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Introduction

A common problem in data mining is dealing with unbalanced
datasets in which one class vastly outnumbers the other in the
training data.

State-of-the-art classification algorithms suffer when the data
is skewed towards one class [8].

Several techniques have been proposed to cope with
unbalanced data.

However no technique appears to work consistently better in
all conditions.

We propose to use a racing method to select adaptively the
most appropriate strategy for a given unbalanced task.
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Unbalanced problem

A dataset is unbalanced when the class of interest (minority class)
is much rarer than the other (majority class).

dataset$X1

da
ta
se
t$
X
2

The unbalanced nature of the data is typical of many
applications such as medical diagnosis, text classification and
credit card fraud detection.
The cost of missing a minority class is typically much higher
that missing a majority class.
Proposed strategies essentially belong to the following
categories: sampling, ensemble, cost-based and
distance-based.
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Existing methods for unbalanced data

Sampling methods

Undersampling [5]
Oversampling [5]
SMOTE [3]

Ensemble methods

BalanceCascade [11]
EasyEnsemble [11]

Cost based methods

Cost proportional sampling [6]
Costing [19]

Distance based methods

Tomek link [15]
Condensed Nearest Neighbor (CNN) [7]
One side Selection (OSS) [9]
Edited Nearest Neighbor (ENN) [17]
Neighborhood Cleaning Rule (NCL) [10]
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Unbalanced strategies

Sampling techniques up-sample or down-sample a class to
rebalance the classes.

SMOTE generates synthetic minority examples.

Ensemble techniques combine an unbalanced method with a
classifier to explore the majority and minority class
distribution.

Cost based techniques consider the misclassification cost to
rebalance the dataset.

Distance based techniques use distances between input points
to undersample or to remove noisy and borderline examples.
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Sampling methods

Figure: Undersampling
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Figure: Oversampling
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Figure: SMOTE [3]
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Fraud detection problem

Credit card fraud detection [13, 4, 14] is a highly unbalanced
problem.

Fraudulent behaviour evolves over the time changing the
distribution of the frauds and a method that worked well in
the past could become inaccurate afterward.
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Datasets

1 real credit card fraud dataset provided by a payment service
provider in Belgium.

9 datasets from UCI [1]

Dataset ID Dataset name Size Input Prop 1 Class 1

1 fraud 527026 51 0.39% Fraud = 1
2 breastcancer 698 10 34.52% class =4
3 car 1727 6 3.76% class = Vgood
4 forest 38501 54 7.13% class = Cottonwood/Willow
5 letter 19999 16 3.76% letter = W
6 nursery 12959 8 2.53% class = very recom
7 pima 768 8 34.89% class = 1
8 satimage 6433 36 9.73% class = 4
9 women 1472 9 22.62% class = long-term

10 spam 4601 57 42.14% class =1

Some datasets are reduced to speed up computations.
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Fraud Data - Fmeasure
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Figure: Comparison of strategies for unbalanced data in terms of
F-measure for the Fraud dataset using different supervised algorithms,
where F-measure = 2 × Precision×Recall

Precision+Recall .
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Friedman test over all dataset using RF and F-measure

In the table a cell is marked as (+) if the rank difference between
the method in the row and the method the column is positive, (-)
othervise.
The table shows the level of significance using *** (α = 0.001), **
(α = 0.01), * (α = 0.05), . (α = 0.1).

Sheet1
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Figure: Comparison of strategies using a post-hoc Friedman test in terms
of F-measure for a RF classifier over multiple datasets.
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Racing idea

With no prior information about the data distribution is
difficult to decide which unbalanced strategy to use.

No single strategy is coherently superior to all others in all
conditions (i.e. algorithm, dataset and performance metric)

Under different conditions, such as fraud evolution, the best
methods may change.

Testing all unbalanced techniques is not an option because of
the associated computational cost.

We proposed to use the Racing approach [12] to perform
strategy selection.
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Racing for strategy selection

Racing consists in testing in parallel a set of alternatives and
using a statistical test to remove an alternative if it is
significantly worse than the others.

We adopted F-Race version [2] to search efficiently for the
best strategy for unbalanced data.

The F-race combines the Friedman test with Hoeffding Races
[12].
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Racing for unbalanced technique selection

Automatically select the most adequate technique for a given
dataset.

1 Test in parallel a set of alternative balancing strategies on a
subset of the dataset

2 Remove progressively the alternatives which are significantly
worse.

3 Iterate the testing and removal step until there is only one
candidate left or not more data is available

Candidate(1 Candidate(2 Candidate(3
subset(1( 0.50 0.47 0.48
subset(2 0.51 0.48 0.30
subset(3 0.51 0.47
subset(4 0.60 0.45
subset(5 0.55

Candidate(1 Candidate(2 Candidate(3
subset(1( 0.50 0.47 0.48
subset(2 0.51 0.48 0.30
subset(3 0.51 0.47
subset(4 0.49 0.46
subset(5 0.48 0.46
subset(6 0.60 0.45
subset(7 0.59
subset(8
subset(9
subset(10

Original(Dataset

Tim
e
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F-race method

Use 10-fold cross validation to provide the data during the
race.

Every time new data is added to the race, the Friedman test is
used to remove significantly bad candidates.

We made a comparison of Cross Validation and F-race in
terms of F-measure.

Candidate(1 Candidate(2 Candidate(3
subset(1( 0.50 0.47 0.48
subset(2 0.51 0.48 0.30
subset(3 0.51 0.47
subset(4 0.60 0.45
subset(5 0.55

Candidate(1 Candidate(2 Candidate(3
subset(1( 0.50 0.47 0.48
subset(2 0.51 0.48 0.30
subset(3 0.51 0.47
subset(4 0.49 0.46
subset(5 0.48 0.46
subset(6 0.60 0.45
subset(7 0.59
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subset(10
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F-race Vs Cross Validation

Dataset Algo Exploration Method N test Gain Mean Sd Pval

Fraud
RF

best CV SMOTEnsemble 180 -
0.100 0.016 -

F-race SMOTEnsemble 44 76%

SVM
best CV over 180 -

0.084 0.017 -
F-race over 46 74%

Breast Cancer
RF

best CV balanceCascade 180 -
0.963 0.035 -

F-race balanceCascade 180 0%

SVM
best CV under 180 -

0.957 0.038 -
F-race under 180 0%

Car
RF

best CV OSS 180 -
0.970 0.039 -

F-race OSS 108 40%

SVM
best CV over 180 -

0.944 0.052 -
F-race over 93 48%

Forest
RF

best CV balanceCascade 180 -
0.911 0.012 -

F-race balanceCascade 60 67%

SVM
best CV ENN 180 -

0.809 0.011 -
F-race ENN 64 64%

Letter
RF

best CV balanceCascade 180 -
0.981 0.010 -

F-race balanceCascade 73 59%

SVM
best CV over 180 -

0.953 0.022 -
F-race over 44 76%

Nursery
RF

best CV SMOTE 180 -
0.809 0.047 -

F-race SMOTE 76 58%

SVM
best CV over 180 -

0.875 0.052 -
F-race over 58 68%

Pima
RF

best CV under 180 -
0.691 0.045 -

F-race under 136 24%

SVM
best CV EasyEnsemble 180 - 0.675 0.071

0.107
F-race costBalance 110 39% 0.674 0.06

Satimage
RF

best CV balanceCascade 180 -
0.719 0.033 -

F-race balanceCascade 132 27%

SVM
best CV balanceCascade 180 -

0.662 0.044 -
F-race balanceCascade 90 50%

Spam
RF

best CV SMOTE 180 -
0.942 0.015 -

F-race SMOTE 122 32%

SVM
best CV SMOTEnsemble 180 - 0.917 0.018

0.266
F-race SMOTE 135 25% 0.918 0.02

Women
RF

best CV TomekUnder 180 -
0.488 0.051 -

F-race TomekUnder 150 17%

SVM best CV EnnSmote 180 - 0.492 0.073 -
F-race EnnSmote 102 43%
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Conclusion

Class unbalanced problem is well known, different techniques
and metrics have been proposed.

The best strategy is extremely dependent on the data nature,
algorithm adopted and performance measure.

F-race is able to automatise the selection of the best
unbalanced strategy for a given unbalanced problem without
exploring the whole dataset.

For the fraud dataset the unbalanced strategy chosen had a
big impact on the accuracy of the results.

F-race is crucial in adapting the strategy with fraud evolution.
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Future work

1 Release of an R package for unbalanced dataset

2 Adopt Racing for incremental learning / data streams

Acknowledgment
The work of Andrea Dal Pozzolo was supported by the Doctiris
programe of Innoviris (Brussels Institute for Research and
Innovation), Belgium.
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F-race Vs Cross Validation II

For almost all datasets F-race is able to return the best
method according to the cross validation (CV) assessment.

In Pima and Spam datasets F-race returns a sub-optimal
strategy that is not significantly worse than the best (Pvalue
greater than 0.05).

The Gain column shows the computational gain (in
percentage of the the CV tests) obtained by using F-race.

Apart from the Breast Cancer dataset in all the other cases
F-race allows a significant computational saving with no loss
in performance.
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UCI BreastCancer - Fmeasure
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Figure: Comparison of techniques for unbalanced data with UCI Breast
Cancer dataset and Random Forest classifier in terms of Fmeasure.
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SMOTE, R package [16]
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Balance Cascade [11]

BalanceCascade, explore the majority class in a supervised manner:

Minority	  

Majority	  

Minority	  
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Model	  

Classify	  majority	  observa4on	  le5	  out	  	  
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New	  training	  set	  
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training	  set	  

Balanced	  	  
dataset	  

Keep	  removing	  majority	  class	  examples	  un4l	  none	  is	  miss-‐classified	  
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Easy Ensemble [11]

EasyEnsemble, learns different aspects of the original majority class
in an unsupervised manner:



Introduction Unbalanced problem Unbalanced techniques comparison Racing Conclusion and future work

Cost proportional sampling [6]

Positive and negative examples sample by the ratio:

p(1)FNcost : p(0)FPcost

where p(1) and p(0) are prior class probability.

Proportional sampling with replacement produces duplicated
cases with the risk of overfitting
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Costing [19]

Use rejection sampling to avoid duplication of instances:

1 Each instance in the original training set is drawn once

2 Accept an instance into the sample with the accepting
probability C(i)/Z.

C(i) is the misclassification cost of class i, and Z is an arbitrary
constant such that Z ≥ maxC (i).
If Z = max C(i), this is equivalent to keeping all examples of
the rare class, and sampling the majority class without
replacement according to FPcost/ FNcost
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Tomek link [15]

Goal is to remove both noise and borderline examples.
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Condensed Nearest Neighbor (CNN) [7]

Goal is to eliminate the instances from the majority class that are
distant from the decision border, considered less relevant for
learning.
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One Side Selection [9]

Hybrid method obtained from Tomek link and CNN:

Apply first Tomek link and then CNN

Major drawback is the use of CNN which is sensitive to
noise[18], since noisy examples are likely to be misclassified.
Many of them will be added to the training.
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Edited Nearest Neighbor [17]

If an instance belongs to the majority class and the classification
given by its three nearest neighbours contradicts the original class,
then it is removed
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Neighborhood Cleaning Rule [10]

Apply ENN first and If an instance belongs to the minority class
and its three nearest neighbours misclassify it, then the nearest
neighbours that belong to the majority class are removed.
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