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Research Groups
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Head: Prof. Christos Sotiriou.

8 researchers (1 prof, 5 postDocs, 2 PhD students), 5 technicians.

Research topics : Genomic analyses, clinical studies and translational
research.
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Research Groups
Machine Learning Group - Université Libre de Bruxelles

Head: Prof. Gianluca Bontempi.

10 researchers (2 prof, 4 postDoc, 4 PhD students), 4 graduate
students.

Research topics : Bioinformatics, Classification, Regression, Time
series prediction, Sensor networks.

Website : http://www.ulb.ac.be/di/mlg.

Scientific collaborations inside ULB : IRIDIA (Sciences Appliquées),
Physiologie Molculaire de la Cellule (IBMM), Conformation des
Macromolcules Biologiques et Bioinformatique (IBMM), CENOLI
(Sciences), Functional Genomics Unit (Institut Jules Bordet), Service
d’Anesthesie (Erasme).

Scientific collaborations outside ULB : UCL Machine Learning Group
(B), Politecnico di Milano (I), Universitá del Sannio (I), George
Mason University (US).
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Introduction
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Breast Cancer

Huge public health issue:
I One of the most diagnosed malignancy in the Western World.
I 1 out of 9 women will develop a breast cancer during her lifetime.

Prognostication:

a

Breast surgery
+ radiotherapy

Follow-up
5-10 years

Recurrence RemissionDiagnosis
?

Prognosis

Input
(clinical or microarray data)

Output
(survival data)
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Traditional Approach for Prognostication

AgeTumor
size

ER
IHC

HER2
IHC

Nodal 
status

Histological
grade

HER2
FISH

AOLNPI ChemotherapyHormonotherapy

Prediction

Prognostication

Clinical variables

PGR
IHC

Guidelines
NIH/St Gallen

NPI = 0.2× tumor size +
grade + nodal status

AOL uses a life table

technique considering age,

nodal status, tumor size, and

ER.

Problem: Prognostic clinical models predict numerous low-risk patients with early breast
cancer (nodal status = 0) as high-risk.

ß Overtreatment
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Gene Expression Profiling Approach for Prognostication

Improvement of breast cancer prognostication by using machine
learning techniques to analyze microarray and survival data.

Our methodology is composed of three main parts:

Global prognostic 
gene signature 
identification

Local prognostic 
gene signature 
identification

Breast cancer 
molecular subtypes 

identification
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Global Prognostic Gene Signatures
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Global Prognostic Gene Signature Identification

Objective: Identification of prognostic gene signatures without
taking into account the presence of molecular subtypes.

The idea is to identify prognostic gene signatures and their
corresponding risk prediction models exhibiting the following
characteristics:

I Good performance with independent data.
I Interpretable from a biological point of view.
I Useable with data generated by different microarray platforms and/or

normalization techniques.
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Global Prognostic Gene Signature Identification
Methodology

Clinical data of
breast cancer patients

Data 
preprocessing

Robust model 
building

Raw microarray data of
breast cancer patients

Stability-based 
feature selection

signature

risk predictions
clinical outcom

e

normalized
gene expressions

Feature
selection

Risk prediction
modeling
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Feature Selection

Desirable properties of feature selection:
I Computation efficiency (thousand of features).
I Robustness to overfitting (not dataset dependent).
I Intuitive tuning of (few) hyperparameters.

For microarray data, feature ranking was shown to be efficient
[Wessels et al., 2005].

For prognostication, we used the concordance index
[Harrell et al., 1996] as scoring function:

C -index(xi , y) =

∑
k,l∈Ω 1{xki > xli}

|Ω|

where xi are the expressions of gene i , y are the survival data and Ω
is the set of all the pairs of comparable patients {k, l}.
Signature size?
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Stability-Based Feature Ranking
Aim: To select a relevant and stable (low variance) set of features

Dataset

sampling

Signatures

Feature ranking

n patients

n' patients

k features

m times

Signature 
stability

m signatures 

Stab(k)

feature10

feature2

feature34

feature24

feature5

feature67

feature45

feature89

feature1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Signature size k = 4

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

St
ab

 a
dj

Signature size

k*

Let X be the set of p features and freq(xj ) be the number of
sampling steps in which xj has been selected out of m samplings
without replacement. X is sorted into {x(1), . . . , x(p)} where
freq(x(i)) ≥ freq(x(j)) if i > j .

Stab(k) =

Pk
l=1 freq(x(l))

k m
Stabadj (k) = max


0, Stab(k)−

k

p

ff
ß k∗ = argmax

k
Stabadj (k)
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Stability-Based Feature Ranking
Pros & Cons

Pros
I Computational scalability.
I Reduction in risk of overfitting (low variance).
I Easy and intuitive tuning of the hyperparameter.

Cons
I Potential risk of bias since feature ranking is unable to deal with

redundancy and complementarity of the features [Meyer, 2008].

This method was first applied in a study related to tamoxifen resistance in
breast cancer [Loi et al., 2008].
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Risk Prediction Modeling

Risk prediction models can be:
I Linear or non-linear.
I Univariate or multivariate.

Intrinsic nature of microarray data evokes the risk of overfitting of
non-linear multivariate prediction models.

But univariate linear prediction models are not able to take into
account for the multiple interactions underlying tumorigenesis.

ß Trade-off?

Since 2002, large comparative studies have been conducted to identify
successful prediction models for class discovery and classification

. . . leaving aside risk prediction (survival models) in breast cancer.
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Comparative Study of Risk Prediction Models

We compared numerous linear risk prediction models in the context of
breast cancer prognostication using microarray and survival data
[Haibe-Kains et al., 2008b].

ß ”Complex” methods, although promising in the training set, yielded
poor performance in independent sets (overfitting).

ß The loss of interpretability deriving from the use of overcomplex
methods may be not sufficiently counterbalanced by significantly better
performance.

The few nonlinear risk prediction models (e.g. survival nnet
[Eleuteri et al., 2003] and cSVM [van Belle et al., 2007]) developed in the
field also yielded poor performance (data not shown).
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Robust Model Building

So we focussed on linear multivariate linear risk prediction models and
relied on a simple additive combination scheme [Kittler et al., 1998] and
equal weights linear regression [Wainer, 1976, Green, 1977]:

r =
k∑

i=1

β′ixi

where r is the risk of a patient, xi are the gene expressions, and

β′i =

{
− 1

k if xi is positively correlated with survival
+ 1

k otherwise

The use of equal weights (coefficients)
I reduces the risk of overfitting,
I ensures the coefficients estimation to not be influenced by outliers,
I and causes only modest expected loss in accuracy.
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Robust Model Buidling
Pros & Cons

Pros
I Additive models are multivariate models with low variance.
I Less sensitive to redundancy that traditional multivariate models

(collinearity).
I Low computational cost (especially in combination with feature

ranking).
I Equal weights regression (i.e. signed average in our case) facilitates the

computation of risk predictions in different microarray platforms with
missing probes.

Cons
I Unable to deal with complementarity of features.

This method was used in the study related to GGI = Gene expression
Grade Index [Sotiriou et al., 2006].
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Breast Cancer Molecular Subtypes
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Molecular Subtypes Identification

Objective: Robust identification of breast cancer molecular
subtypes along with estimation of classification uncertainty.

The idea is to extent the study of Perou et al. by building a clustering
model exhibiting the following characteristics:

I Estimation of classification uncertainty.
I Good performance in independent dataset.
I Useable with data generated by different microarray platforms and/or

normalization techniques.
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Molecular Subtypes Identification
Classification uncertainty

gene 1

ge
ne

 2
cluster  2

cluster  1

cluster  3

patients

?

?
?

?
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Molecular Subtypes Identification
Methodology

Data 
preprocessing

Prototype-based 
feature 

transformation

Raw microarray data of
breast cancer patients

Subtype
clustering

normalized
gene expressions

gene module
scores

subtypes

Dimension
reduction

Clustering
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Dimension Reduction

Aim: To reduce the dimensionality of microarray data while keeping
information relevant for subtypes identification.

We used a prototype-based feature transformation
[Desmedt et al., 2008, Haibe-Kains, 2009] to identify sets of genes
specifically co-expressed to key biological processes in breast cancer.

The method is composed of 2 main steps:
1 Prototype-based clustering: Selection of prototypes and identification

of gene modules.
2 Summarization: Each cluster is summarized by a single feature called

gene module score (weighted average of genes in cluster).
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Gene Modules
Results

We applied this method with 7 prototypes in two large datasets (NKI
& VDX) [Desmedt et al., 2008].

VEGF

ER
signaling

HER2 
signaling

Proliferation

Tumor
invasionAngiogenesis

Immune 
response

Apoptosis

ESR1

ERBB2CASP3
PLAU

AURKAST
AT

1

Gene module Size
ESR1 468

AURKA 228
STAT1 94
PLAU 67

ERBB2 27
VEGF 13

CASP3 8
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Subtype Clustering

Aim: To develop of a robust clustering model able to estimate
classification uncertainty.

Low dimensional input space defined by ESR1 and ERBB2 module
scores (see [Kapp et al., 2006]).

We developed a model-based clustering:
I Probability to belong to subtype j :

Pr(j |xi ) =
πj N (xi ;µj ,Σj )∑m

j=1 πj N (xi ;µj ,Σj )

where m is the number of Gaussians, πj is the prior probability of xi to
be generated by the j th Gaussian N (xi ;µj ,Σj )

I Hyperparameters:
F Number of clusters (Gaussians): BIC [Schwarz, 1978].
F Mean µj and covariance matrices Σj : EM algorithm

[Dempster et al., 1977].
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Subtype Clustering
Pros & Cons

Pros
I The low dimensional space increases the model robustness (low

feature-to-sample ratio).
I The low dimensional space facilitates the representation of the results

and their interpretation.
I Estimation of classification uncertainty + ability to perform soft

partitioning of the data.
I Easy to use this clustering model to predict the subtype of the tumor

of a new patient (unlike hierarchical clustering).

Cons
I Although the use of ESR1 and ERBB2 module scores is beneficial (see

above), it prevents us to find any new subtypes.
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Subtype Clustering
Results

Training set: 344 patients with early breast cancer (VDX).

Validation set:
I Clustering: 17 independent datasets (> 3400 patients).
I Prognosis: 745 untreated patients with early breast cancer from 5

datasets (NKI, TBG, UPP, UNT and MAINZ).
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Subtype Clustering Model
Training set (VDX)
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Subtype Clustering Model
Independent datasets
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Subtype Clustering
Prognosis of early breast cancer patients
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Local Prognostic Gene Signatures
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Local Prognostic Gene Signature Identification

Objective: Identification of prognostic gene signatures taking
into account the presence of molecular subtypes.

[Wang et al., 2005] conducted a study similar to [van’t Veer et al., 2002]

but they took into account the molecular heterogeneity of breast
cancer wrt ER status (first local signatures).

ß Prognostic gene signature: GENE76.

Open issues:
I The local models are developed for two subgroups (ER- and ER+)

only, without considering the heterogeneity of the HER2+ subgroup.
I Hard partitioning of the population of breast cancer patients.
I The local model for ER- subgroup was trained on few samples and

yielded poor performance in validation studies
[Foekens et al., 2006, Desmedt et al., 2007].
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Local Prognostic Gene Signature Identification
Methodology
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Local Model Network
Aim: To develop a prognostic model taking into account breast cancer molecular subtypes

We adopted a divide-and-conquer strategy, through a modular
modeling approach, and developed a Local Model Network
[Johansen and Foss, 1993] for prognostication:

r =
m∑

j=1

ρj (x , θj )hj (x , αj )

where x and r stand for the gene expressions and patients’ risk
respectively, ρj (x , θj ) is the j th basis function of parameters θj ,
hj (x , αj ) is the j th local risk prediction model of parameters αj .

The ρj are constrained to satisfy

m∑
j=1

ρj (x , θj ) = 1

Benjamin Haibe-Kains (ULB) Talk at Dana-Farber Cancer Institute May 5, 2009 34 / 79



Local Model Network

Example of LMN:
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Local models Basis functions Local Model Network

The j th basis function is defined as the
probability to belong to the j th breast
cancer molecular subtype (subtype
clustering):

ρj (x) =
πj N (x ;µj ,Σj )Pm
j=1 πj N (x ;µj ,Σj )

The j th local model is defined by our
robust model:

hj (x) =

k(j)X
i=1

β′i xi

where signature size k now depends

on subtype j (local feature selection).
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Local Feature Selection

In order to take advantage of the subtypes identification, we adapted
the stability-based feature ranking to identify the genes prognostic in
specific subtypes.

We introduced a weighted version of the concordance index:

Cwted (xi , y , ρj ) =

∑
k,l∈Ω wkl 1{xki > xli}∑

k,l∈Ω wkl

where xi are the expressions of gene i , y are the survival data and
wkl = ρj (xk )ρj (xl ) is the weight for the pair of comparable patients
{k , l} with ρj (x) being the probability for a patient’s tumor x to
belong to the subtype j .
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Local Model Network
Pros & Cons

Pros
I Use of robust linear risk prediction models to perform nonlinear

modeling.
I Easy interpretation for doctors (breast cancer molecular subtypes +

corresponding risk predictions).
I Potentially more biological insights since the molecular heterogeneity of

breast cancer is taken into account.

Benjamin Haibe-Kains (ULB) Talk at Dana-Farber Cancer Institute May 5, 2009 37 / 79



Local Prognostic Gene Signature Identification
GENIUS

GENIUS = Gene Expression progNostic Index Using Subtypes.
I Aim: Refining breast cancer prognosis according to molecular subtypes.

GENIUS refers to:
I The local prognostic gene signatures identified through local

stability-based feature ranking.
I The risk prediction model using robust model building and Local Model

Network.

Training set:
I Input data: 22,283 (1050 after filtering) gene expressions of 344

untreated patients with early breast cancer (VDX).
I Output data: Survival data.

Validation set: 745 untreated patients with early breast cancer from 5
datasets (NKI, TBG, UPP, UNT and MAINZ).
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GENIUS
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GENIUS
Results

Local prognostic gene signatures identified for the ER-/HER2- and
HER2+ subtypes involved different genes but are enriched in genes
related to immune response.

GENIUS yielded significantly better performance than all the
state-of-the-art prognostic gene signatures in the global population.
GENIUS was not significantly superior in all subtypes but it was the
only signature that performed well whatever the subtype.

GENIUS significantly outperformed prognostic clinical models in the
global population. Its superiority almost reached significance in all the
subtypes.
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GENIUS
Performance comparison with prognostic gene signatures
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GENIUS
Results

Local prognostic gene signatures identified for the ER-/HER2- and
HER2+ subtypes involved different genes but shared genes related to
immune response.

GENIUS yielded significantly better performance than all the
state-of-the-art prognostic gene signatures in the global population.
GENIUS was not significantly superior in all subtypes but it was the
only signature that performed well whatever the subtype.

GENIUS significantly outperformed prognostic clinical models in the
global population. Its superiority did not reach significance in all the
subtypes.
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GENIUS
Performance comparison with prognostic clinical models
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Conclusions
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Biological Insights

From global prognostic gene signatures we highlighted the importance
of proliferation when robustly quantified through gene expression
profiling [Sotiriou et al., 2006, Wirapati et al., 2008, Desmedt et al., 2008].

From local prognostic gene signatures we showed that the prognostic
factors dramatically depend on the molecular subtypes, i.e.
proliferation for ER+/HER2-, immune response for ER-/HER2- and
HER2+ and angiogenesis for HER2+
[Wirapati et al., 2008, Desmedt et al., 2008, Haibe-Kains, 2009].

Since the ER+/HER2- subtype is the most common one (≈ 60% of
the patients), we showed that the prognostic ability of most global
gene signatures (e.g. GENE70, GENE76 or GGI) is driven by
proliferation-related genes
[Wirapati et al., 2008, Desmedt et al., 2008, Haibe-Kains et al., 2008b].
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Translational Research

    

              

  

Improving the clinical value of tumor grading

MapQuant Dx™ Genomic Grade is the cornerstone

of the MapQuant Dx™ assay series. It is the very

first, microarray-based and clinically-validated,

molecular diagnostic test to accurately measure

tumor grade, a consensus indicator of tumor

proliferation, risk of metastasis and response to

chemotherapy.

Resolving histological grading uncertainty

Tumor grade is a decision factor in most national &

international guidelines to breast cancer

treatment. It is generally recommended to treat

high-grade "grade 3" breast carcinoma with

chemotherapy because they are chemosensitive and will often recur otherwise. By contrast, most

low-grade "grade 1" tumors should not be treated with chemotherapy because they have a good

prognosis and often are chemo-insensitive.

A critical clinical issue is how to treat the 50% of breast cancers tested today as intermediate grade?

The MapQuant Dx™ Genomic Grade test now allows to resolve more than 80% of these uncertain

"grade 2" tumors into "grade 1" or "grade 3" tumors, potentially sparing useless chemotherapy

treatments to tens of thousands patients a year.

Clinical utility of the Genomic Grade
index

J Natl Cancer Inst. 2006 Feb 15;98(4):262-

72.

Sotiriou C,Wirapati P, Loi S, Harris A, Fox S,

Smeds J, Nordgren H, Farmer P,

Praz V,Haibe-Kains B, Desmedt C, Larsimont

D,Cardoso F, Peterse H, Nuyten D, Buyse M,

VandeVijver MJ , Bergh J , Piccart M ,

Delorenzi M. 

Definition of clinically distinct molecular

subtypes in estrogen receptor-positive breast

carcinomas through genomic grade.

J Clin Oncol. 2007 Apr1; 25(10):1239-46.

Loi S, Haibe-Kains B, Desmedt C, Lallemand

F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J,

Foekens JA, Klijn JG, Larsimont D, Buyse M,

Bontempi G, Delorenzi M, Piccart MJ, Sotiriou C.

Gene expression profiling in breast cancer:

understanding the molecular basis of

histologic grade to improve prognosis.
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Software

survcomp R package available from CRAN:
I Implementation of 6 performance criteria:

1 Hazard ratio
2 D index
3 Concordance index
4 Time-dependent ROC curve
5 Cross-validated partial likelihood
6 Brier score

I Implementation of 2 statistical tests for performance comparison:
F Paired student t test for 1, 2, and 3
F Wilcoxon signed-rank test for 4, 5, and 6.

Sweave code: The LATEX and R codes performing the whole analysis
of the microarray and survival data are publicly available for
[Haibe-Kains et al., 2008a, Haibe-Kains et al., 2008b].
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Future of Bioinformatics
Integrative bioinformatics
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Thank you for your attention.

This presentation is available from http://www.ulb.ac.be/di/map/bhaibeka/

papers/haibekains2009robust_talk_dfci.pdf.
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Survival Data

Retrospective observation plan (data retrieved from hospital DB).

I Censoring
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I Survival data

Patient id Time (years) Event

A 1 1
B 2 0
C 4 1
D 5 0
E 5 1
F 7 1
G 8 0

Survival analysis

Censoring in survival data requires
specific methods to deal with.
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Survival Distributions and Performance

Time of event occurrence are realization of a
random variable t.

Survival distributions:
I S(t) = 1− Pr{t ≤ t}.
I h(t) = lim

∆t→0

Pr{t ≤ t < t + ∆t | t ≥ t}
∆t

Kaplan-Meier survival curve
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Influence of covariates x :
I Proportional hazards model (Cox):

hi (t) = λ0(t)︸ ︷︷ ︸
unspecified baseline

exp( βxi︸︷︷︸
risk

)

where xi is the gene expression profile of patient i in the thesis.

Performance:
I Concordance index: Estimate of the probability that, for a pair of

randomly chosen comparable patients, the patient with the higher risk
prediction will experience an event before the lower risk patient.

ß C -index ∈ [0, 1] (higher is better in the thesis).
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Central Dogma of Molecular Biology

DNA

pre-mRNA

mRNA
5' UTR 3' UTR

Open reading
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Gene expression
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Microarray Technology

Microarray chip

AA

Hybridization

 

Detection
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Microarray Data

Few samples (dozens to hundreds patients).
I Microarray technology is expensive.
I Frozen tumor samples are rare (biobank).

Numerous gene expressions are measured (tens of thousands genes).
I The recent microarray chips cover the whole genome (≈ 50,000 probes

representing 30,000 ”known genes”).

ß High feature-to-sample ratio (curse of dimensionality requiring feature
selection).

Microarray is a complex technology.

ß High level of noise in the measurements.

Biology is complex (e.g. gene
co-expressions due to pathways).

ß Redundancy.

Microarray data matrix

DATA x1 x2 . . . xp

patient1 1.3 3.2 . . . 7
patient2 2.7 1.2 . . . 2.3

...
...

...
...

...
patientn 5.4 1.4 . . . 9.1

Benjamin Haibe-Kains (ULB) Talk at Dana-Farber Cancer Institute May 5, 2009 63 / 79



Datasets

Dataset Technology Survival Treatment Patients Probes

VDX Affymetrix YES untreated 344 22,283
NKI Agilent YES heterogeneous 345 24,481
STNO2 cDNA Stanford YES heterogeneous 122 7,787
NCI cDNA NCI YES heterogeneous 99 6,878
MGH Arcturus YES hormono 60 11,421
MSK Affymetrix YES heterogeneous 99 22,283
UPP Affymetrix YES heterogeneous 251 22,283
STK Affymetrix YES heterogeneous 159 22,283
UNT Affymetrix YES untreated 137 22,283
UNC2 Agilent YES heterogeneous 248 21,495
DUKE Affymetrix YES heterogeneous 171 12,625
CAL Affymetrix YES heterogeneous 118 22,283
TBG Affymetrix YES untreated 198 22,283
NCH Agilent YES heterogeneous 135 17,086
DUKE2 Affymetrix NO chemo 160 61,359
MAINZ Affymetrix YES untreated 200 22,283
TAM Affymetrix YES hormono 354 44,928
TAM2 Aminolink YES hormono 155 21,332
LUND2 Swegene NO hormono 105 27,648
LUND Swegene NO heterogeneous 143 26,824
MUG Operon NO NA 152 16,783
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State-of-the-art: [van’t Veer et al., 2002]

Study of [van’t Veer et al., 2002]:
I Training set:

F Input data: 24,481 (5000 after filtering) gene expressions of 78
untreated patients with early breast cancer.

F Output data: Dichotomization of survival data (5 years).

I Feature selection: Feature ranking (correlation).
I Model building: Nearest centroid classifier.
I Hyperparameter tuning: Supervised tuning of the signature size

(cross-validation).
I Validation set:

F Internal: Cross-validation !!!
F External: 295 treated and untreated patients with breast cancer at

various stages [van de Vijver et al., 2002] (NKI) !!!

Benjamin Haibe-Kains (ULB) Talk at Dana-Farber Cancer Institute May 5, 2009 65 / 79



State-of-the-art: [Perou et al., 2000, Sorlie et al., 2001]

Study of [Perou et al., 2000, Sorlie et al., 2001]:
I Training set:

F Input data: 8,102 gene expressions of 84 patients with breast cancer at
various stages.

I Feature selection: Feature ranking based on variance (intrinsic gene
list).

I Model building: Hierarchical clustering.
I Hyperparameter tuning: Number of clusters is selected based on

visualization assessment !!!

Validation:
I Internal: None !!!
I External: 38 new patients in [Sorlie et al., 2003] + datasets from

[van’t Veer et al., 2002] and [West et al., 2001] !!!
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State-of-the-art: [Wang et al., 2005]

Study of [Wang et al., 2005]:
I Training set:

F Input data: 22,283 (17,819 after filtering) gene expressions of 115
untreated patients with early breast cancer.

F Output data: ”Full” survival data and dichotomization (5 years) !!!

I Feature selection: Feature ranking based on significance of univariate
Cox’s models (bootstrap) for ER- and ER+ separately.

I Model building: Combination of univariate Cox’s models.
I Hyperparameter tuning: Signature size tuned by optimizing the

sensitivity and specificity in the training set.
I Validation set:

F Internal: 171 patients (single ”random” split) !!!
F External: 180 untreated patients with early breast cancer.
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Comparative Study of Risk Prediction Models

We compared numerous linear risk prediction models in the context of
breast cancer prognostication using microarray and survival data
[Haibe-Kains et al., 2008b].

Risk prediction models:

Genotype Dim. reduction Structure Learning algo. Phenotype
1 AURKA
2 BD COMBUNIV WILCOXON HG
3 BD COMBUNIV COX SURV
4 BD MULTIV LM TOE
5 BD MULTIV COX SURV
6 GW RANK(CV) COMBUNIV WILCOXON HG
7 GW RANK(CV) COMBUNIV COX SURV
8 GW RANK(CV) MULTIV RCOX SURV
9 GW PCA(CV) COMBUNIV WILCOXON HG
10 GW PCA(CV) COMBUNIV COX SURV
11 GW PCA(CV) MULTIV RCOX SURV
12 GENE76
13 GGI
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Comparative Study of Risk Prediction Models
Results

Forestplot of the concordance index for each method in the training
set and the three validation sets:
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Supplementary Figure 1: Forest plot of the concordance indices for the risk scores predicted by all the methods in the training set (VDX

Training set
VDX

Validation set 
TBG

Validation set
TAM

Validation set
UPP

ß ”Complex” methods, although promising in the training set, yielded poor
performance in independent sets (overfitting).

ß The loss of interpretability deriving from the use of overcomplex methods may be
not sufficiently counterbalanced by significantly better performance.
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Global Prognostic Gene Signature Identification
Biological validation

GGI = Gene expression Grade Index.
I Aim: Understanding the molecular basis of histological grade to

improve prognosis.

GGI refers to:
I The signature of 128 probes selected through feature ranking with fixed

threshold.
I The robust model.

Training set:
I Input data: 22,283 gene expressions of 64 ER+ tamoxifen treated

patients with breast cancer at various stages.
I Output data: Binary class defined by histological grade 1 or 3.

Validation set: 745 untreated patients with early breast cancer from 5
datasets (NKI, TBG, UPP, UNT and MAINZ).
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GGI
Results

Histological grade:
I HG1 and HG3 tumors have distinct gene expression profiles

characterized by proliferation-related genes, HG2 tumors being
heterogeneous.

I GGI is strongly predictive of HG1 vs HG3.

Prognosis:
I Strong prognostic value: GGI is strongly associated with distant

metastasis free survival (DMFS). The three-category histological
grading system could be replaced with a two-catehory one using GG to
improve prognosis.

I Proliferation and modeling: We showed in [Haibe-Kains et al., 2008b]

that GGI is the only risk prediction model to outperform the single
proliferation gene AURKA.

I Similar performance compared state-of-the-art gene signatures: GGI is
competitive with GENE70 [van’t Veer et al., 2002] and GENE76
[Wang et al., 2005].
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GGI
Prognosis
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GGI
Performance comparison (TBG)

Concordance in predictions:

GENE70 GENE76

GGI

7

915

103

5 25

0

5

32

09

25

15

7

Figure 1

Similar performance:

GENE70
GENE76
GGI
AOL

0.5 0.6 0.7 0.8 0.9 1

concordance index

Test difference
GENE70 vs GENE76 0.15

GENE70 vs GGI 0.53
GENE76 vs GGI 0.22

Test superiority
GENE70 vs AOL 0.007
GENE76 vs AOL 0.13

GGI vs AOL 0.015
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GGI
Discussion

GGI is simple:
I From a statistical point of view: robust model building.
I From a biological point of view: GGI signature is mainly composed of

proliferation-related genes.

GGI yielded similar performance than gene signatures including genes
related to many biological processes (GENE70 and GENE76).

ß Actually, we showed in [Wirapati et al., 2008] that the prognostic value
of these signatures is mainly driven by the proliferation-related genes.

The studies related to GGI challenged the use of risk prediction
models of high statistical and biological complexity
[Sotiriou et al., 2006, Haibe-Kains et al., 2008b, Desmedt et al., 2008].
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Molecular Subtypes Identification
State-of-the-Art

State-of-the-art:
I [Perou et al., 2000, Sorlie et al., 2001] were the first to study the

molecular heterogeneity of breast cancer in order to build a subtype
classifier.

I Open Issues:
F Lack of estimation of classification uncertainty.
F The use of large number of genes led to a clustering model prone to

overfitting (low robustness).
F The (number of) clusters were subjectively selected.
F Lack of existing statistics to evaluate the robustness of the clustering

model in independent datasets.
F Association with survival tested in heterogeneous populations of breast

cancer patients.

[Kapp et al., 2006] confirmed the importance of ER and HER2 signaling
pathways.
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Prototype-Based Clustering
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Clustering Performance

Performance assessment of clustering is a difficult task since the
”truth” is hidden.

In [Tibshirani and Walther, 2005], the authors introduced a new
framework viewing clustering as a supervised learning problem in
which the ”true” class labels have to be estimated.

Let X and Y be the training and validation sets, respectively.

Let CX (Y ) denote the use, in the dataset Y , of a clustering model C
fitted on dataset X .

Let D[C.(.)] be the co-membership matrix of the clustering C.(.).
Idea:

1 Cluster Y ß CY (Y ).
2 Cluster X ß CX (X ).
3 Cluster Y using CX ß CX (Y ).
4 Compare CX (Y ) and CY (Y ) through the co-membership matrix D

ßprediction strength.
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Subtype Clustering vs Perou’s Method
Prediction strength in independent datasets (higher is better)

Dataset
Subtype clustering Perou’s method

3 clusters 2 clusters 3 clusters 4 clusters 5 clusters
NKI 1.00 0.89 0.42 0.25 0.20

TBG 0.83 0.92 0.39 0.24 0.22
UPP 0.87 0.71 0.51 0.33 0.22
UNT 0.89 0.78 0.55 0.36 0.00

STNO2 0.69 0.86 0.44 0.28 0.25
NCI 0.83 0.93 0.44 0.33 0.13

STK 0.87 0.61 0.38 0.28 0.25
MSK 0.96 0.77 0.66 0.20 0.00

UNC2 0.87 0.81 0.57 0.31 0.00
NCH 0.82 0.66 0.49 0.36 0.29

DUKE 0.82 0.57 0.42 0.37 0.42
DUKE2 0.64 0.92 0.63 0.47 0.00
MAINZ 0.90 0.68 0.39 0.24 0.18

CAL 0.95 0.84 0.41 0.31 0.00
LUND2 0.87 0.92 0.51 0.17 0.17

LUND 0.81 0.55 0.36 0.24 0.20
MUG 0.49 0.50 0.33 0.27 0.23

mean 0.83 0.76 0.47 0.30 0.16
sd 0.12 0.14 0.10 0.07 0.12
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