488 1.83 0.29 3.31
gb1 2.30 28.69 1492 1.92 0.52 3.46
gb0 2.59 32.19 1639 1.99 0.34 3.19
Cubist 2.17 28.37 1331 1.90 0.36 3.15

Nnet 2.33 31.18 2092 2.05 0.38 3.32

lb1: Local bandwidth selection for linear local mod-
els. The number of neighbors is selected on a
query-by-query basis and the prediction returned
is the one of the best model according to the mean
square error criterion.

lb0: Local bandwidth selection for constant local
models. The algorithm for constant models is
derived directly from the recursive method de-
scribed in Eq. 7 and Eq. 8. The best model is se-
lected according to the mean square error crite-
rion.

lbC: Local combination of estimators. This is an ex-
ample of the method described in Eq. 11. On the
datasets proposed, for each query the best 2 linear
local models and the best 2 constant models are
combined.

gb1: Global bandwidth selection for linear local mod-
els. The value of is obtained minimizing the
prediction error in -fold cross-validation on the
dataset available. This value is then used for all
the query points.

gb0: Global bandwidth selection for constant local
models. As in gb1, the value of is optimized
globally and kept constant for all the queries.

As far as the metric is concerned, we adopted a global
Euclidean metric based on the relative influence (rele-
vance) of the regressors [8]. We are confident that the
adoption of a local metric could improve the perfor-
mance of our local learning method.
The local learning results are compared with those

we obtained, in the same experimental settings, both
using feedforward neural networks and Cubist, the
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Table 3
Relative error (%) on unseen cases.

Method Housing Cpu Prices Mpg Servo Ozone
lb1 12.63 9.20 15.87 12.65 28.66 35.25
lb0 18.06 20.37 22.19 12.64 22.04 31.11
lbC 12.35 9.29 17.62 11.82 19.72 30.28
gb1 13.47 9.93 15.95 12.83 30.46 32.58
gb0 17.99 21.43 22.29 13.48 24.30 28.21
Cubist 16.02 12.71 11.67 12.57 18.53 26.59

Nnet 14.06 14.40 32.17 12.65 22.47 30.06

rule-based tool developed by Quinlan for generating
piecewise-linear models. While Cubist is an integrated
tool which performs automatically model selection and
returns the best expected prediction, a fair compari-
son with feedforward neural networks should require a
state-of-the-art neural selection procedure. In order to
avoid possible criticism on this subject, we decided to
perform no neural structural identification but to com-
pute the predictions for several different structures and
to return the best a posteriori result on the test set. This
quite optimistic result is by definition better than any
other result obtainable by any structural identification
method for neural networks. We focused in particu-
lar on two-layer architectures with a first sigmoid layer
and a second linear layer, trained with the Levemberg-
Marquardt algorithm. We chose as structural param-
eter the number of neurons in the first layer, and we
made it vary over a range between 2 and 12. In the ta-
ble we report only the result obtained by the best neu-
ral structure which is not necessarily the same among
different datasets.
Each approach was tested on each dataset using the

same -fold cross-validation strategy. Each dataset
was divided randomly into groups of nearly equal
size. In turn, each of these groups was used as a test-
ing set while the remaining ones together were provid-
ing the examples. Thus all the methods performed a
prediction on the same unseen cases, using for each of
them the same set of examples. In Table 2 we present
the results obtained by all the methods, and averaged
on the cross-validation groups. Since the methods
were compared on the same examples in exactly the
same conditions, the sensitive one-tailed paired test of
significance can be used. In what follows, by “signif-
icantly better” we mean better at least at a 5% signifi-
cance level.
The first consideration about the results concerns

the local combination of estimators. According to Ta-
ble 2, the method lbC performs in average always bet-
ter than the winner-takes-all linear and constant. On

two dataset lbC is significantly better than both lb1 and
lb0; and on three dataset it is significantly better than
one of the two, and better in average than the other.
The second consideration is about the comparison

between our query-by-query bandwidth selection and
a global optimization of the number of neighbors: in
average lb1 and lb0 performs better than their coun-
terparts gb1 and gb0. On two datasets lb1 is signifi-
cantly better than gb1, while is about the same on the
other four. On one dataset lb0 is significantly better
than gb0.
As far as the comparison with Cubist is concerned,

the recursive local identification and validation pro-
posed obtains results comparable with those obtained
by the state-of-the-art method implemented in Cubist.
On the six datasets, lbC performs one time signifi-
cantly better than Cubist, and one time significantly
worse.
As far as the comparison with feedforward neural

networks is concerned, the proposed local method ob-
tains results significantly better. On the six datasets,
lbC performs five times significantly better than the
best neural network.
The second index of performance we investigated is

the relative error, defined as the mean square error on
unseen cases, normalized by the variance of the test set.
The relative errors are presented in Table 3 and show
a similar picture to Table 2, although the mean square
errors considered here penalize larger absolute errors.

7. Conclusion and Future Work

The paper presented a bandwidth selection approach
for local learning method. Despite the trivial metric
adopted the experimental results confirm that the ap-
proach is able to compete with a state-of-the-art ap-
proaches and can be effectively used in a local context
for multivariate regression problems.
Future work will focus on the problem of local met-

ric selection. Moreover, we will explore more sophisti-
cated ways to combine local estimators and we will ex-
tend this work to polynomial approximators of higher
degree.
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