Size-constrained graph partitioning polytope
Part I: Dimension and trivial facets

Abstract. We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-way equi-partition problem. In this paper and its sequel, we analyze the structure of the corresponding polytope and prove several results concerning the facial structure. Our analysis yields important results for the closely related equi-partition and k-way equi-partition polytopes as well.

1 Introduction

The problem of partitioning a set of items into clusters to achieve an objective (e.g., to obtain homogeneous clusters and extract valuable information on each of the clusters, to divide the items into clusters that have minimal interaction in-between, etc.) is encountered in a wide range of disciplines such as marketing, economics, biology, psychology, politics, etc. Owing to this wide spectrum of applications, the clustering problem has been studied extensively in Operations Research.

Three classes of clustering problems can be differentiated in Operations Research applications. In the first class of problems, the items to be clustered are articulated by numerical attributes. Generally, the items are represented by vectors in a real space which correspond to a set of attribute measurements. This class of problems find applications in many areas like pattern recognition (see [4] for a general treatment) and marketing (for example, [18]), among others.

In the second class of problems, there are no attributes defined at all and only certain pairwise relations between the items are provided. For example in some telecommunications networks, the nodes are clustered on the basis of the communication level between pairs of nodes. Generally, the aim in such problems is to cluster the items (routers, users, customers, etc.) so as to minimize the communication between the clusters (for example, see [11], [17]), or minimize total communication cost at all within the whole network (for example, see [21]). Other application areas of this class of clustering problems are compiler design, parallel computing and electronic circuit design (for example, see [5], [6], [10]).

In the third class, the data relevant to clustering involve attributes that are defined categorically. Namely, attributes do not assume numerical values and are evaluated in categories (for example, see [15]). For example, if the objects under consideration are people, hair color is an example of an attribute which is best stated categorically (brown, black, blond, etc.); for consumers, the attitude against a product or brand can be more meaningfully articulated categorically (positive, negative,
neutral); in some applications, it might be more meaningful to state the size categorically as “large”, “medium” or “small” rather than some numerical measures. Fortunately, this class of problems can also be analyzed in the second class of clustering problems above owing to some qualitative data analysis techniques which convert such type of data into pairwise relations between the items. An example of such a conversion is given by Grötschel and Wakabayashi ([7]).

Generally in Operations Research literature, the clustering problems in the second and third classes above are classified as graph partitioning problems. In this scheme, the items to be clustered are represented by the nodes of a graph, and pairwise relations among them are represented by edge weights. The aim is to find the ‘best’ clustering, which optimizes a certain objective function, of the nodes of the graph into subsets.

In practical clustering applications, the subsets to be obtained might be subject to various constraints such as restrictions on the number of subsets, restrictions on the sizes of the subsets, requirement that certain items be or not be in the same subset, etc. In this paper and its sequel, we confine ourselves to clustering problems with restrictions on the subset sizes. Namely, the clustering problems that are addressed in this paper and its companion involve parameters \(F_U \) and \(F_L \), which constrain the sizes of the subsets to be obtained from above and below, respectively. For instance, in a specific clustering application, the subsets we obtain might represent voting districts for a certain elective procedure, or distribution regions belonging to a distribution network. It might not be possible to support voting districts or distribution regions larger than a pre-specified size \(F_U \) because some resources at disposal (like human resources for the elective procedure, or vehicles for the distribution network) might not be adequate in quantity or in quality. In addition, reasons like economies of scale or need for balanced partitions, where the sizes of the subsets obtained are ‘almost’ equal to each other, might give rise to minimum size requirements as well on the subsets. For instance, we might want to impose the restriction that the subsets have size at least \(F_L \) in order to make the voting districts large enough to allow meaningful statistical inferences, or, in order to make the distribution regions large enough to benefit from economies of scale, or, in order to obtain almost equally sized subsets that will allow applying similar administrative procedures.

Besides bounds \(F_L \) and \(F_U \) on the subset sizes, we assume as well that the data relevant to clustering is provided in the form of pairwise relations among the items. This locates our problem in the second and third class of clustering problems described above. Following the prevalent practice in the literature, we formulate it as a graph partitioning problem. The formal definition and an integer programming formulation of the problem are given in Section 3. But before, in Section 2 we present the notation used throughout this paper and its sequel.

2 Notation

We represent the set of items to be clustered by the set \(V = \{1, 2, \ldots, n\} \). Consider a graph \(G = (V, E) \) on \(V \). Each edge \(e \in E \) is also represented by means of its adjacent nodes \(u \) and \(v \): the terms \(\{u, v\} \) and \(\{v, u\} \) are used interchangeably to refer to the edge \(e \).

A partition, \(\pi \), is a collection of non-empty subsets \(N_1, N_2, \ldots, N_k \) of \(V \) such that \(N_i \cap N_j = \emptyset \) for all \(i \neq j \), and \(\bigcup_{i} N_i = V \). A size constrained partition (shortly, an sc-partition) is a partition with \(F_L \leq |N_i| \leq F_U \) for all \(i = 1, \ldots, k \). We associate a characteristic vector \(w^\pi \in \{0, 1\}^{|E|} \) with each partition \(\pi \), where \(w^\pi_{u,v} = 1 \) if \(u, v \in N_i \) for some \(i \in \{1, 2, \ldots, k\} \), and 0 otherwise. We use the representations \(\pi \) and \((N_1, N_2, \ldots, N_k)\), and its characteristic vector \(w^\pi \) interchangeably to refer to a partition. We use the term subclique to refer to the subsets (i.e., \(N_i \)'s) in the partitions.

Let \(Q \subseteq V \) and \(S \subseteq V \). We denote the set of all edges whose both endnodes are in \(Q \) by \(E(Q) \), i.e., \(E(Q) = \{\{u, v\} \in E|u, v \in Q\} \). The set of edges with one endnode in \(Q \) and the other endnode in \(S \) are denoted by \(E(Q, S) \), i.e., \(E(Q, S) = \{\{u, v\} \in E|u \in Q, v \in S\} \). For ease of notation, a set with only one element is represented with the element itself in mathematical expressions: namely, for instance, \(Q - u \) stands for \(Q - \{u\} \). Adjacent edges of a node \(u \) is denoted by \(\delta(u) \), i.e., \(\delta(u) = E(u, V - u) \). For any \(x \in \mathbb{R}^{|E|} \), let \(x(F) = \sum_{e \in F} x_e \) for \(F \subseteq E \).

Throughout, \(\text{conv}(X) \) and \(\text{aff}(X) \) denotes the convex hull and the affine hull of a set \(X \subset \mathbb{R}^{|E|} \), respectively. The equality set \(M(P) \) of a polytope \(P \) is a maximal set of linearly independent hyperplanes that contain \(P \). The dimension of \(P \) is denoted by \(\text{dim}(P) \).
Problem definition and formulation

The problem we address in this paper and its companion consists of finding the sc-partition π that optimizes

$$\sum_{e \in E} c_e w_\pi^e.$$

This is a quite common objective function for most of the graph partitioning problems in the literature. Some articles interpret the minimization of this objective function as clustering of the most similar items together when the edge weights c_e’s represent a measure of dissimilarity (like distance) between the items (see [8], [7], [13] and [12] among others). Some others interpret the maximization of it as division of a network or a compiler into clusters which have minimal interaction in-between (see [5], [6], [10] and [11] among others).

This objective function, which is a sum of the weights of a set of edges, allows us to assume that $G = (V, E)$ is a complete graph. Because, if it is not, we can always convert it to one by adding the missing edges with weights 0. Solving the problem on this complete graph would be completely equivalent to solving it on G. Hence, in the sequel, we assume that $G = (V, E)$ is a complete graph defined on n nodes.

The integer programming formulation we propose for our problem is as follows:

$$\text{minimize or maximize } \sum_{e \in E} c_e w_\pi^e$$

subject to

$$w_{u,v} + w_{u,t} - w_{v,t} \leq 1 \quad \forall u,v,t \in V : u,v,t \text{ different}$$

$$w(\delta(u)) \geq F_L - 1 \quad \forall u \in V$$

$$w(\delta(u)) \leq F_U - 1 \quad \forall u \in V$$

$$w_{u,v} \in \{0,1\} \quad \forall \{u,v\} \in E$$

where the variable $w_{u,v}$ takes value 1 if nodes u and v are in the same subclique, and 0 otherwise. Constraints (1a), called triangle inequalities, ensure that if any two edges of a triangle linking three nodes in V are contained in one subclique (i.e., all three of the nodes are packed in the same subclique), then the third edge of the triangle is also contained in that subclique. Constraints (1b) and (1c) stand for the size restrictions on the subcliques. It is easy to see that the set of characteristic vectors of sc-partitions of G coincide exactly with set of feasible solutions of formulation (1).

This paper and its sequel are devoted to the analysis of the structure of the polytope

$$\mathcal{P}^u(n,F_L,F_U) = \text{conv}\{w^\pi \in \mathbb{R}^{|E|} | w^\pi \text{ feasible for (1)} \text{ (i.e., } \pi \text{ is an sc-partition)}\}.$$

Obviously, this polytope is uniquely determined by the three parameters n, F_L, and F_U.

Formulation (1) and $\mathcal{P}^u(n,F_L,F_U)$ generalize the following several graph partitioning problems from the literature and their corresponding polytopes.

- For $F_L = 1$ and $F_U = n$ (i.e., when (1b) and (1c) become redundant), this formulation turns into the so-called clique partitioning problem which was introduced by Grötschel and Wakabayashi ([7],[8]; see also [1], [16]). This problem addresses the most basic clustering problem where there is no restriction on the number of subsets or the sizes of the subsets (i.e., for a feasible solution (N_1, \ldots, N_k) of the clique partition problem, $1 \leq k \leq n$, and $1 \leq |N_i| \leq n$ for all $i = 1, \ldots, k$). For further use, we define

$$\mathcal{P}(n) = \text{conv}\{w^\pi \in \mathbb{R}^{|E|} | w^\pi \text{ satisfies (1a) and (1d)} \text{ (i.e., } \pi \text{ is a partition)}\}.$$

- When $F_U = n$ (i.e., when the upper bound on the subclique sizes is removed), we get the so-called clique partitioning problem with minimum clique size requirement of Ji and Mitchell [9]. Let the corresponding polytope be denoted as $\mathcal{P}^l(n,F_L)$, i.e.,

$$\mathcal{P}^l(n,F_L) = \text{conv}\{w^\pi \in \mathbb{R}^{|E|} | w^\pi \text{ satisfies (1a), (1b) and (1d)}\}.$$
When $F_L = 1$ (i.e., the lower bound is removed), we end up with the so-called simple graph partitioning problem of Sørensen ([19] and [20]). We denote the corresponding polytope as $\mathcal{P}^u(n, F_L) = \text{conv}\{w^\pi \in \mathbb{R}^{|E|} | w^\pi \text{ satisfies } (1a), (1c) \text{ and } (1d)\}$.

The equipartition problem consists of dividing a graph G into two subgraphs with sizes $[\frac{n}{2}]$ and $[\frac{n}{2}]$. Let $\mathcal{P}^{\text{equi}}(n)$ denote the equipartition polytope, that is, the convex hull of characteristic vectors w^π such that $\pi = (N_1, N_2)$, $|N_1| = [\frac{n}{2}]$ and $|N_2| = [\frac{n}{2}]$. Conforti et al. ([2], [3]) provide a detailed analysis of $\mathcal{P}^{\text{equi}}(n)$.

The k-way equipartition problem ($k \geq 3$) consists of dividing a graph G with $(n \mod k) = 0$ into k equally sized subgraphs. And, similarly, let $\mathcal{P}^{k-\text{way}}(n, k)$ denote the k-way equipartition polytope, which is the convex hull of w^π such that $\pi = (N_1, \ldots, N_k)$ and $|N_i| = F = \frac{n}{k}$ for $i = 1, \ldots, k$. For a detailed treatment of $\mathcal{P}^{k-\text{way}}(n, k)$, see [12] and [13] by Mitchell.

In this paper and its sequel, we attribute special importance to the equi-partition polytope $\mathcal{P}^{\text{equi}}(n)$ and the k-way equipartition polytope $\mathcal{P}^{k-\text{way}}(n, k)$. Because, in the sequel paper, we present several results, which are new to the literature, on $\mathcal{P}^{\text{equi}}(n)$ and $\mathcal{P}^{k-\text{way}}(n, k)$. In Section 4, we state conditions on n, F_L and F_U that make $\mathcal{P}^u(n, F_L, F_U)$ equivalent to $\mathcal{P}^{\text{equi}}(n)$ or $\mathcal{P}^{k-\text{way}}(n, k)$.

For ease of notation, throughout we shortly use \mathcal{P}^{lu} to refer to $\mathcal{P}^{lu}(n, F_L, F_U)$ unless otherwise stated. In the next section, we start with the analysis of \mathcal{P}^{lu} by proving feasibility conditions and dimension.

4 Non-emptiness and dimension of \mathcal{P}^{lu}

Not all (n, F_L, F_U) triples yield a nonempty \mathcal{P}^{lu}. For example, for $n = 31$, $F_L = 8$ and $F_U = 10$ it is not possible to find an sc-partition, i.e., $\mathcal{P}^{lu}(31, 8, 10) = \emptyset$. Lemma 1 states the necessary and sufficient condition (n, F_L, F_U) should satisfy for \mathcal{P}^{lu} to be non-empty. We assume in this and the next section that $F_L \geq 2$.

Lemma 1 $\mathcal{P}^{lu} \neq \emptyset$ if and only if $\left\lceil \frac{n}{F_U} \right\rceil \geq \left\lceil \frac{n}{F_L} \right\rceil$.

Proof A partition $\pi = (N_1, \ldots, N_k)$ is an sc-partition if and only if $kF_L \leq n \leq kF_U$, which holds if and only if $\left\lceil \frac{n}{F_U} \right\rceil \geq k \geq \left\lceil \frac{n}{F_L} \right\rceil$.

Note that, non-emptiness of \mathcal{P}^{lu} is dependent only on the values of n, F_L and F_U, and not on the set V itself. This implies that non-emptiness of \mathcal{P}^{lu} is preserved through permutations of V. One can also infer from the proof of this lemma that an sc-partition has at least $\left\lceil \frac{n}{F_U} \right\rceil$ and at most $\left\lceil \frac{n}{F_L} \right\rceil$ subcliques.

We now pass on to determining the dimension of \mathcal{P}^{lu}. When $F_U = F_L$, the problem reduces to the k-way equipartition problem whose dimension is shown to be $\binom{n}{2} - n$ by Mitchell [13]. Hence, assume in the rest of this paper that $F_U \geq F_L + 1$.

We now give two technical lemmas that will be used in establishing the dimension of \mathcal{P}^{lu} and in some of the facetness proofs in the following sections.

Lemma 2 Let P denote a face of $\mathcal{P}^{lu} \neq \emptyset$. Let $\pi = (N_1, N_2, \ldots, N_k)$ be an sc-partition such that $w^\pi \in P$. Let $\alpha^T w = \alpha_0$ ($\alpha \neq 0$) be a hyperplane in $\mathbb{R}^{|E|}$ and suppose $P \subset \{ w \in \mathbb{R}^{|E|} | \alpha^T w = \alpha_0 \}$. Let $\{i, j\} \subseteq N_1$ and $h \in N_2$. Then $\alpha_{i,h} = \alpha_{i,j}$ provided that the following are satisfied for i, j and h:

- $w^\pi \in P$ where $\pi^1 = (N_1^*, N_2^*, \ldots, N_k^*)$, $N_1^* = N_1 - i$, $N_2^* = N_2 \cup i$, $N_i^* = N_i \forall l \in \{3, \ldots, k\}$;
- $w^\pi \in P$ where $\pi^2 = (N_1^*, N_2^*, \ldots, N_k^*)$, $N_1^* = N_1 - j$, $N_2^* = N_2 \cup j$, $N_i^* = N_i \forall l \in \{3, \ldots, k\}$;
- $w^\pi \in P$ where $\pi^3 = (N_1^*, N_2^*, \ldots, N_k^*)$, $N_1^* = (N_1 - i) \cup h$, $N_2^* = (N_2 - h) \cup i$, $N_i^* = N_i \forall l \in \{3, \ldots, k\}$;
- $w^\pi \in P$ where $\pi^4 = (N_1^*, N_2^*, \ldots, N_k^*)$, $N_1^* = (N_1 - j) \cup h$, $N_2^* = (N_2 - h) \cup j$, $N_i^* = N_i \forall l \in \{3, \ldots, k\}$.
\textbf{Proof} Using the fact that } \alpha^T w^\pi = \alpha_0 \text{ and } \alpha^T w^\pi' = \alpha_0, \text{ we obtain}
\alpha_{i,j} + \alpha(i, N_1 - \{i, j\}) = \alpha_{i,h} + \alpha(i, N_2 - h). \tag{2}

From } \alpha^T w^\pi = \alpha_0 \text{ and } \alpha^T w^\pi' = \alpha_0, \text{ we have}
\alpha_{i,j} + \alpha(j, N_1 - \{i, j\}) = \alpha_{j,h} + \alpha(j, N_2 - h). \tag{3}

Similarly, from } \alpha^T w^\pi = \alpha_0 \text{ and } \alpha^T w^\pi' = \alpha_0, \text{ we have}
\alpha_{i,j} + \alpha(i, N_1 - \{i, j\}) + \alpha(h, N_2 - h) = \alpha_{j,h} + \alpha(h, N_1 - \{i, j\}) + \alpha(i, N_2 - h), \tag{4}

and from } \alpha^T w^\pi = \alpha_0 \text{ and } \alpha^T w^\pi' = \alpha_0, \text{ we have}
\alpha_{i,j} + \alpha(j, N_1 - \{i, j\}) + \alpha(h, N_2 - h) = \alpha_{i,h} + \alpha(h, N_1 - \{i, j\}) + \alpha(j, N_2 - h). \tag{5}

From equations (2) and (4) we obtain
\alpha_{i,h} + \alpha(h, N_2 - h) = \alpha_{j,h} + \alpha(h, N_1 - \{i, j\}). \tag{6}

From equations (3) and (5) we obtain
\alpha_{j,h} + \alpha(h, N_2 - h) = \alpha_{i,h} + \alpha(h, N_1 - \{i, j\}). \tag{7}

Equations (6) and (7) imply } \alpha_{i,h} = \alpha_{j,h}.

\textbf{Lemma 3} Let } \alpha^T w = \alpha_0 (\alpha \neq 0) \text{ be a hyperplane in } \mathbb{R}^{\langle 2 \rangle}. \text{ Suppose that } P^{lu} \subset \{ w \in \mathbb{R}^{\langle 2 \rangle} | \alpha^T w = \alpha_0 \}. \text{ If there exists an integer } k \geq 2 \text{ such that } k F_L < n < k F_U, \text{ then } \alpha_{e'} = \alpha_{e''}, \text{ for all } e', e'' \in E. \text{ }

\textbf{Proof} \text{ The inequalities } k F_L < n < k F_U \text{ imply that there exists an sc-partition } \pi = (N_1, \ldots , N_k) \text{ such that } |N_1| > F_L \text{ and } |N_2| < F_U. \text{ Since such an sc-partition would be feasible for all different permutations of } V, \text{ setting } P = P^{lu} \text{ in Lemma 2 yields the result.}

The following two theorems determine the dimension of } P^{lu}. \text{ The first one proves the dimension when } \left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor, \text{ i.e., when all sc-partitions in } P^{lu} \text{ have the same number of subcliques. The second one proves the dimension when } \left\lfloor \frac{n}{F_L} \right\rfloor > \left\lfloor \frac{n}{F_U} \right\rfloor, \text{ namely, when the number of subcliques in the sc-partitions can take on several values.}

\textbf{Theorem 41} Suppose } \left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor \geq 2.

(i) \text{ If } (n \mod F_L) = 0 \text{ or } (n \mod F_U) = 0, \text{ then } \dim(P^{lu}) = \left\lfloor \frac{n}{2} \right\rfloor - n. \text{ }

(ii) \text{ Suppose } F_U - F_L = 1. \text{ If } (n \mod F_L) \neq 0 \text{ and } (n \mod F_U) \neq 0, \text{ then } \dim(P^{lu}) = \left\lfloor \frac{n}{2} \right\rfloor - 1. \text{ }

(iii) \text{ Suppose } F_U - F_L \geq 2.

(a) \text{ If } (n \mod F_L) = 1 \text{ or } (n \mod F_U) = F_U - 1, \text{ then } \dim(P^{lu}) = \left\lfloor \frac{n}{2} \right\rfloor - 1. \text{ }

(b) \text{ If } (n \mod F_L) > 1 \text{ and } 0 < (n \mod F_U) < F_U - 1, \text{ then } \dim(P^{lu}) = \left\lfloor \frac{n}{2} \right\rfloor (i.e., \text{ it is full-dimensional}).\text{ }

\textbf{Proof} \text{ All sc-partitions have } k = \left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor \text{ subcliques. Note that when } \left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor = 1, \text{ } P^{lu} \text{ reduces to a single point, in which case the dimension is equal to } 0. \text{ }

(i) \text{ If } (n \mod F_L) = 0 \text{ or } (n \mod F_U) = 0, \text{ then in any sc-partition all subcliques have size } F_L \text{ or } F_U, \text{ respectively. This means, } P^{lu} \text{ reduces to the k-way equipartition polytope whose dimension is equal to } \left\lfloor \frac{n}{2} \right\rfloor - n \text{ by [13].} \text{ }

(ii) \text{ We have } k F_L < n < k F_U. \text{ By Lemma 3, the only hyperplane that contains } P^{lu} \text{ is }
w(E) = (n \mod F_L) \left(\frac{F_U}{2} \right) + (k - n \mod F_L) \left(\frac{F_L}{2} \right).
(iii) (a) When \((n \mod F_L) = 1\), again we have \(kF_L < n < kF_U\) and hence by Lemma 3, the only hyperplane that contains \(P^{lu}\) is

\[
\begin{align*}
 w(E) &= \left(\frac{F_L + 1}{2} \right) + (k-1) \left(\frac{F_L}{2} \right).
\end{align*}
\]

A symmetric reasoning can be applied when \((n \mod F_U) = F_U - 1\).

(b) Arguing similarly, we infer that the only hyperplane that contains \(P^{lu}\) is in the form \(w(E) = C\) where \(C\) is a constant. But, when \((n \mod F_L) > 1\) and \(0 < (n \mod F_U) < F_U - 1\), there always exist sc-partitions \(\pi_1\) and \(\pi_2\) with \(w^{\pi_1}(E) \neq w^{\pi_2}(E)\). For example, suppose \((n \mod F_L) = 2\).

Consider an sc-partition \(\pi_1 = (N_1, \ldots, N_k)\) where \(|N_1| = |N_2| = F_L + 1\) and \(|N_i| = F_L\) for \(i = 3, \ldots, k\). We now construct another sc-partition \(\pi_2\) by moving one node from \(N_2\) to \(N_1\), i.e., \(\pi_2 = (\tilde{N}_1, \ldots, \tilde{N}_k)\) where \(|\tilde{N}_1| = F_L + 2\) and hence by Lemma 3, the only hyperplane that contains \(P^{lu}\) is \(w(E) = C\).

Theorem 42 Suppose that \(\left\lceil \frac{n}{F_L} \right\rceil \geq \left\lceil \frac{n}{F_U} \right\rceil + 1\).

(i) Suppose that \(\left\lceil \frac{n}{F_L} \right\rceil = \left\lfloor \frac{n}{F_U} \right\rfloor = 2\).

(a) If \((n \mod F_L) = 0\), then \(\dim(P^{lu}) = \left(\frac{n}{2} \right) - (n - 1)\).

(b) If \((n \mod F_L) \neq 0\), then \(\dim(P^{lu}) = \left(\frac{n}{2} \right)\) (i.e., it is full-dimensional).

(ii) Suppose that \(\left\lceil \frac{n}{F_L} \right\rceil = \left\lceil \frac{n}{F_U} \right\rceil + 1\) and \(\left\lceil \frac{n}{F_U} \right\rceil \geq 2\).

(a) If \((n \mod F_L) = 0\) and \((n \mod F_U) = 0\), then \(\dim(P^{lu}) = \left(\frac{n}{2} \right) - (n - 1)\).

(b) If \((n \mod F_L) \neq 0\) or \((n \mod F_U) \neq 0\), then \(\dim(P^{lu}) = \left(\frac{n}{2} \right)\) (i.e., it is full-dimensional).

(iii) If \(\left\lceil \frac{n}{F_L} \right\rceil \geq \left\lceil \frac{n}{F_U} \right\rceil + 2\), then \(\dim(P^{lu}) = \left(\frac{n}{2} \right)\) (i.e., it is full-dimensional).

Proof We distinguish two cases:

Case 1: \((n \mod F_L) \neq 0\).

Case 2: \((n \mod F_L) = 0\).

Case 1: Since \((n \mod F_L) \neq 0\), we have \(F_L \left\lceil \frac{n}{F_U} \right\rceil < n\). And, \(n \leq F_U \left\lceil \frac{n}{F_U} \right\rceil\) since \(\left\lceil \frac{n}{F_U} \right\rceil \geq \left\lceil \frac{n}{F_U} \right\rceil + 1\). Then, by Lemma 3, the only hyperplane that contains \(P^{lu}\) is \(w(E) = C\) for some constant \(C\).

Now, consider an sc-partition \(\pi_1\) with \(\left\lceil \frac{n}{F_U} \right\rceil\) subcliques. Since \(\left\lceil \frac{n}{F_U} \right\rceil \geq \left\lceil \frac{n}{F_U} \right\rceil + 1\), it is possible to construct another sc-partition \(\pi_2\) with \(\left\lceil \frac{n}{F_U} \right\rceil - 1\) subcliques by distributing the nodes of the smallest subclique of \(\pi_1\) over the others. It is easy to see that \(w^{\pi_1}(E) < w^{\pi_2}(E)\), because while moving nodes from the smallest subclique of \(\pi_1\) to the others, we are actually increasing the number of edges contained within the subcliques. Then, \(P^{lu}\) is full-dimensional. This proves parts (i - b), (ii - b) and (iii) of the theorem for Case 1 (Case 1 does not apply to parts (i - a) and (ii - a)).

Case 2: On the one hand, since \((n \mod F_L) = 0\), we have \(\left\lceil \frac{n}{F_L} \right\rceil = \frac{n}{F_L}\), which implies \(F_L \left(\frac{n}{F_U} - 1 \right) < n\).

On the other hand, we have

\[
 n \leq F_U \left\lceil \frac{n}{F_U} \right\rceil \leq F_U \left(\frac{n}{F_L} - 1 \right).
\]

Then, we can apply Lemma 3 if \(n < F_U \left\lceil \frac{n}{F_U} \right\rceil\) (i.e., if \((n \mod F_L) \neq 0\) or \(\left\lceil \frac{n}{F_U} \right\rceil < \frac{n}{F_L} - 1\)). But, we can always create sc-partitions \(\pi_1\) and \(\pi_2\) like we do in the proof of Case 1, and existence of two such sc-partitions contradicts Lemma 3. This proves parts (ii - b) and (iii) of the theorem for this case. Now remains parts (i - a) and (ii - a). (Case 2 does not apply to part (i - b)).

Part (i - a): We have, \(P^{lu} = conv(A_1 \cup \{w^{\pi^*}\})\) where

\[
A_1 = \{w \in \{0, 1\}^{|E|} | w \text{ satisfies (1a) and } w(\delta(u)) = F_L - 1 \forall u \in V\}\]

and \(\pi^*\) is the sc-partition with only one subclique, i.e., \(w^{\pi^*} = 1\) for all \(e \in E\). The convex hull of \(A_1\), \(conv(A_1)\), is the polytope of a \(k\)-way equipartition problem whose dimension is shown to be \(\left(\frac{n}{2} \right) - n\) by Mitchell [13]. It is easy to verify that

\[
aff(A_1) = \{w \in \mathbb{R}^{|E|} | w(\delta(u)) = F_L - 1 \forall u \in V\}\].
Clearly, \(w^* \notin aff(A_1) \) and so, dimension of \(P_{iu} \) is equal to \(\binom{n}{2} - (n-1) \).

Part (ii) - a: We have \(P_{iu} = \text{conv}(A_1 \cup A_2) \) where

\[
A_1 = \{ w \in \{0,1\}^{\lfloor E \rfloor} | w \text{ satisfies } (1a) \text{ and } w(\delta(u)) = F_L - 1 \ \forall u \in V \},
\]

and

\[
A_2 = \{ w \in \{0,1\}^{\lfloor E \rfloor} | w \text{ satisfies } (1a) \text{ and } w(\delta(u)) = F_U - 1 \ \forall u \in V \}.
\]

Both of \(A_1 \) and \(A_2 \) are the feasible sets of k-way equipartition problems. It is easy to verify that

\[
aff(A_1) = \{ w \in \mathbb{R}^{\lfloor E \rfloor} | w(\delta(u)) = F_L - 1 \ \forall u \in V \}
\]

and

\[
aff(A_2) = \{ w \in \mathbb{R}^{\lfloor E \rfloor} | w(\delta(u)) = F_U - 1 \ \forall u \in V \}.
\]

We know that both of \(aff(A_1) \) and \(aff(A_2) \) have dimension \(d = \binom{n}{2} - n \). The fact that they are parallel affine sets directly implies that \(\dim(P_{iu}) = \binom{n}{2} - (n-1) \).

Now, we can state the conditions that make \(P_{iu} \) equivalent to \(P_{equi}(n) \) or \(P_{k-way}(n,k) \).

\[
P_{iu} = \begin{cases}
P_{equi}(n) & \text{when } n \text{ is odd, } \dim(P_{iu}) = \binom{n}{2} - 1 \text{ and } \left\lfloor \frac{n}{F_U} \right\rfloor = 2; \\
P_{equi}(n) & \text{when } n \text{ is even, } \dim(P_{iu}) = \binom{n}{2} - n \text{ and } \left\lfloor \frac{n}{F_U} \right\rfloor = 2; \\
P_{k-way}(n,k) & \text{when } \dim(P_{iu}) = \binom{n}{2} - n.
\end{cases}
\]

We summarize the results of Theorems 41 and 42 in Tables 1 and 2, respectively. While Table 1 includes all the results related with Theorem 41, Table 2 only displays results corresponding to parts (i - a), (ii - b), (iii - a) and (ii - b) of Theorem 42 (i.e., the parts corresponding to the case \(\left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor + 1 \)).

<table>
<thead>
<tr>
<th>(n \mod F_L)</th>
<th>(n \mod F_U)</th>
<th>(1 < (n \mod F_L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n \mod F_U = 0)</td>
<td>(\binom{n}{2} - n)</td>
</tr>
<tr>
<td>(n \mod F_U = F_U - 1)</td>
<td>(\binom{n}{2} - n)</td>
<td>(\binom{n}{2} - 1)</td>
</tr>
<tr>
<td>(0 < (n \mod F_U) < F_U - 1)</td>
<td>(\binom{n}{2} - 1)</td>
<td>(\binom{n}{2} - 1) or (\binom{n}{2})</td>
</tr>
</tbody>
</table>

Table 1: Dimension of \(P_{iu} \) when \(\left\lfloor \frac{n}{F_U} \right\rfloor = \left\lfloor \frac{n}{F_L} \right\rfloor \) (Theorem 41). Whenever \(0 < (n \mod F_U) < F_U - 1 \) and \(1 < (n \mod F_L) \), dimension depends on the value of \(F_U - F_L \); if \(F_U - F_L \geq 2 \), \(P_{iu} \) is full-dimensional; and if \(F_U - F_L = 1 \), it has dimension \(\binom{n}{2} - 1 \).

<table>
<thead>
<tr>
<th>(n \mod F_L)</th>
<th>(n \mod F_L \neq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\binom{n}{2} - (n-1))</td>
<td>(\binom{n}{2})</td>
</tr>
<tr>
<td>(\binom{n}{2} - (n-1))</td>
<td>(\binom{n}{2})</td>
</tr>
</tbody>
</table>

Table 2: Dimension of \(P_{iu} \) when \(\left\lfloor \frac{n}{F_U} \right\rfloor = \left\lfloor \frac{n}{F_L} \right\rfloor + 1 \) (parts (i - a), (ii - b), (iii - a) and (ii - b) of Theorem 42). Note that, whenever \(\frac{n}{F_U} \geq \left\lfloor \frac{n}{F_U} \right\rfloor \) and \((n \mod F_U) \) are part (iii) of Theorem 42.
5 More on \mathcal{P}^{lu}

In this section, we deepen the analysis of the polytope \mathcal{P}^{lu}. First, we give a characterization of the full-dimensional \mathcal{P}^{lu}’s. Secondly, we give expressions for the equality sets of \mathcal{P}^{lu}, $M(\mathcal{P}^{lu})$.

Note that, when $\left\lceil \frac{n}{F_U} \right\rceil = 1$, $w^x = 1 \in \mathcal{P}^{lu}$ (i.e., not partitioning the set V and packing all items in one subclique is feasible). From this point on, we avoid this trivial solution and assume that $n > F_U$.

5.1 Characterization of Full-dimensional \mathcal{P}^{lu}

In this section, we establish five categories that full-dimensional \mathcal{P}^{lu}’s fall into. This characterization is going to be very helpful in proving the conditions that make several classes of valid inequalities facet-defining in Section 6. We need the following definitions to be able to prove this result.

Definition 1 Whenever $F_U - F_L = 1$, an sc-partition $\pi = (N_1, N_2, \ldots, N_k)$ ($k \geq 4$) is called 1-loose if $|\{i : |N_i| = F_L\}| \geq 2$ and $|\{i : |N_i| = F_U\}| \geq 2$.

Definition 2 Whenever $F_U - F_L \geq 2$, an sc-partition $\pi = (N_1, N_2, \ldots, N_k)$ is called 2-loose if it has at least two subcliques, say N_i and N_j, such that $F_L < |N_i| < F_U$ and $F_L < |N_j| < F_U$.

Definition 3 Whenever an sc-partition is 1-loose or 2-loose, it is called a loose sc-partition.

We now present a proposition that characterizes \mathcal{P}^{lu}’s with loose sc-partitions.

Proposition 51 The polytope \mathcal{P}^{lu} contains loose partitions if and only if there exists an integer k for which $kF_L + 1 < n < kF_U - 1$.

We omit the proof because it is straightforward. Propositions 52 and 53 show that existence of 1-loose or 2-loose sc-partitions in \mathcal{P}^{lu} implies that \mathcal{P}^{lu} is full-dimensional.

Proposition 52 Suppose that $F_U - F_L = 1$ and \mathcal{P}^{lu} has a feasible 1-loose sc-partition. Then, \mathcal{P}^{lu} is full dimensional only if $\left\lceil \frac{n}{F_L} \right\rceil > \left\lceil \frac{n}{F_U} \right\rceil$.

Proof From Theorem 41, we know that \mathcal{P}^{lu} is not full-dimensional if $\left\lceil \frac{n}{F_L} \right\rceil = \left\lceil \frac{n}{F_U} \right\rceil$. So, suppose $\left\lceil \frac{n}{F_L} \right\rceil > \left\lceil \frac{n}{F_U} \right\rceil$. Existence of a feasible 1-loose sc-partition in \mathcal{P}^{lu} implies that we can employ Lemma 3. Consider an arbitrary sc-partition π_1 with $\left\lceil \frac{n}{F_L} \right\rceil$ subcliques. We can always find another sc-partition π_2 with $\left\lceil \frac{n}{F_U} \right\rceil - 1$ subcliques since

$$F_L \left(\left\lceil \frac{n}{F_L} \right\rceil - 1\right) < n \leq F_U \left\lceil \frac{n}{F_U} \right\rceil \leq F_U \left(\left\lceil \frac{n}{F_L} \right\rceil - 1\right).$$

But, then $w^{\pi_1}(E) < w^{\pi_2}(E)$.

Proposition 53 Suppose that $F_U - F_L \geq 2$. If \mathcal{P}^{lu} has a feasible 2-loose sc-partition, then it is full dimensional.

Proof Let $\pi_1 = (N_1, N_2, \ldots, N_k)$ be a feasible 2-loose sc-partition in \mathcal{P}^{lu}. Then \mathcal{P}^{lu} satisfies the conditions of Lemma 3. Without loss of generality, assume that $F_L < |N_1| \leq |N_2| < F_U$. Now, we can create another sc-partition π_2 by shifting a node from N_1 to N_2. But then, we contradict Lemma 3 since $w^{\pi_1}(E) < w^{\pi_2}(E)$.

The converse of these propositions does not hold; for example, when $|V| = 49$, $F_L = 8$ and $F_U = 10$, the sc-partitions have either 5 or 6 subcliques. The ones with 5 subcliques have 4 subcliques with size 10 and one subclique with size 9; the ones with 6 subcliques have 5 subcliques with size 8 and one subclique with size 9 (i.e., no feasible 2-loose sc-partitions). But, from part (ii – b) of Theorem 42, the polytope corresponding to this instance is full-dimensional.

The following two theorems, one written for the case $F_U - F_L \geq 2$ and the other for the case $F_U - F_L = 1$, describe the categories that full-dimensional \mathcal{P}^{lu}’s fall into.

Theorem 51 Suppose that $F_U - F_L \geq 2$ and \mathcal{P}^{lu} is full-dimensional. Then, it complies with exactly one of the following:

(FD-1) It has feasible 2-loose sc-partitions,

(FD-2) $(n \mod F_L) = 1$, $(n \mod F_U) = 0$ and $\left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor + 1$;

(FD-3) $(n \mod F_L) = 1$, $(n \mod F_U) = F_U - 1$ and $\left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor + 1$;

(FD-4) $(n \mod F_L) = 0$, $(n \mod F_U) = F_U - 1$ and $\left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor + 1$.

Proof First, let $k = \left\lfloor \frac{n}{F_L} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor$. According to part (iii-b) of Theorem 41, we must have $F_U - F_L \geq 2$ and $kF_U - 2 \geq n \geq kF_L + 2$. Then, by Proposition 51, \mathcal{P}^{lu} contains 2-loose sc-partitions (i.e., (FD-1)).

Now, suppose $\left\lceil \frac{n}{F_L} \right\rceil > \left\lceil \frac{n}{F_U} \right\rceil$. We distinguish three cases: $(n \mod F_L) > 1$, $(n \mod F_L) = 1$ and $(n \mod F_L) = 0$.

Case 1 $(n \mod F_L) > 1$: In this case, obviously we have $F_L \left\lfloor \frac{n}{F_L} \right\rfloor + 2 \leq n$. On the other hand, we have

$$n \leq F_U \left\lfloor \frac{n}{F_U} \right\rfloor \leq F_U \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) = F_U \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) - F_U \leq 2,$$

which by Proposition 51 implies that \mathcal{P}^{lu} contains 2-loose sc-partitions (i.e., (FD-1)).

Case 2 $(n \mod F_L) = 1$: We have

$$n = F_L \left\lfloor \frac{n}{F_L} \right\rfloor + 1.$$

Adding $0 > 1 - F_L$ to this equation yields

$$n > F_L \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) + 2.$$

We also have, $n \leq F_U \left\lfloor \frac{n}{F_U} \right\rfloor$.

First, consider $\left\lceil \frac{n}{F_U} \right\rceil > \left\lfloor \frac{n}{F_U} \right\rfloor + 1$. We have

$$F_U \left\lfloor \frac{n}{F_U} \right\rfloor \leq \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) F_U - F_U \leq \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) F_U - 2,$$

which proves then that \mathcal{P}^{lu} contains 2-loose sc-partitions by Proposition 51.

Secondly, consider $\left\lceil \frac{n}{F_U} \right\rceil = \left\lfloor \frac{n}{F_U} \right\rfloor + 1$. If

$$n \leq F_U \left(\left\lfloor \frac{n}{F_U} \right\rfloor - 2 \right) = F_U \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) - 2,$$

then \mathcal{P}^{lu} contains 2-loose sc-partitions. On the other hand, if $n = F_U \left\lfloor \frac{n}{F_U} \right\rfloor - 1$, \mathcal{P}^{lu} complies with (FD-3); and, if $n = F_U \left\lfloor \frac{n}{F_U} \right\rfloor$, \mathcal{P}^{lu} complies with (FD-2).

Case 3 $(n \mod F_L) = 0$: First, note that we must have $\left\lceil \frac{n}{F_U} \right\rceil \geq 2$, because otherwise, \mathcal{P}^{lu} is not full-dimensional by part (i-a) of Theorem 42. From $(n \mod F_L) = 0$, we infer $F_L \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) + 2 \leq n$.

Consider first $\left\lceil \frac{n}{F_L} \right\rceil > \left\lfloor \frac{n}{F_L} \right\rfloor + 1$. From $n \leq F_U \left\lfloor \frac{n}{F_U} \right\rfloor$, we have

$$n \leq F_U \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) = F_U \left(\left\lfloor \frac{n}{F_L} \right\rfloor - 1 \right) - 2,$$

which proves existence of 2-loose sc-partitions in \mathcal{P}^{lu}.

In Theorems 51 and 52, we can still show full-dimensionality for

We skip the proof because it is very similar to that of Theorem 51.

5.2 Equality Sets of P

Theorem 52

Suppose

Suppose

Proposition 54

$F_L = F_U = 1$ and P^{lu} is full-dimensional. Then it complies with exactly one of (FD-2), (FD-3), (FD-4), and,

(FD-5): it has feasible 1-loose sc-partitions and $\left\lfloor \frac{n}{F_L} \right\rfloor > \left\lfloor \frac{n}{F_U} \right\rfloor$.

We skip the proof because it is very similar to that of Theorem 51.

In the rest of this paper and in its sequel, when we say that P^{lu} complies with (FD-1) we implicitly assume that $F_U - F_L \geq 2$. Similarly, when we say that P^{lu} complies with (FD-5), we implicitly assume that $F_U - F_L = 1$.

Remark: In Theorems 51 and 52, we can still show full-dimensionality for (FD-1), (FD-2), (FD-3) and (FD-5) when $\left\lfloor \frac{n}{F_U} \right\rfloor = 1$. On the other hand, (FD-4) implies full-dimensionality only if $\left\lfloor \frac{n}{F_U} \right\rfloor \geq 2$.

5.2 Equality Sets of P^{lu}

In this section we express the equality sets of P^{lu} when it is not full-dimensional. These characterizations are going to be helpful in proving the conditions under which several valid inequalities are facet defining in Section 6.

When $\text{dim}(P^{lu}) = \binom{n}{2} - 1$, the equality set of P^{lu} consists of a single hyperplane $w(E) = C$ where C is an appropriate constant. When $\text{dim}(P^{lu}) = \binom{n}{2} - n$ the equality set consists of the hyperplanes

$$w(\delta(u)) = F - 1 \quad \forall u \in V,$$

where $F \in \{F_L, F_U\}$. These equality sets can trivially be inferred from the proofs of Theorems 41 and 42. However, when $\text{dim}(P^{lu}) = \binom{n}{2} - (n - 1)$, the equality set is not trivial, and is shown in the following proposition.

Proposition 54 Suppose $\text{dim}(P^{lu}) = \binom{n}{2} - (n - 1)$. Then, the equality set of P^{lu} consists of $n - 1$ linearly independent hyperplanes in the form

$$\sum_{i,j \in E} (\lambda_i + \lambda_j)w_{i,j} = 0 \quad \text{where } \lambda_i \in \mathbb{R} \text{ for } i \in V$$

and

$$\sum_{i \in V} \lambda_i = 0.$$

Proof If $\text{dim}(P^{lu}) = \binom{n}{2} - (n - 1)$, then feasible solutions in P^{lu} lie in either of the following parallel affine spaces (by the proof of Theorem 42):

$$A_1 = \{ w \in \mathbb{R}^{\binom{n}{2}} | w(\delta(u)) = F_L - 1 \quad \forall u \in V \};$$

$$A_2 = \{ w \in \mathbb{R}^{\binom{n}{2}} | w(\delta(u)) = F_U - 1 \quad \forall u \in V \}.$$

We now assign a coefficient λ_u ($u \in V$) to each of the hyperplanes defining A_1 and take linear combinations of these hyperplanes to obtain

$$\sum_{u \in V} \lambda_u w(\delta(u)) = \sum_{u \in V} \lambda_u (F_L - 1). \quad (8)$$

Now, we search for the λ’s for which A_2 is contained in the affine space defined by (8). All points in A_2 satisfy $w(\delta(u)) = F_U - 1$ for all $u \in V$. Inserting this into (8) yields

$$\sum_{u \in V} \lambda_u (F_U - 1) = \sum_{u \in V} \lambda_u (F_L - 1).$$

This equality implies $\sum_{u \in V} \lambda_u = 0$.

6 Trivial Facets for \mathcal{P}^I_u

Having set the grounds, we now pass on to the facetness proofs. In the sequel, we assume that $F_L \geq 3$. Recall that, we also assume $n > F_U$ (i.e. sc-partitions in \mathcal{P}^I_u have at least two subcliques). We start with several technical lemmas.

Lemma 4 Suppose that $F_U - F_L \geq 2$. Suppose also that $g^T w \leq h$ is a valid inequality for \mathcal{P}^I_u. Let $P = \{ w \in \mathcal{P}^I_u | g^T w = h \}$. Suppose further that there exists $k \in \mathbb{Z}^+$ such that $kF_L + 1 < n \leq kF_U - 1$ (i.e., there exist 2-loose sc-partitions $\pi = (N_1, N_2, \ldots, N_k)$ such that $w^\pi \in P$, $i \in N_1$, $j \in N_2$, $F_L < |N_1| < F_U$ and $F_L < |N_2| < F_U$ for $i, j \in V$. Then $g_{i,j} = 0$ if the following hold:

- $w^\pi \in P$ where $\pi^* = (N_1^*, \ldots, N_k^*)$, $N_1^* = (N_1 - i) \cup j$, $N_2^* = (N_2 - j) \cup i$ and $N_l^* = N_l$ for all $l \in \{3, \ldots, k\}$.
- $w^\bar{\pi} \in P$ where $\bar{\pi} = (\bar{N}_1, \ldots, \bar{N}_k)$, $\bar{N}_1 = N_1 - i$, $\bar{N}_2 = N_2 \cup \bar{N}_1$, $\bar{N}_l = N_l$ for all $l \in \{3, \ldots, k\}$.
- $w^{\tilde{\pi}} \in P$ where $\tilde{\pi} = (\tilde{N}_1, \ldots, \tilde{N}_k)$, $\tilde{N}_1 = N_1 \cup j$, $\tilde{N}_2 = N_2 - j$, $\tilde{N}_l = N_l$ for all $l \in \{3, \ldots, k\}$.

Proof From the equalities $g^T w^\pi = h$ and $g^T w^\bar{\pi} = h$, we obtain

$$g(i, N_1 - i) + g(j, N_2 - j) = g(i, N_2 - j) + g(j, N_1 - i).$$

From the equalities $g^T w^\pi = h$ and $g^T w^{\tilde{\pi}} = h$, we obtain

$$g(i, N_1 - i) = g(i, N_2 - j) + g_{i,j}.$$

From the equalities $g^T w^\bar{\pi} = h$ and $g^T w^{\tilde{\pi}} = h$, we get

$$g(j, N_2 - j) = g(j, N_1 - i) + g_{i,j}.$$

Now summing the equalities (10) and (11) and comparing the sum with (9), we get $g_{i,j} = 0$.

Lemma 5 Suppose that $g^T w \leq h$ is a valid inequality for \mathcal{P}^I_u. Let $P = \{ w \in \mathcal{P}^I_u | g^T w = h \}$. Let u, v and x be three nodes in V.

- Let $\pi = (N_1, N_2, \ldots, N_k)$ be an sc-partition such that $\{|u,v\} \subset N_1$, $x \in N_2$ and $|N_1| = |N_2| + 1$;
- let $\pi^* = (N_1^*, \ldots, N_k^*)$ where $N_1^* = (N_1 - u) \cup x$, $N_2^* = (N_2 - x) \cup u$, $N_l^* = N_l$ for all $i \in \{3, \ldots, k\}$;
- let $\pi^* = (N_1^*, \ldots, N_k^*)$ where $N_1^* = (N_2 - u) \cup \{u,v\}$, $N_2^* = (N_1 - \{u,v\}) \cup x$, $N_l^* = N_l$ for all $i \in \{3, \ldots, k\}$;
- let $\pi^* = (N_1^*, \ldots, N_k^*)$ where $N_1^* = (N_1 - u) \cup x$, $N_2^* = (N_2 - x) \cup u$, $N_l^* = N_l$ for all $i \in \{3, \ldots, k\}$.

If $\{w^\pi, w^{\bar{\pi}}, w^{\tilde{\pi}}, w^{\tilde{\bar{\pi}}}\} \subset P$ then $g_{u,v} = g_{u,x}$.

Proof Comparing the equalities, $g^T w^\pi = h$ and $g^T w^{\bar{\pi}} = h$, we obtain

$$g_{u,v} + g(v, N_1 - \{u,v\}) + g(x, N_2 - x) = g_{u,x} + g(x, N_1 - \{u,v\}) + g(v, N_2 - x),$$

which is equivalent to $g_{u,v} - g_{u,x} = A$ where

$$A = [g(x, N_1 - \{u,v\}) - g(x, N_2 - x)] - [g(v, N_1 - \{u,v\}) - g(v, N_2 - x)].$$

Comparing the equalities $g^T w^{\tilde{\pi}} = h$ and $g^T w^{\tilde{\bar{\pi}}} = h$, we obtain

$$g_{u,v} + g(v, N_1^* - \{u,v\}) + g(x, N_2^* - x) = g_{u,x} + g(x, N_1^* - \{u,v\}) + g(v, N_2^* - x),$$

which is equivalent to $g_{u,v} - g_{u,x} = B$ where

$$B = [g(x, N_1^* - \{u,v\}) - g(x, N_2^* - x)] - [g(v, N_1^* - \{u,v\}) - g(v, N_2^* - x)].$$

Since $N_1^* - \{u,v\} = N_2 - x$ and $N_2^* - x = N_1 - \{u,v\}$, we have $A = -B$. Hence, $g_{u,v} = g_{u,x}$.

Lemma 6 Suppose that $g^T w \leq h$ is a valid inequality for \mathcal{P}^I_u. Let $P = \{ w \in \mathcal{P}^I_u | g^T w = h \}$. Let u, v, x and y be four nodes in V.
Comparing the equalities, if }\{N\} \text{ is equivalent to } (g_1, \ldots, g_k) \text{ defining for } A \subseteq P \text{ then } g_{u,x} + g_{v,y} = g_{u,y} + g_{v,x}.

Proof Comparing the equalities, }q^T_w = h\text{ and } g^T_w = h\text{ we obtain }
g_{u,x} + g(u, N_1 \setminus \{u, x\}) + g_{v,y} + g(v, N_2 \setminus \{v, y\}) = g_{u,y} + g(u, N_2 \setminus \{v, y\}) + g_{v,x} + g(v, N_1 \setminus \{u, x\})
\text{ which is equivalent to } (g_{u,x} + g_{v,y}) - (g_{u,y} + g_{v,x}) = A \text{ where } A = [g(u, N_2 \setminus \{v, y\}) - g(u, N_1 \setminus \{u, x\}) - [g(v, N_2 \setminus \{v, y\}) - g(v, N_1 \setminus \{u, x\})].

Comparing the equalities }q^T_w = h\text{ and } g^T_w = h\text{, we obtain }
g_{u,y} + g(u, N_1^* \setminus \{u, y\}) + g_{v,x} + g(v, N_2^* \setminus \{v, x\}) = g_{u,x} + g(u, N_2^* \setminus \{v, x\}) + g_{v,y} + g(v, N_1^* \setminus \{u, y\})
\text{ which is equivalent to } (g_{u,x} + g_{v,y}) - (g_{u,y} + g_{v,x}) = B \text{ where } B = [g(u, N_1^* \setminus \{u, y\}) - g(u, N_2^* \setminus \{v, x\})] - [g(v, N_1^* \setminus \{u, y\}) - g(v, N_2^* \setminus \{v, x\})].

Since }N_1^* \setminus \{u, y\} = N_1 \setminus \{u, x\} \text{ and } N_2^* \setminus \{v, x\} = N_2 \setminus \{v, y\}, \text{ we have } A = -B. \text{ Hence, } g_{u,x} + g_{v,y} = g_{u,y} + g_{v,x}.

Lemma 7 Suppose that }q^T_w \leq h\text{ is a valid inequality for } \mathcal{P}^{lu}. \text{ Let } p \in V \text{ and } Q \subseteq V. \text{ Suppose that } g(p, Q_1) + \alpha = g(p, Q_2) \text{ for any disjoint } Q_1, Q_2 \subset Q \text{ with } |Q_1| = \sigma_1, |Q_2| = \sigma_2 \text{ where } \alpha \in \mathbb{R}, \sigma_1, \sigma_2 \in \mathbb{Z}, \sigma_1 > 0 \text{ and } \sigma_2 \geq 0. \text{ Then, } g_{p, q_1} = g_{p, q_2} \text{ for any } q_1, q_2 \in Q.

Proof Pick arbitrarily }q_1 \in \hat{Q}_1 \text{ and } q_2 \in R \text{ where } R = \begin{cases} \hat{Q}_2, & \text{if } \hat{Q}_2 \neq \emptyset, \\ Q - \hat{Q}_1, & \text{if } \hat{Q}_2 = \emptyset. \end{cases}

Consider the sets }\hat{Q}_1^* = (\hat{Q}_1 - q_1) \cup q_2, R^* = (R - q_2) \cup q_1. \text{ Comparing } g(p, \hat{Q}_1) + \alpha = g(p, \hat{Q}_2) \text{ and } g(p, \hat{Q}_1^*) + \alpha = g(p, R^*) \text{ yields the result.}

Note that, when }\hat{Q}_2 = \emptyset, \text{ it is crucial to have in this lemma that } \hat{Q}_1 \subseteq Q.

In the sequel, we prove the conditions under which several classes of valid inequalities become facet defining for }\mathcal{P}^{lu}. \text{ Each class is investigated in a separate section. Commonly, for each of the valid inequalities, we assume that the face defined by the valid inequality under consideration, say }q^T_w \leq h, \text{ is contained in the face defined by some valid inequality } g^T_w \leq h. \text{ In our proofs, with reference to Theorem 3.6 in Section I.4.3 of [14], we basically show that } q^T_w = h \text{ is equal to a linear combination of } a^T_w = b \text{ and the hyperplanes in } M(\mathcal{P}^{lu}).

6.1 The Non-Negativity Constraints

In this section, we provide the conditions that make the non-negativity constraints facet defining. We denote the face corresponding to a non-negativity constraint }w_c \geq 0 \text{ by } P_c, \text{ i.e., } P_c = \{w \in \mathcal{P}^{lu} | w_c = 0\}. \text{ We assume that there exists a valid inequality } g^T_w \leq h \text{ such that } P_c \subseteq \{w \in \mathcal{P}^{lu} | g^T_w = h\}.

In Theorems 61, 62, 63 and 64 we prove the conditions under which }P_c\text{'s are facets, i.e., } g^T_w = h \text{ can be written as a linear combination of } w_c = 0 \text{ and the equalities in } M(\mathcal{P}^{lu}), \text{ if any.}

Before moving on to these theorems, we present the following useful proposition.

Proposition 61 If }\left|\frac{w}{P_c}\right| = 2, \text{ the non-negativity constraints } w_c \geq 0 \text{ are not facet defining for } \mathcal{P}^{lu}.
Proof Recall that we assume $n > F_U$ (i.e., $\left\lceil \frac{n}{P_U} \right\rceil \geq 2$). So, when $\left\lceil \frac{n}{P_U} \right\rceil = 2$, we can conclude that all sc-partitions have 2 subcliques. Then, for each edge $e = \{u, v\}$ we have

$$P_e \subseteq \{ w \in P^{lu} | w_{x,u} + w_{x,v} - w_{u,v} = 1 \ \forall x \in V - \{u, v\} \}.$$

\textbf{Theorem 61} Suppose P^{lu} is full-dimensional. Then $w_e \geq 0$ is facet-defining for P^{lu} if and only if one of the following hold:

- $n \geq 3F_L + 1$, or,
- $n = 3F_L - 2F_U - 2$.

\textbf{Proof} Let $e = \{u, v\}$ for $u, v \in V$. We present the proof separately for (FD-1)-(FD-5). Note that, by Proposition 61 we have $n \geq 3F_L$.

\textbf{(FD-1)}: Note that, in this case we assume $F_U - F_L \geq 2$. We analyze two cases separately:

(a) P^{lu} has 2-loose sc-partitions with at least 3 sub-cliques: Note that, in this case, n is at least $3F_L + 2$. Pick an arbitrary edge $\{i, j\} \in E - \{u, v\}$. Pick a 2-loose sc-partition $\pi = (N_1, N_2, \ldots, N_k)$ with at least three sub-cliques and where $u \in N_1, i \in N_2, j \in N_3$ (i is not necessarily different from u), $F_L < |N_1| < F_U, F_L < |N_2| < F_U$. By Lemma 4 and symmetry, we conclude that $g_{i,j} = 0$ for any $\{i, j\} \in E - \{u, v\}$. Thus, $w_{u,v} \geq 0$ defines a facet of P^{lu}.

(b) All 2-loose sc-partitions in P^{lu} have at least 2 sub-cliques: Pick any arbitrary nodes $x, y \in V - \{u, v\}$. Pick a 2-loose sc-partition, say $\pi = (N_1, N_2)$ such that $\{u, x\} \subset N_1$ and $\{v, y\} \subset N_2$. By Lemma 4, $g_{x,y} = 0$. By arbitrariness of x and y, $g_e = 0$ for all $e \in E(V - \{u, v\})$. Pick another sc-partition, say $\pi' = (N_1', N_2, \ldots, N_k')$ ($k \geq 3$), such that $u \in N_1', \{x, y\} \subset N_2'$ and $y \in N_2'$. Switching x and y in π', we get $g_{x,y} = g_{v,y}$ for all $x, y \in V - \{u, v\}$, which can be rewritten as $g_{x,y} = \alpha \in R$ for all $x \in V - \{u, v\}$. Similarly, we can also infer $g_{u,z} = \beta \in R$ for all $z \in V - \{u, v\}$. Now, π', shifting x from N_1' to N_2' shows that $\alpha = \beta$.

Since $\{u^x, v^x\} \subset P_e$, comparing $g^T w^x = h$ and $g^T w^x = h$ yields $\alpha = \beta = 0$, due to the fact that $w^x(\{u, v\}, V - \{u, v\}) < w^x(\{u, v\}, V - \{u, v\}) = n - 2$.

Note that, this proof for (FD-1) is applicable even if $3F_L \leq n < 3F_L + 1$ and $n \leq 2F_U - 2$.

\textbf{(FD-2)}: Proposition 61 and (FD-2) imply that $n \geq 3F_L + 1$.

Pick two arbitrary nodes $x, y \in V - \{u, v\}$. Pick an sc-partition $\pi = (N_1, N_2, \ldots, N_k)$ with $k = \left\lceil \frac{n}{P_U} \right\rceil \geq 3$, $\{x, y\} \subset N_1, y \in N_2, u \in N_3, |N_1| = F_L + 1$ and $|N_i| = F_L$ for $i = 2, \ldots, k$. Using Lemma 5, we infer $g_{x,y} = g_{x,u}$. By symmetry, we infer this result for u as well and generalize this result as $g_e = \alpha$ for all $e \in E - \{u, v\}$.

Now, consider sc-partitions $\pi = (N_1, \ldots, N_k)$ with $k_1 = \left\lceil \frac{n}{P_U} \right\rceil, u \in N_1, v \in N_2$, and, $\pi_2 = (N_1', \ldots, N_{k_2})$ with $k_2 = \left\lceil \frac{n}{P_U} \right\rceil - 1, u \in N_1', v \in N_2$. Clearly, $\{w^1, w^2\} \subset P_e$. Comparing $g^T w^2 = h$ and $g^T w^2 = h$, we infer that $\alpha = 0$.

\textbf{(FD-3)}: The proof for this case is the same as the proof of case (FD - 2).

\textbf{(FD-4)}: Pick three nodes $x, y, z \in V - \{u, v\}$ arbitrarily. Pick an sc-partition $\pi = (N_1, N_2, \ldots, N_k)$ with $k \geq 2$ such that $\{x, y, z\} \subset N_1, \{u, x, y\} \subset N_2, |N_1| = F_U - 1, |N_i| = F_U$ for all $i = 2, \ldots, k$. Applying Lemma 5, we obtain $g_{x,y} = g_{y,z}$, which by arbitrariness of x, y and z implies $g_{x,y} = \beta$ for all $e \in E(V - \{u, v\})$ where $\beta \in R$. Now, shifting x from N_2 to N_1 in π we get $g_{u,x} = g_{x,y}$. Since x is an arbitrary node, we infer $g_{u,x} = \alpha_x \in R$ for all $x \in V - \{u, v\}$. Now, pick another sc-partition $\pi' = (N_1, \ldots, N_{k+1})$ with $|N_i| = F_U$ for $i = 1, \ldots, k+1, u \in N_1', \{x, y\} \subset N_2'$ and $y \in N_2'$. Now, switching x and y in π', we get $\alpha_x = \alpha_y$ which implies $\alpha_x = \alpha_y = \alpha$ for all $x, y \in V - \{u, v\}$.

Now, assume that $\left\lceil \frac{n}{P_U} \right\rceil \geq 4$ (i.e., $n \geq 4F_L$). Pick an sc-partition $\bar{\pi} = (N_1, N_2, \ldots, N_k)$ where $k \geq 3, |N_1| = F_U - 1$ and $|N_i| = F_U$ for $i = 2, \ldots, k$. Suppose $u \in N_1, \{x, y\} \subset N_2$ and $v \in N_3$. Shifting y from N_2 to N_1 we get $\beta(F_U - 1) = \beta(F_U - 2) + \alpha$ which implies $\alpha = \beta$. Hence, we infer that, if $\alpha = \beta \neq 0$, P_e is contained in an hyperplane $g_{u,v}w_{u,v} + \alpha w_{E - \{u,v\}} = h$ for some constants $h \in R$ and $g_{u,v} \in R$. But, this contradicts the fact that $\{\pi^x, \pi^y\} \subset P_e$ do not both lie on this hyperplane since $w^x(E - \{u, v\}) = w^x(E - \{u, v\})$. Then, $\alpha = \beta = 0$.

Finally, assume that \(\left\lfloor \frac{n}{3} \right\rfloor = 3 \) (i.e., \(n = 3F_L = 2F_U - 1 \)). In this case, \(P_e \) is contained in the hyperplane
\[
g_{u,v}w_{u,v} + \alpha w(E([u,v], V - \{u,v\})) + \beta w(E([V - \{u,v\}]) = h
\]
for some constants \(g_{u,v} \in \mathbb{R} \) and \(h \in \mathbb{R} \). Now, consider two sc-partitions \(\pi^1 = (N_1^1, N_2^1, N_3^1) \) and \(\pi^2 = (N_1^2, N_2^2) \) implied by \((\text{FD-4}) \), where \(|N_1^1| = F_L \) for \(i = 1, 2, 3, |N_1^2| = F_U - 1, |N_2^2| = F_U \), \(u \in N_1^1 \cap N_2^1, v \in N_2^1 \cap N_2^2 \). For \(\pi^1 \), the hyperplane equation (12) turns into
\[
2(F_L - 1)\alpha + \left[2\left(\frac{F_L - 1}{2} \right) + \left(\frac{F_L}{2} \right) \right] \beta = h;
\]
and, for \(\pi^2 \) it becomes
\[
(2F_U - 3)\alpha + \left[\left(\frac{F_U - 1}{2} \right) + \left(\frac{F_U - 2}{2} \right) \right] \beta = h.
\]
\(P_e \) is contained in the hyperplane represented by (12) obtained by setting
\[
\alpha = 2\left(\frac{F_L - 1}{2} \right) + \left(\frac{F_L}{2} \right) - \left(\frac{F_U - 1}{2} \right) - \left(\frac{F_U - 2}{2} \right),
\]
and \(\beta = 2(F_U - F_L) - 1 \). Hence, when \(P^{lu} \) complies with \((\text{FD-4}) \) and \(n = 3F_L = 2F_U - 1 \), \(w_{u,v} \geq 0 \) is not facet defining. Indeed, when \(n = 3F_L = 2F_U - 1 \) it is possible to show that
\[
\alpha w_{u,v} + \alpha w(E([u,v], V - \{u,v\})) + \beta w(E([V - \{u,v\}]) \geq (F_L - 1)\left(\frac{3}{2}F_L - 2 \right)(2F_U - 3) - 2(F_U - 1)(F_U - 2)^2
\]
is facet defining if \(\beta - \alpha \geq 0 \); and,
\[
\alpha w_{u,v} + \alpha w(E([u,v], V - \{u,v\})) + \beta w(E([V - \{u,v\}] \leq (F_L - 1)\left(\frac{3}{2}F_L - 2 \right)(2F_U - 3) - 2(F_U - 1)(F_U - 2)^2
\]
is facet defining if \(\beta - \alpha < 0 \).

(\text{FD-5})\, :\, \text{Note that, in this case we assume } F_U - F_L = 1. \text{ The proof for this case is very similar to the proof of case (FD-2).}

Theorem 62 Suppose that \(\dim(P^{lu}) = \binom{n}{2} - 1 \). Then, the nonnegativity constraints \(w_e \geq 0 \) are facet defining for \(P^{lu} \) if and only if \(n \geq 3F_L + 1 \).

Proof By Proposition 61, we consider \(n \geq 3F_L \). But, when \(n = 3F_L \), \(\dim(P^{lu}) \) is never equal to \(\binom{n}{2} - 1 \). Hence, we have \(n \geq 3F_L + 1 \). We give the proof for only the case \((n \mod F_L) = 1 \). The proof for \((n \mod F_U) = F_U - 1 \) is very similar.

Let \(e = \{u,v\} \) for \(u,v \in V \). Pick two arbitrary nodes \(x, y \in V - \{u,v\} \). Using \(\dim(P^{lu}) = \binom{n}{2} - 1 \), we can set \(g_{x,y} = 0 \). Now, pick an sc-partition \(\pi = (N_1, N_2, \ldots, N_k) \) such that \(|N_1| = F_L + 1, |N_i| = F_L \) for \(i = 2, \ldots, k, \{x, v\} \subseteq N_1, y \in N_2 \) and \(u \in N_3 \). Using Lemma 5 we obtain \(g_{u,x} = g_{x,y} \). By symmetry, we can also infer \(g_{u,x} = g_{x,y} \), which generalizes into \(g_{e'} = 0 \) for all \(e' \in E - \{u,v\} \) for we have already set \(g_{x,y} = 0 \).

Theorem 63 Suppose \(\dim(P^{lu}) = \binom{n}{2} - (n - 1) \). Then the nonnegativity constraints \(w_e \geq 0 \) are facet-defining for \(P^{lu} \) if and only if \(n \geq 3F_L \).
Proof When \(\dim(Pu) = \binom{n}{2} - (n - 1) \), we have \(n \geq 3F_L \) by Theorem 42 and the assumption that \(n > F_U \).

Let \(e = \{u, v\} \) and without loss of generality, assume \(u = n, v = n - 1 \). Let \(k = \frac{n}{F_U} = \frac{n}{L} - 1 \). We know from Proposition 54 that \(M(Pu) \) consists of linearly independent hyperplanes in the form \(\sum_{(u,v) \in E}(\lambda_u + \lambda_v)w_{u,v} = 0 \) where \(\lambda \in \mathbb{R}^n \) and \(\sum_{u \in V} \lambda_u = 0 \). We choose \(n - 1 \) such hyperplanes \(H_1, H_2, \ldots, H_{n-1} \) which are determined by the \(\lambda \)'s displayed in the rows of the following matrix:

\[
\begin{bmatrix}
\lambda_1 & \lambda_2 & \lambda_3 & \ldots & \lambda_{n-1} & \lambda_n \\
1 & -1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -1 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & -1 \\
\end{bmatrix}
\]

One can verify that \(H_1, H_2, \ldots, H_{n-1} \) are linearly independent. Now, consider the set of edges \(S = \{\{1, n\}, \{2, n\}, \ldots, \{n - 2, n\}, \{1, n - 1\}\} \). The following matrix displays the coefficients of the edges belonging to \(S \) in the equations representing \(H_1 \) to \(H_{n-1} \):

\[
\begin{bmatrix}
\{1, n\} & \{2, n\} & \{3, n\} & \{4, n\} & \ldots & \{n - 2, n\} & \{1, n - 1\} \\
1 & -1 & 0 & \ldots & 0 & 0 & 1 \\
0 & 1 & -1 & \ldots & 0 & 0 & \ 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1 & 0 \\
-1 & -1 & -1 & \ldots & -1 & -1 & 1 \\
\end{bmatrix}
\]

This matrix is non-singular. Hence, we can set \(g_e = 0 \) for all \(e \in S \) (again, by Theorem 3.6 in Section I.4.3 of [14]). Now, pick four arbitrary nodes \(x, y, z, t \in V - \{n - 1, n\} \) and an sc-partition \(\pi = (N_1, N_2, \ldots, N_{k+1}) \) where \(|N_i| = F_L \) for all \(i = 1, 2, \ldots, k + 1 \), \(\{n, x\} \subset N_1 \), \(\{n - 1, y\} \subset N_2 \) and \(\{z, t\} \subset N_3 \). Using Lemma 6 we infer \(g_{e_{x, n}} + g_{y, n-1} = g_{y, n} + g_{x, n-1} \). Since \(g_{x, n} = g_{y, n} = 0 \), we have \(g_{x, n-1} = g_{y, n-1} \). But we have already set \(g_{1, n-1} = 0 \), hence, we obtain \(g_{q, n-1} = 0 \) for all \(q \in V - \{n - 1, n\} \). Applying Lemma 6 once more, we can obtain \(g_{n-1, y} + g_{z, t} = g_{n-1, z} + g_{y, t} \), which implies \(g_e = \alpha \in \mathbb{R} \) for all \(e' \in E(V - \{n - 1, n\}) \).

Finally, construct another sc-partition by distributing the nodes of \(N_{k+1} \) over the others and call this new sc-partition \(\pi^* \). Clearly, \(w^* \in F_e \). Comparing \(g^T w^* = h \) and \(g^T w^* = h \) yields \(\alpha = 0 \).

Theorem 64 Suppose \(\dim(Pu) = \binom{n}{2} - n \). Then the non-negativity constraints \(w_e \geq 0 \) are facet-defining for \(Pu \) if and only if \(n \geq 3F_L \).

Proof When \(\dim(Pu) = \binom{n}{2} - n \), \(M(Pu) \) consists of the hyperplanes \(H_1, H_2, \ldots, H_n \), where \(H_u \) is defined as \(w(\delta(u)) = F - 1 \) for \(F \in \{F_L, F_U\} \). Let \(e = \{u, v\} \), and assume without loss of generality that \(v = n - 1 \) and \(u = n \). Let \(S = \{\{1, n\}, \{2, n\}, \ldots, \{1, n - 1\}, \{1, n - 2\}\} \). In the following matrix, the coefficients of the edges belonging to \(S \) in the equations representing \(H_1 \) to \(H_n \) are displayed:

\[
\begin{bmatrix}
\{1, n\} & \{2, n\} & \{3, n\} & \ldots & \{n - 2, n\} & \{1, n - 1\} & \{1, n - 2\} \\
1 & 0 & 0 & \ldots & 0 & 1 & 1 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & \ldots & 1 & 0 & 0 \\
\end{bmatrix}
\]

This matrix is non-singular. With reference to Theorem 3.6 in Section I.4.3 of [14], we use this fact to set \(g_e = 0 \) for all \(e' \in S \).
6.2 Upper Bound Constraints

Let P denote the face defined by a constraint in (1c), i.e.,

$$P = \{ w \in P^{lu} | w(\delta(u)) = F_U - 1 \} \quad \text{where} \quad u \in V.$$ \hfill (13)

For some (n, F_L, F_U) triples, it is possible that $P = \emptyset$. For such instances, the right hand side of the constraints (1c) has to be strengthened to ensure that P is non-empty. For example, consider the triple $(33, 8, 10)$, which imply $\left\lceil \frac{n}{10} \right\rceil = \left\lceil \frac{n}{8} \right\rceil = 4$. We have $\\max_i \{|N_i|\} = 9$ for any sc-partition $\pi = (N_1, N_2, N_3, N_4)$. Clearly, in this example we need to use 9 rather than 10 in the right hand side of (1c) to ensure that $P \neq \emptyset$. In other words, we need to be able to find the correct right hand side value for which (1c) remain valid and their corresponding faces become non-empty.

Now, we introduce a series of numbers, ϕ_i^U, where $\phi_i^U - 1$ gives us this correct right hand side value we look for. The other elements of this series (i.e., ϕ_i^U for $i > 1$) will be utilized in Sections 9 and 12. Consider the definition

$$\phi_i^U = \max_{u^\ast \in P_i^{lu}(R_{i-1}, F_L, F_U)} \left\{ \max_{j=1, \ldots, k} \{ |N_j| \} \right\},$$

where $\phi_0 = F_U$, $R_0 = n$ and $R_i = R_{i-1} - \phi_i^U$. According to this definition, ϕ_i^U gives the maximal size the subsets can attain in sc-partitions (i.e., in feasible solutions of $P_i^{lu}(n, F_L, F_U)$), ϕ_2^U gives the second maximal size the subsets can attain in sc-partitions, and so on. Equivalently, we can also say that ϕ_i^U is the maximal size the subsets can attain in feasible solutions of $P_i^{lu}(n - \phi_i^U, F_L, F_U)$, ϕ_3^U is the maximal size the subsets can attain in feasible solutions of $P_i^{lu}(n - \phi_1^U - \phi_2^U, F_L, F_U)$, and so on.

The following formula can be used for computing the values of ϕ_i^U:

$$\phi_i^U = \max \left\{ \phi \in \mathbb{Z}_+ | F_{L} \leq \phi \leq F_U, \left\lceil \frac{R_{i-1} - \phi}{F_L} \right\rceil \geq \left\lceil \frac{R_{i-1} - \phi}{\phi} \right\rceil \right\}.$$ \hfill (14)

Note that, $R_k = 0$ for $k = \left\lceil \frac{n}{F_U} \right\rceil$, and hence ϕ_i^U for $i > \left\lceil \frac{n}{F_U} \right\rceil$ is not defined.

Now, we define P_i^U’s as follows:

$$P_i^U = \{ w \in P_i^{lu} | w(\delta(u)) = \phi_i^U - 1 \} \quad \text{where} \quad u \in V.$$

Due to the definition of ϕ_i^U, P_i^U is never empty for any $u \in V$.

Assume that there exists a valid inequality $g^T w \leq h$ such that

$$P_u^f \subseteq \{ w \in P^{lu} | g^T w = h \}$$

for a node u. In Theorems 65, 66 and 67 we prove the conditions under which P_i^U is a facet, i.e., $g^T w = h$ can be written as a linear combination of $w(\delta(u)) = \phi_i^U - 1$ and the equalities in $M(P_i^{lu})$, if any. Beforehand, we present a technical lemma.

Lemma 8 If $\dim(n - \phi_i^U, F_L, F_U) \neq \left(\frac{n - \phi_i^U}{2} \right) - (n - \phi_i^U)$, $\phi_i^U = F_U$.

Proof Suppose that $\phi_i^U < F_U$. If $\dim(n - \phi_i^U, F_L, F_U) \neq \left(\frac{n - \phi_i^U}{2} \right) - (n - \phi_i^U)$, there exists $\pi = (N_1, \ldots, N_k)$ in $P_i^{lu}(n - \phi_i^U, F_L, F_U)$ such that $|N_l| > F_L$ for some $l \in \{1, \ldots, k\}$. Then, we can construct an sc-partition $\pi^* = (N_{k+1}, \ldots, N_{k+1})$ in $P_i^{lu}(n, F_L, F_U)$ such that $|N_l^*| = |N_l|$ for $i = 1, \ldots, k$ and $|N_{k+1}^*| = \phi_i^U$. But, then we would be able to find another sc-partition $\tilde{\pi} = (N_{k+1}, \ldots, N_{k+1})$ by shifting a node from N_{k+1}^* to N_{k+1}. Then, we would have $|N_{k+1}^*| = \phi_i^U + 1$, which contradicts the definition of ϕ_i^U.\]
Theorem 65 Suppose \mathcal{P}^{lu} is full-dimensional and $F_U - F_L \geq 2$. Then, (1c) are facet defining for $\mathcal{P}^{lu}(n,F_L,F_U)$ if and only if

(i) $\dim(\mathcal{P}^{lu}(n-F_U,F_L,F_U))=\binom{n-F_U}{2}$, \(n\), or

(ii) $\dim(\mathcal{P}^{lu}(n-F_U,F_L,F_U))=\binom{n-F_U}{2}$.

Proof Due to Lemma 8, the conditions of this theorem dictate us to consider (1c) rather than their strengthened version $w(\delta(u)) \leq \phi(u)$. We pick a node u and prove that the conditions (i) and (ii) make its corresponding inequality in (1c) facet defining.

(i) By Theorem 42, we have $\frac{n-F_U}{F_U} + 1$. Let $k = \frac{n-F_U}{F_U}$. Pick four nodes $p,q,x,y \in V - u$ arbitrarily. Pick an sc-partition $\pi = (N_1,\ldots,N_{k+2})$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ such that $|N_1| = F_U$, $|N_i| = F_L$ for $i = 2,\ldots,k+2$, $u \in N_1$, $\{p,x\} \subset N_2$ and $\{q,y\} \subset N_3$. Applying Lemma 6 gives $g_{p,x} + g_{q,y} = g_{p,y} + g_{q,x}$, which implies $g_{p,z} - g_{q,z} = \alpha \in \mathbb{R}$ for all $z \in V - \{u,p,q\}$. Now, pick another sc-partition $\pi' = (N_1',N_2',\ldots,N_{k+2}')$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ such that $|N_1'| = F_U$, $|N_i'| = F_L$ for $i = 2,\ldots,k+2$, $u \in N_1'$ and $p \in N_2'$. Switching p and q in π' gives

$$g_{q,u} + g(q,N_2 - \{u,q\}) + g(q,N_2^* - p) = g_{p,u} + g(p,N_1^* - \{u,q\}) + g(q,N_2^* - p).$$

(15)

Now, construct yet another sc-partition $\tilde{\pi} = (N_1,\ldots,N_{k+1})$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ by distributing the nodes of N_{k+2}' in π' over N_2',\ldots,N_{k+1}'. By Theorem 42 we have $|N_i| = F_U$ for $i = 1,\ldots,k+1$. Clearly, we also have $\{u,q\} \subset N_1$ and $p \in N_2$. Switching p and q in $\tilde{\pi}$ gives

$$g_{q,u} + g(q,N_1^* - \{u,q\}) + g(p,N_2 - N_2') = g_{p,u} + g(p,N_1^* - \{u,q\}) + g(q,N_2^* - p).$$

where $N_{k+2}' = N_2 - N_2'$ with $|N_{k+2}'| = F_U - F_L$. Comparing this latter equation with (15) yields

$$g(p,N_{k+2}') = g(q,N_{k+2}').$$

Plugging $g_{p,z} - g_{q,z} = \alpha$ into this equality implies that $\alpha = 0$, from which we infer $g_{p,z} = g_{q,z}$ for all $z \in V - \{u,p,q\}$. But, since p and q are arbitrary, this immediately gives $g_{p,z} = \beta \in \mathbb{R}$ for all $e \in E(V - u)$. Further, comparing $g^T w^{\pi} = h$ and $g^T w^{\tilde{\pi}} = h$ we obtain $\beta = 0$. Then, (15) directly implies $g_{p,q} = \gamma \in \mathbb{R}$ for all $p \in V - u$.

(ii) If $\mathcal{P}^{lu}(n-F_U,F_L,F_U)$ has a 2-loose sc-partition (i.e., it complies with (FD-1)), applying Lemma 4 to such a 2-loose sc-partition and generalizing, one can infer $g_{e} = 0$ for all $e \in E(V - u)$. Now, consider two arbitrary nodes $x,y \in V - u$ and an sc-partition $\pi = (N_1,\ldots,N_k)$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ such that $(x,y) \subset N_1$, $y \in N_2$ and $|N_i| = F_U$. Switching x and y in π yields $g_{a,x} = g_{a,y}$. Since x and y are arbitrary, we infer $g_{e} = \alpha \in \mathbb{R}$ for $e \in \delta(u)$.

If $(n-F_U,F_L,F_U)$ satisfies (FD-2), pick an sc-partition in $\mathcal{P}^{lu}(n,F_L,F_U)$, $\pi^1 = (N_1,N_2^*,\ldots,N_{k+2}')$, such that $k = \left\lceil \frac{n-F_U}{F_U} \right\rceil \geq 1$, $u \in N_1^1$, $|N_1^1| = F_U$, $|N_2^1| = F_L + 1$ and $|N_i^1| = F_L$ for $i = 3,\ldots,k+2$. Applying Lemma 5 to this sc-partition and generalizing, we infer $g_{e} = \alpha \in \mathbb{R}$ for all $e \in E(V - u)$. Now, pick another sc-partition $\pi^2 = (N_1^2,N_2^2,\ldots,N_{k+1}^2)$ in $\mathcal{P}^{lu}(n,F_L,F_U)$, where $N_2^2 = N_1^1$, $|N_2^2| = F_U$ for $i = 1,2,\ldots,k + 1$. Comparing $g^T w^{\pi^1} = h$ and $g^T w^{\pi^2} = h$ we infer that $\alpha = 0$ for all $e \in E(V - u)$. Now, pick two arbitrary nodes $x,y \in V - u$ such that, without loss of generality, $x \in N_1^1$ and $y \in N_2^1$. Switching x and y in π^1, we obtain $g_{a,x} = g_{a,y}$. This implies $g_{e} = \beta \in \mathbb{R}$ for all $e \in V - u$ and hence that (16) is facet defining. We can use this proof when $(n-F_U,F_L,F_U)$ satisfies (FD-3) or (FD-5) as well, by choosing π^1 and π^2 accordingly.

If $(n-F_U,F_L,F_U)$ satisfies (FD-4), pick an sc-partition $\pi^1 = (N_1,N_2^*,\ldots,N_{k+1}^*)$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ where $k = \left\lceil \frac{n-F_U}{F_U} \right\rceil \geq 2$ (recall from the Remark of Theorem 51 that (FD-4) implies full-dimensionality of $\mathcal{P}^{lu}(n-F_U,F_L,F_U)$ if and only if $\left\lceil \frac{n-F_U}{F_U} \right\rceil \geq 2$, $u \in N_1$, $|N_1| = F_U$, $|N_i| = F_L - 1$, $|N_i^1| = F_L$ for $i = 3,\ldots,k + 1$. Applying Lemma 5 to this sc-partition and generalizing, we infer that $g_{e} = \alpha \in \mathbb{R}$ for all $e \in E(V - u)$. Now, pick another sc-partition $\pi^2 = (N_1^2,N_2^2,\ldots,N_{k+2}^2)$ in $\mathcal{P}^{lu}(n,F_L,F_U)$ where $N_2^2 = N_1^1$, $|N_i^2| = F_L$ for $i = 2,\ldots,k + 2$. Comparing $g^T w^{\pi^1} = h$ and $g^T w^{\pi^2} = h$ we infer $\alpha = 0$. Now, in a similar manner to the previous paragraph (where facetness for (FD-2) is proved), we can show that $g_{a,v} = \beta \in \mathbb{R}$ for all $v \in V - u$. \[\text{17}\]
Now, suppose that \(\dim(\mathcal{P}^U(n - F_U, F_L, F_U)) \) is either \(\left(\frac{n - F_U}{2} \right) \) or \(\left(\frac{n - F_U}{2} \right) - (n - F_U) \). Observe from Section 5.2 that, \(\mathcal{P}^U(n - F_U, F_L, F_U) \) is contained in the hyperplane \(w(E) = C \) where \(C \) is a constant and \(E \) represents the edge set of a complete graph with \(n - F_U \) nodes. Then,

\[
P_U^L \subseteq \{ \omega \in \mathbb{R}^{|V|} \mid w(E) = C + \left(\frac{F_U}{2} \right) \}.
\]

Note that, \(w(E) \leq C + \left(\frac{F_U}{2} \right) \) is valid for \(\mathcal{P}^U \).

Theorem 66 Suppose \(\dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - 1 \). The inequalities

\[
w(\delta(u)) \leq \phi^U_i - 1 \quad \forall u \in V
\]

are facet defining for \(\mathcal{P}^U \) if and only if one of the following hold:

1. \(\left(\frac{n}{F_U} \right) \geq 3 \) and \((n \text{ mod } F_U) = F_U - 1 \).
2. \(F_U - F_L = 1, \left(\frac{n}{F_U} \right) \geq 3 \) and \((n \text{ mod } F_L) > 1 \).

Proof If \(\dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - 1 \), by Theorem 41 we have \(\left[\frac{n}{F_U} \right] = \left[\frac{n}{F_U} \right] \). Theorem 41 also shows that \(\dim(\mathcal{P}^U) \) is \(\left(\frac{n}{2} \right) - 1 \) when \((n \text{ mod } F_U) = 1 \) or \((n \text{ mod } F_U) = F_U - 1 \). We know furthermore that, when \(F_U - F_L = 1, \dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - 1 \) holds even if \((n \text{ mod } F_U) > 1 \) and \((n \text{ mod } F_L) < F_U - 1 \).

When \((n \text{ mod } F_L) = 1 \) or \(\left(\frac{n}{F_U} \right) = 2, P_U^L \) is contained in the faces defined by the upper 2-star inequalities introduced in Section 12 of the sequel paper.

Now, we show that (16) are facet defining if \(\left(\frac{n}{F_U} \right) = \left(\frac{n}{F_U} \right) \geq 3 \) and \((n \text{ mod } F_U) = F_U - 1 \). Since \(\dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - 1 \) we can fix \(g_{e^*} = 0 \) for some \(e^* \in E(V - u) \). Now, pick four arbitrary nodes \(v, t, x, y \in V - u \) and an sc-partition \(\pi = (N_1, N_2, \ldots, N_k) (k \geq 3) \) such that \(\{u, y\} \subset N_1, \{v, t\} \subset N_2, x \in N_3, |N_1| = |N_2| = F_U, |N_3| = F_U - 1 \) and \(|N_i| = F_U \) for \(i = 4, \ldots, k \). Applying Lemma 5 to \(\pi \), we can infer \(g_{v, t} = g_{v, x} \) for all \(v, t, x \in V - u \). Since \(v, t \) and \(x \) are arbitrary and \(g_{e^*} = 0 \) for some \(e^* \in E(V - u) \), we infer \(g_{e^*} = 0 \) for all \(e^* \in E(V - u) \). Switching \(v \) and \(y \) in \(\pi \), we get \(g_{u, v} = g_{u, y} \), which implies \(g_{u, v} = \alpha \in \mathbb{R} \) for all \(v \in V - u \).

Now suppose that \(F_U - F_L = 1 \) and consider an sc-partition \(\pi^* = (N^*_1, N^*_2, \ldots, N^*_k) (k \geq 3) \) such that \(\{u, y\} \subset N^*_1, \{v, t\} \subset N^*_2, x \in N^*_3, |N^*_1| = |N^*_2| = F_U, |N^*_3| = F_U - 1 \) and \(|N_i| = F_U \). Proceeding in the same manner as we have done with \(\pi \) in the previous paragraph, we can show that (16) are facet defining for \(\mathcal{P}^U \) when \(F_U - F_L = 1, \left(\frac{n}{F_U} \right) \geq 3 \) and \((n \text{ mod } F_L) > 1 \).

Theorem 67 When \(\dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - (n - 1), (16) \) are facet defining for \(\mathcal{P}^U \).

Proof When \(\dim(\mathcal{P}^U) = \left(\frac{n}{2} \right) - (n - 1) \), \(\mathcal{P}^U(n, F_L, F_U) = \mathcal{P}^U(n, F_L, F_U) \cap \mathcal{P}^U(n, F_U, F_U) \). Since \(\mathcal{P}^U(n, F_U, F_U) \subseteq P_U^L \), we have \(\dim(P_U^L) = \left(\frac{n}{2} \right) - n \).

6.3 Lower Bound Constraints

In this section, we express the conditions that make the strengthened version of the lower bound constraints (1b) facet defining. The proofs of the theorems (except a part of the proof of Theorem 69) are not presented because they are very similar to their counterparts in the previous section.

In this section, we introduce the series \(\phi^L_i \), which is in a sense the symmetric of \(\phi^U_i \) of the previous section. We define \(\phi^L_i \) in the following manner:

\[
\phi^L_i = \min_{\pi = (N_1, \ldots, N_k)} \left\{ \min_{j=1, \ldots, k} \{|N_j|\} \right\}
\]

where \(\phi_0 = F_L, R_0 = n \) and \(R_j = \max\{0, R_j-1 - \phi^L_i\} \). Similarly, \(\phi^L_i \) gives the minimal size the subsets can attain in sc-partitions (i.e., in feasible solutions of \(\mathcal{P}^U(n, F_L, F_U) \)), and \(\phi^L_i \) gives the second
minimal size the subsets can attain in sc-partitions, and so on. We can equivalently say that \(\phi_i^L \) is the minimal size the subsets can attain in feasible solutions of \(P_u(n - \phi_1^L, F_L, F_U) \), \(\phi_i^L \) is the minimal size the subsets can attain in feasible solutions of \(P_u(n - \phi_1^L - \phi_2^L, F_L, F_U) \), and so on. Likewise, \(\phi_i^L \) for \(i > 1 \) will be utilized in Section 11.

The following formula, which is symmetric of (14), can be employed for computing the values of \(\phi_i^L \)’s:

\[
\phi_i^L = \min \left\{ \phi \in \mathbb{Z}_+ \mid F_L \leq \phi \leq F_U, \left\lfloor \frac{R_{i-1} - \phi}{\phi} \right\rfloor \geq \left\lfloor \frac{R_{i-1} - \phi}{F_U} \right\rfloor \right\}.
\]

(17)

Note that, for \(k = \left\lfloor \frac{n}{F_U} \right\rfloor \), \(R_k = 0 \) and hence, \(\phi_i^L \) for \(i > k \) is not defined.

Now follows the lemma and the theorems that summarize the main results of this section regarding the lower bound constraints.

Lemma 9 If \(\dim(n - \phi_1^L, F_L, F_U) \neq \frac{(n - \phi_1^L) - (n - \phi_1^L)}{2} \), \(\phi_1^L = F_L \).

Theorem 68 Suppose \(P_u \) is full-dimensional and \(F_U - F_L \geq 2 \). Then, (1b) are facet defining for \(P_u \) if and only if

(i) \(\dim(P_u(n - F_L, F_L, F_U)) = \frac{(n - F_U) - (n - F_L - 1)}{2} \), or,

(ii) \(\dim(P_u(n - F_L, F_L, F_U)) = \frac{(n - F_U)}{2} \).

Theorem 69 Suppose \(\dim(P_u) = \binom{n}{3} - 1 \). Then,

\[
w(\delta(u)) \geq \phi_1^L - 1 \quad \forall u \in V
\]

are facet defining for \(P_u \) if and only if one of the following hold:

- \(\left\lfloor \frac{n}{F_U} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor \geq 3 \) and \((n \mod F_L) = 1 \).
- \(F_U - F_L = 1, \left\lfloor \frac{n}{F_U} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor \geq 3 \) and \((n \mod F_U) < F_U - 1 \).

Proof When \(\left\lfloor \frac{n}{F_U} \right\rfloor = \left\lfloor \frac{n}{F_U} \right\rfloor = 2 \) or \((n \mod F_U) = F_U - 1 \), \(P_u = \{ w \in P_u \mid w(\delta(u)) \geq \phi_1^L - 1 \} \) is contained in the faces defined by the lower 2-star inequalities in Section 11.

Theorem 610 Suppose \(\dim(P_u) = \binom{n}{2} - (n - 1) \). Then (18) are facet defining for \(P_u \).

References