
Model Selection in Meta-Analytical Framework for

Prototype-Based Clustering
B. Haibe-Kains1,2, C. Sotiriou2, and G. Bontempi1

1Functional Genomic Unit, Institut Jules Bordet, Brussels, Belgium
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1. Introduction

THE microarray technology allows biologists and doctors to measure the expression of several
thousand of genes in parallel. Each microarray chip uses up to 40,000 probes to measure these

expression, generating a huge amount of data to analyze. The high cost of microarray experiments
and the coexistence of different microarray technologies make difficult the generation of datasets with
large number of samples. In more of the high feature-to-sample ratio, these data are characterized
by the high correlation of coexpressed genes and the high level of noise due to complex technology,
making the analysis of microarray data a complex task.
The dimension reduction is widely used in microarray analysis. The inclusion of a priori biological
knowledge could both reduce the complexity and improve the performance of this important step.
This a priori knowledge could be a list of biological processes to study in the biological problem under
consideration. The role of dimension reduction in this case would be to compute from the original
microarray data, new features which quantify each of these biological processes.
Clustering analysis is widely used to perform dimension reduction, keeping the new features inter-
pretable. This method consists in replacing a cluster of correlated genes by a cluster centroid (called
feature). We aimed at efficiently using a priori biological knowledge to improve clustering methodol-
ogy for dimension reduction.

2. Materials

GENE expression data were measured from breast cancer (BC) tissues and were retrieved from
public databases or authors’ website. We used normalized data (log2 intensity in single-channel

platforms or log2 ratio in dual-channel platforms) as published by the original studies. The Table 1
gives the characteristics of all the datasets used for the analysis.

Article Dataset Size
van’t Veer et al, 2002 NKI 117
van de Vijver et al, 2002 NKI2 295
Sotiriou et al, 2003 NCI 99
Ma et al, 2004 MGH 60
Miller et al, 2005 UPP 251
Pawitan et al, 2005 STK 159
Wang et al, 2005 VDX 286
Foekens et al, 2006 VDX2 180
Sotiriou et al, 2006 UNT 137
Oh et al, 2006 UNC 153
Buyse et al, 2006 TRANSBIG 307
Desmedt et al, 2007 TRANSBIG 198
Naderi et al, 2007 NCH 135
Loi et al, 2007 TAM 255

Table 1: Gene expression datasets of breast cancer patients.

3. Methods

IN order to represent the biological processes of interest, we selected one gene (called prototype)
per process. This gene was selected from literature and biological databases. We introduced a new

method called prototype-based clustering to identify genes that are specifically coexpressed with one
prototype, i.e. genes that can be predicted using only one prototype. For each gene to cluster, we
fitted univariate and multivariate linear models with the prototypes which play the role of explanatory
variables. We compared these models based on their leave-one-out cross-validation (cv ) error com-
puted by the PRESS statistic. Using Friedman’s test, the models exhibiting the lowest errors were
selected to test the specificity of the gene. If only one univariate model (with prototype j) remains in
the set of best model, this gene is put in cluster j. Otherwise, the gene is discarded from analysis be-
cause it can be predicted similarly by several univariate models or a multivariate model. The Figure 1
sketches the different steps of the method.
This method was used in a meta-analystical framework in order to combine model selection from
different datasets.
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Figure 1: Prototype-based clustering method in a meta-analytical framework.

Once the clusters were identified, we computed the cluster centroids (signed average of expressions
of genes in the cluster) for each sample. In order to assess the relevance of these new features,

we used them 1) to define robustly BC molecular subtypes and 2) to investigate the impact of the
new features on clinical outcome. These two questions were addressed in using public microarray
datasets given in Table 1 (≈ 2100 patients).

4. Results

WE applied our method to two large public microarray datasets of BC patients (NKI2 and VDX).
These datasets come from two different microarray technologies. We used hallmarks of BC in-

volving various biological processes such as estrogen receptor (ESR1), her2/neu signaling (ERBB2),
proliferation (AURKA), tumor invasion (PLAU), immune response (STAT1), angiogenesis (VEGF), and
apoptosis (CASP3) as prototype genes. We reduced the number of variables from 20,000 to seven
in keeping valuable information for BC subtyping and prognostication.

4.1 Breast Cancer Subtypes
Several publications reported that BC are molecularly heterogeneous [1, 4], mainly in terms of estro-
gen receptor and her2/neu signaling. Using the features associated to these two biological processes
(ESR1 and ERBB2 respectively), we identified BC subtypes in all the datasets (see Table 1) using a
simple model-based clustering. The BIC criterion was used to estimate the ”best” number of clusters
and we consistently found three well conserved patterns (called subtype 1, 2 and 3), confirming the
past studies (see Figure 2).
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The following table gives the mapping for each module :
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The following table gives the mapping for each module :
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The following table gives the mapping for each module :
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Figure 2: BC subtypes in NKI2, VDX and UNC datasets respectively.

4.2 Breast Cancer Prognostication
We performed a meta-analysis on all the datasets (see Table 1), considering only unterated patients.
The most relevant features depend on the subtype, AURKA being highly predictive in subtype 3 and
STAT1 in subtype 1 and 2 (see Figure 3).
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Figure 3: Kaplan-Meier curves for most relevant features in each BC subtype.

5. Conclusion

THE use of prototype-based clustering allowed for efficient reduction of the dimensionality of mi-
croarray data in focusing on target biologically processes. We successfully applied this method

to BC samples in order to gain new insights into BC biology.

This work was presented in [2, 3].
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