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Introduction

Study of the occurrence and timing of events

Examples : death of patients, failure of a machine, . . .

Two types of observation plans :
I prospective : the events are recorded when they occur
I retrospective : look back at some history recording events of interest

Usually use of retrospective data with some potential limitations :
I prone to errors (some events may be forgotten)
I sampling may be a biased subsample of the initial population of interest
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Censoring Data

You may have only partial information for some cases

Example : a patient leaves a study before an event occurs
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Cases are right-censored because observation is terminated before the
event occurs

Censoring is random when observations are terminated for reasons
that are not under control
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Censoring Data
Matrix

If the study is not limited in time

Patient id Survival time Event

A 5 1
B 8 1
C 10 0
D 13 1
E 18 0

If the study is limited at 10 years

Patient id Survival time Event

A 5 1
B 8 1
C 10 0
D 10 0
E 10 0
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Survival Distribution

Time of event are realizations of a random variable t

Two common ways to describe the probability distribution of t
I survivor function
I hazard function
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Survivor Function

Probability of surviving beyond t

S(t) = Pr{t > t}
Because t cannot be negative, S(0) = 1

S(t) can be estimated by the Kaplan-Meier method
[Kaplan and Meier, 1958]

Ŝ(t) =
∏

j :tj≤t

[
1−

dj

Nj

]

where Nj is the number of cases at risk of an event at time tj and dj

is the number of events at times tj
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Survival Curve

Censoring data

Patient id Survival time Event

A 5 1
B 8 1
C 10 0
D 13 1
E 18 0

”+” sign represents the
censoring on the survival curve
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Hazard Function

Instantaneous risk that an event occurs in the small interval between
t and t + ∆t

h(t) = lim
∆t→0

Pr{t ≤ t < t + ∆t | t ≥ t}
∆t

A hazard is a rate not a probability

h(t) can be estimated by kernel methods [Mueller and Wang, 1994]
but you need a sufficient number of cases
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Hazard Curve

Example using a dataset of 26 cases

Survival curve
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Hazard curve
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Regression Model for Survival Data

There exists different models to fit survivor or hazard functions
I Parametric model : assumption about the noise distribution that

implies specific distribution of t
I Semiparametric model : no assumption about the distribution of t

The most widely used method is the Cox regression introduced in
[Cox, 1972] that is a semiparametric model

NB : This paper is the most highly cited paper in the entire literature of
statistics !
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Cox Model

Let be xij be the jth covariate for the ith individual with
j ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . ,N}
Basic model :

hi (t) = λ0(t) exp (β1xi1 + · · ·+ βnxin)

I λ0(t) is the baseline hazard function
I linear combination of n covariates which is exponentiated

This model is called the proportional hazards model because the
hazard of any individual is a fixed proportion of the hazard of any
other individual :

hi (t)

hk(t)
= exp {β1(xi1 − xk1) + · · ·+ βn(xin − xkn)}

I As you can see, λ0(t) cancels out
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Cox Model
Proportional Hazards

ln
h
(t

)

t

individual 2

individual 1

There exist several tests to assess if this assumption is plausible
[Therneau and Grambsch, 2000]
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Cox Model
Maximum Partial Likelihood

Fitting the proportional hazards model to an observed set of survival
data :

I estimation of β1, β2, . . . , βn, of the covariates x1, x2, . . . , xn

I does not depend on the baseline hazard function

Fitting can be performed in maximizing the partial likelihood

PL =
N∏

i=1

Li

I Li is the likelihood for the ith event
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Cox Model
Partial Likelihood

Definition of Li : ”Given that an event occurred at time t, what is the
probability that it happened to case i rather than any other cases ?”

Li =
hi (t)

hi (t) + hi+1(t) + · · ·+ hN(t)

General expression for the partial likelihood :

PL =
N∏

i=1

[
eβXi∑N

j=1 yijeβXj

]δi

I δi is an indicator variable for censoring
I yij such that yij = 1 if tj ≥ ti and yij = 0 if tj < ti
I Xi = [x1i , x2i , . . . , xni ] is a vector of n covariate values
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Cox Model
Cross-validated Partial Likelihood

How to compute an error in cross-validation for the Cox model ?

Use the CVPL introduced in [Verwij and Van Houwelingen, 1993]

CVPL = − 1

N

N∑
i=1

[
l
(
f̂ (−s)

)
− l (−s)

(
f̂ (−s)

)]
I l is the log partial likelihood
I f̂ is a fitted Cox model
I s is a set of cases
I The index (−s) means that we consider all the cases except those in

set s
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Cox Model
Cross-validated Partial Likelihood : Example

Example of forward feature selection with CVPL
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Difference in Survival

Let say we have two groups of patients defined by their age
I patients younger than 60 in group 0
I otherwise in group 1

You can :
I test the difference between two survival curves (logrank test)
I estimate the difference in risk between the two groups (Cox regression)

These results can be extended for more groups
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Testing for Difference in Survival
Logrank Test

We can estimate a survival curve for each group using the Kaplan-Meier
estimator :
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age < 60
age >= 60

Are these two curves
statistically different ?

use of the logrank test :
p-value = 3.56e-05
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Estimate the Difference in Survival
Hazard Ratio

Hazard ratio is a relative risk between two conditions

Summary of the difference between two survival curves

This difference is constant over time assuming the proportional
hazards

How to compute it ?
I Let g be an indicator variable to specify the group
I Let gi be the value of G for the ith individual

hi (t) = λ0(t) exp(βgi )

I The hazard function for an individual in group 0 is λ0(t)
I The hazard function for an individual in group 1 is λ0(t) exp(β)
I So the hazard ratio is exp(β)
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Estimate the Difference in Survival
Hazard Ratio : Example

Most statistical programs report the following information for a fitted
Cox model :

coef exp(coef) se(coef) z p N

age ≥ 60 2.33 10.2 0.673 3.46 5.5E−04 26

I The indicator variable g is noted as ”age ≥ 60”
I ”coef” is the coefficient
I ”exp(coef)” is the hazard ratio
I ”se(coef)” is the standard error of the coefficient
I ”z” is the common statistic that follows a χ2 distribution with 1 degree

of freedom
I ”p” is the p-value computed from the z statistic
I ”N” is the number of cases
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Survival Analysis and Bioinformatics

Commonly used in Medical fields

Use of survival and microarray data to study what are the important
genes for the appearance of a specific event

I death
I tumor

Survival analysis cane be used with feature selection, regularization,
cross-validation, . . .

The performance assessment is not straightforward
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Links

Course web page : http://www.bioinfomaster.ulb.ac.be/
cursus/index html/en#DATANA

Personal homepage : http://www.ulb.ac.be/di/map/bhaibeka/

This presentation : http://www.ulb.ac.be/di/map/bhaibeka/
bioinfo courses/surv analysis pres hkb.pdf
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Thank you for your attention.
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Part II

Appendix
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Softwares

R is a widely used open source language and environment for
statistical computing and graphics

I Software and documentation are available from
http://www.r-project.org
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R Code

R code to generate a survival curve using the ”ovarian” data :

library(survival)

fit <- survfit(Surv(futime, fustat), data=ovarian, conf.type="none")

par(cex=1.5)

plot(fit, xlab="Time", ylab="Probability of survival")

R code to generate a hazard curve using the ”ovarian” data :

library(survival)

library(muhaz)

fit <- muhaz(times=ovarian$futime, delta=ovarian$fustat, bw.pilot=10)

par(cex=1.5)

plot(fit, xlim=range(ovarian$futime), xlab="Time", ylab="Hazard rate")
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R Code

R code to compute the forward feature selection in the ”ovarian” dataset
and report the empirical and the generalization (CVPL) errors :

library(survival)

library(bensurvfoo)

library(gplots)

rr <- fw.cvpl(data=ovarian[ ,c("age","resid.ds","rx","ecog.ps")],

surv.time=ovarian$futime, surv.event=ovarian$fustat,

strata.cox=NULL, setseed=12345, na.rm=TRUE, verbose=TRUE)

gen.err <- - unlist(lapply(rr$perf, function(x) { return(x[[1]]) }))

emp.err <- NULL

for(i in 1:length(rr$sel)) {

emp.err <- c(emp.err, coxph(Surv(ovarian$futime, ovarian$fustat) ~ .,

data=ovarian[ ,rr$sel[1:i],drop=FALSE])$loglik[2] / sum(ovarian$fustat))

}

plot(gen.err, ylim=range(c(gen.err, emp.err)), type="l",

col="red", lwd=2, lty=1, xlab="Number of variables", ylab="Error")

lines(emp.err, col="blue", lwd=2, lty=2)

smartlegend(x="left", y="center", c("empirical", "generalization"),

lty=c(1,2), lwd=c(2,2), col=c("red", "blue"))
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R Code

R code to generate two survival curves using the ”ovarian” data and
testing their difference using the logrank test :

library(survival)

library(bensurvfoo)

par(cex=1.5)

mysurvivalplot(group=ovarian$age >= 60, surv.time=ovarian$futime,

surv.event=ovarian$fustat, na.rm=TRUE,

group.name=c("age < 60", "age >= 60"), global=FALSE,

stat.info=c(FALSE, FALSE), strata.cox=NULL, main="",

group.col=c("green", "red"))

survdiff(Surv(ovarian$futime, ovarian$fustat) ~ ovarian$age >= 60)

R code to fit a Cox model using the ”ovarian” data :

library(survival)

coxph(Surv(ovarian$futime, ovarian$fustat) ~ ovarian$age >= 60)
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